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A sharp bilinear restriction estimate for the sphere
and its application to the wave-Schrodinger system

Takafumi Akahori

Abstract.

We consider 2 x 2 — ¢ type bilinear restriction estimates for trans-
verse subsets of the sphere, for all ¢ > "T” Moreover, we give its
application to the wave-Schrodinger system.

§1. Introduction and main results

In this paper, we consider bilinear restriction estimates for the sphere
and its application to the wave-Schrodinger system in the three dimen-
sions:

) { 10u+Au = o,

Pv—-Av = —|ul?

where u and v are complex and real-valued functions on R? x R, respec-
tively.

The Fourier restriction estimate has been studied by many mathe-
maticians, since it is related to many other problems such as the Bochner-
Riesz conjecture, the local smoothing conjecture for the wave equation
and the Kakeya conjecture (see [5]). Also it has many applications to
PDE. In particular, the author showed that the bilinear restriction es-
timate for the sphere plays an important role to improve the local and
global well-posedness results of the Cauchy problem for (1) (see [1]).
Thus, it is important to consider the bilinear restriction estimate for the
sphere.

We denote the n — 1 dimensional sphere by S”~! and its induced
Lebesgue measure by . Let S; and S, be any two subsets of S”~1 with
boundary. Then we say that the “bilinear adjoint restriction estimate”
(or bilinear extension estimate ) Rg, g (p x p — ¢) holds, if we have

[(f1do)¥ (f2do)" || Lawn) < Cp.g.s1,8: I f1llLe(8y:d0) | f2ll Lo (85d0)
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for all smooth functions f; and fo supported on S; and Sy respectively,
where (f;do)V is the inverse Fourier transform of the measure f;do.

Now let £ be a sufficiently small positive parameter and p. be a
smooth cut-off function vanishing on Ce-neighborhood of 251 := {¢ €
R™ : |¢] = 2} and C/e-neighborhood of the origin, where C' is a uni-
versal large constant. Then our main result is the following:

Theorem 1.1. Letn >3, 00 >¢q > ”T“ and set

1 1 n-1 1
A= - 1) | = — S
max{4+(n+ )[q n—l—lL_’Q}

where ]+ denotes the nonnegative part. Then we have

(2)  I(frdo * fodo)pell o gy S € A fill L2(sm- 100 | f2ll 257 1;d0)
(R™)

for all f1, fo € L*(S™1;do), where the implicit constant depends only

on n and q, and in the case where q = %Zf—é) we have to modify the

factor e=4 to £'/2|loge].

This type of estimate was first given by Bourgain for the cone [3]
and has applications to PDE (see [4]). To prove the theorem, we need
the nearly sharp estimates Rg ¢,(2x 2 — ¢), ¢ > -";t—g, where “nearly
sharp” means that the estimate fails, if ¢ < QZ—Q In [6], Tao proves
the nearly sharp bilinear restriction estimate for the paraboloid. His
proof is applicable to hypersurfaces which are small perturbations of the
paraboloid, in particular, small subsets of the sphere. In this paper,
we consider the sphere directly and give an explicit dependence on the
transversality (see Theorem 2.2 below).

Theorem 1.1 plays an important role to analyze a transverse inter-
action in bilinear estimates related to (1). Indeed, combining Theorem
1.1 with the result of [1], we have the following well-posedness result for

(1).

Corollary 1.2. The Cauchy problem for the wave-Schridinger sys-
tem (1) is locally well-posed for initial data uwo € H*' and (vo,v1) €
H® x H*271, if sy > —1 and sy > —g5. Moreover, if s1,52 > — gers,
then the global well-posedness holds.

Throughout this paper, we use N,.(5) to denote the r-neighborhood
of aset S. Also weuse A < B and O(A) to denote the estimate |A| < CB
and C A respectively, where C’s are constants depending only on n and
g. A ~ B denotes the relation B < A < B. Moreover, for a large
parameter R, A S B denotes the estimate A < (log R)”B for all v > 0.
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This paper is organized as follows. Section 2 is assigned for the proof
of Theorem 1.1. In Section 3, we give an important tool, wave packet
decomposition. In Section 4, we prove the crucial bilinear restriction
estimate Theorem 2.2 via Proposition 4.1.

§2. Proof of Theorem 1.1

Let . be a finitely overlapping covering of S™~! by caps of size /&,
where a cap k of center wy € S”~! and size 0 < r < 7 is defined by
K= {w €Sl L(w,wy) < %} Then we easily see that #I'. ~ e
The following proposition shows why p. is needed in the statement of

Theorem 1.1.
Proposition 2.1. Let k1,kq €T..
(i) If K1 + K2 C No()(2S™71), then Z(k1,K2) S VE.
(i) If k1 + K2 C Bo(z)(0), then m — C\/e < Z(Kk1, k) < m for some
large constant C > 1.
Proof of Proposition 2.1.

It is sufficient to prove the case n = 2. The proof is easy and so we
omit the details. O

From Proposition 2.1, we see that p. yields the transversality in (2).
Now we prove Theorem 1.1. Take any fi, f» € L?(S""1;do). We
decompose

(3) fi=> fuys

k€T
where suppfx, C k; (j = 1,2). Then, by the Hausdorff-Young inequal-
| ity,
[ (fido * f2do)pe |l Lo gy
(4) < > 1(fxrd0)Y ()Y [ aeny.

(k1,k2)€le XTe
CVe<s(ry . ky)ST—CVE

where C' >> 1 is some constant, in particular we may take C = 10. To
analyze the effect of angular separation, we estimate the R.H.S. of (4)
by

(5) > > I(frrd0)Y (frpdo)V || pammy.-
0c\/eN (k1.82)ele xTe

Ce<<n—Cye 8<L(r].k2)<O+/E

To estimate (5), we use the following bilinear restriction estimate:
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Theorem 2.2. Let %2 < g < oo, 10/ <6 <7 =10/ and let
K1,Kk2 € Te with 8 < /(k1,Kk2) < 0 + /€. Then the bilinear adjoint

restriction estimate Ry, . (2 x 2 — q) holds with constant

?

1 1 (n+1)[3- 571,
C n i k) .
g M { VE(sin8)? 7 (sin )4 }

where Cy , depends only on g and n.

We remark that Theorem 2.2 is nearly sharp in the sense that
(2 x 2 — q) fails for ¢ < 2*2 the endpoint case ¢ = "T” is

*
R -,

K1,K2
still open.

Applying Theorem 2.2, we estimate (5) by

> min{ 1 1 }(”+1>[5‘7i+ﬂ+
oS VZ(sinf)2 7 (sin )4

(6) CVE<H<T—C/E
x> mallzaseetdo [ Froll 2 (sn-1ido)-

(k1.k3)€0e xTs
0<L(ry.k9)<O+/E

Since for given k1 € I'. there are at most O(1) caps k2 € [z such that
6 < Z(k1,Kk3) < 8 + /e, by the Schwarz inequality and the finitely
overlapping property of I';, (6) is estimated by

n—1

(n+D)[3-251],
)

. 1 1
min : y
(7) e;/:a\' { Ve(sing)2’ (sind
CVE<O<T~CE

X [ f1llz2(sm-15d0) 1 f2ll L2 (57 15d0r) -

Set g, = (n+1) [l - tl} . When n < 5, we see that (7) is estimated
+

q n+1
by
em VY full el fall e if 22 < g < 4523),
e=12| loge||| fill 21| f2ll L2 if g = 224D

e=V2|( f1ll 2 fall 2 if g > %.

On the other hand, when n > 6, (7) is estimated by e ™Y/2||f1|/ 12| fall 2
for all g > ﬂi—z Hence we have completed the proof of Theorem 1.1. O

Thus it remains to prove Theorem 2.2. We give the proof in the
next sections.
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$3. Wave packet decomposition

Let R be a positive number with ¢ > 1/R and let kK € .. In
this section, we expand the Fourier transform of a smooth function Fy
supported on N 1 (k) by wave packets adapted to tiles of width VR

and length R. Let {e)}" | be the standard basis of R". For any z €
R", we set ' = 7, (z) and 2’ = 7 () (2), where 7%, and m ) are
the projections onto the plane perpendicular to e(™ and the axis e(™),
respectively. Thus we have z = (z/,z”) e R*~! x R.

Let T'r(k) be a finitely overlapping covering of k by caps & of size
1/VR, center w(k) and Z(w(ky),w(k2)) ~ 1/VR for all k1, ks € Tr(kK).
Thus we have

wc U Ny

K€ElR(K)

3.1. w-coordinate and w-tiles

Let w € 8" ! and let L, be a rotation such that Low = (™ =
(0,---,1). Then we define the unit vectors {ef‘f)}f:1 by el = L;te®
(I =1,---,n). In particular, el = w. We call {eg)} w-coordinate
system. Set x, = L,x for x € R".

Next we introduce w-tiles. For w € S*~1, we define the fundamental

n — 1 times

e e
tile 7,,(0) as the V'R x ... x VR x R-rectangle centered at the origin,
the long side is in the direction w. Set X = vRZ" ! and Y = RZ. Then
forae L;Y(X xY), we set T,,(a) = T,,(0) + a and call w-tile of center
d. We denote the set of w-tiles by T(w), namely T(w) := {T,,(0) + & :
ae LM (X xY)}
n — 1 times
——

For a VR x ... x VR x R-rectangle T, we denote the long side di-
rection by w(7T'), and call the direction of T'. Also we denote the center
of T by a(T'). We will often use a(T") to denote L, (1ya(T).

3.2. Wave packet decomposition for the sphere

Following Tao’s idea [6}, we decompose functions into wave packets.
Let k € T and let F' be a smooth function supported on N (k). We
decompose

(8) F= Y F,

KETR(K)
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where F is smooth and supp F; C N 1 (k). Now we decompose FY into
wave packets adapted to w(k)-tiles. We note that

FY(2) = (Fo L3})" (@uim).

We take a Schwartz function " on R"~! such that suppn’ C B (10x)(0)
and Y pczn-1n' (@’ — k) =1 for all 2/ € Rt (cf. [6]). Moreover, we
take a Schwartz function n” on R such that suppn” C [-1/107,1/107]
and Y ez 1 (2" — k) =1 for all z” € R"~1. Then we decompose

F;/(:L‘) = (Fn o L;(In))v(xw(n))

S (T (T

a=(a’,a”")EXXY

(F oL 1)) (xw(n))

where z,,(.) = (ac(’u(n), .TZ(H)) € R* " IxR. Forw € S™ !, we can associate
a = (a’,a") € X x Y with the w-tile with center a := L, (.)a and thus

we set "
or, @ = BT M'® M"[(Fy o L3, ))V](d,a"),

where M’ ® M" is the tensor product of the Hardy-Littlewood maximal

operators on R”™! and R, i.e.,

M' @ M"[u](z, ="

1 : 1
:= sup SUp ————— lu(y',y") dy" | dy”.
0 | DL (z)] D7, (") (r>0 1D (@) Jpr, (2r)

Here D], (z') (resp. D/, (z")) is the n—1 dimensional ball (resp. interval

~in R) of center z’ (resp. z”) and radius r’ (resp. length 2r"), i.e
Dl (z") = {y e R""1 : |y —2'| <r'} (vesp. D\ (") := [z" ", 2" +
r"]). We set

T (@) (Tw(r))

1 " .’Eg(ﬁ) - a”> ,<:L';(R)
= F o L . '
CTW(K)(E;,) 7 ( R K vR )( w(/-;)) ( w(n))

Moreover we set ¢r, @) = ¢T.,., (@) © Lu(x) and thus o7, @) (z) =
T, (@) (Tw(x)) for all z € R™. Then we represent

9) Flz)= Y crér(z)

TeT(w(k))
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Combining (8) and (9), we obtain a decomposition of FV:

(10) F¥ =" erér(z),

TeT

where Ty := Ugerp ) T(w(k)). We call Ty the tiles associated to k.
We give properties of the decomposition (10). In particular, we find
that ¢ is a wave packet concentrated on a tile T.

Proposition 3.1. (i) The coefficients {cr} in (10) obey the bound

1
2
( Z |CT|2> S ||F||L2(R")-

TeT.

(it) For T € Ty, let (T) be the cap in Tr(k) with the center w(T).
Then we have

supp 1 C L1 (Lus(ry N1y r(K(T)) + D} 10xv)(0) X DY/ 10xm) (0))-

In particular, taking R sufficiently large, we find that suppd/; s con-
tained in the 2/ R-neighborhood of x(T).
(iii) For any T € T, and any N, M > 0, we have

Canr [y (@, T) o dyery (2, T)\ ™
ér()| < C(M. N)R <T> (et

where d2 (z,vy) := dist(7} (z), 72 (y)) and dy(z,y) := dist(m,(z), 7, (¥))-

w

(i) Let T!. be any subset of T with # T}, < oo. Then we have

| 2 o

TeT,

(#T.,)%.

<
L2(R") ~

Proof of Proposition 3.1.
The proof is similar to that of Lemma 4.1 in [6] and therefore we omit
the proof. O

§4. Proof of Theorem 2.2

Let k1,62 € T. with 6 < Z(k1,Kk2) < 6 + /. Take ¢ bigger
than and arbitrarily close to @I—Z For Theorem 2.2, by Lemma 2.4 of
[8], Proposition 4.3 of [9] and the interpolation with the Tomas-Stein
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restriction estimate, it suffices to prove the following localized and 1/R-
spread bilinear adjoint restriction estimate:

| Fy Fy 1 La(Br(o))

1 1 (1-v)(1-3) .
< i Ro-
~ { Ve(sing)?’ (sin8)4 }

foral R>1,a>0,0 < v < 1 and all smooth L2-normalized functions
Fy, and Fj, supported on Ny r(k1) and Ny/g(K2), respectively, where
the implicit constant depends only on n, ¢ and a.

We use Ry .. (2 x2 — g,a) to denotes the statement that the
estimate (11) holds for all R > 1, 1> v > 0 and some o > 0.

Our proof of (11) heavily depends on the idea of Tao [6] and Wolff
[10]. The salient point in our proof is the geometric observation for the
sphere, see Sections 4.6.3 and 4.6.5.

In view of Proposition 3.2 of [6], for (11) it suffices to prove the

following inductive statement.

(11)

Proposition 4.1. Suppose oo > 0 such that Ry, . (2 X2 — q,q)
holds. Then we have

| F8, |l e (Brioy)

1 1 (1-n(1-1)
12 < Cgo mi )
(12) - mm{\/g(sinﬁ)2 (sin@)“}
x Rmax{(l-é)a,C§}+CuR—1

for all 0 < b,v <« 1, where C’s are constants independent of a, § and v,
and Cy . s some constant depending only on g, n and o.

Now we prove Proposition 4.1. By the wave packet decomposition
at the scale R, the L.H.S. of (12) is rewritten as follows:

(13) 1Y D enonenonlliabao)

T1€Tw, T2€Tw,

where Ty, (j = 1,2) denote the tiles associated to &;. Let £2; be the
set of directions of T, i.e. the set of centers of x; in I'r(k;) (j = 1,2).
Then we have #; < (eR)*z" (j = 1,2). Now for each wj € Q; and
a' € X := v/RZ" !, we define the infinitely long stick of width v'R by

S,,@) ={T € Tg,(w;) : a(T) =d'},
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where T, (w;) is the set of wj-tiles (see the end of Section 3.1 for the

notation a(T)). We set S(w;) = {S.;(@)}arex and Sg, = | J S(wy).
wjEQ;

We denote an element of S,;; by S; and rewrite (13) in terms of sticks:

(14) | Z Z Z Z ory O1, e, d13 || La(BR (0))-

S1€Sk, 52684, T1€S1 T2€S>

In cases of L%-norm, we exploit almost orthogonality of wave packets.
We have the following lemma, which plays an important role to estimate
(14) (ct. [6]):

Lemma 4.2. Let S; € Sk, and Sy € Sk,. Then for any subsets
S1,5ub C S1 and Sz sup C S2, we have

. -1 nt2
Y Y énénllee) S (sing) 2 R,

T1€S51.5ub T2€S2 sup
where the implicit constant depends only on n.

We omit the proof.
In the next subsections, we estimate (14).

4.1. Separating minor and major contributive portions

We first remove some minor portions from the sum in (14). By the
triangle inequality, (14) is estimated by the sum of the followings:

(15) l Z er, OT: €T, AT, || La(Br(0))
minor portion
(16) [ }: T, OT, €T, 0T || La(BR(0))

magjor portion

where the minor portion is the case: |cr,| < R7'%%" or |cr,| < R7100
and the major portion is the remainder case.

For the minor portion (15) we easily obtain the desired bound . In
fact, we see that the minor portion (15) is estimated by R™%.

We consider the major portion in the next sections.

4.2. Major portion 1; coarse-scale decomposition
By (i) of Proposition 3.1 and the L?-normalization of Fy,, we have

Z ler|? < 1. Thus the major portion is
TeTnj

U {Tyes;: R <ler | S1} (G=1,2).
SjESK_j
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Dyadically pigeonholing on the size of |c7;|, we estimate (16) by

oY Y Y enen

R100n <y <1; R-100n<qy <10 S1€Se; THES (1)

(17) ' dyadic dyadic
x Z Z e, ¢1, || La(BR(0))s

S2€8k, T2 E€S2(v2)
where S;(v;) :={T; € S; : v; <lery| < 2v;}. We easily see that
#{vj;dyadic : R71" <4, <1} <logR (j =1,2).

Moreover, we easily see that

(18) S #Si(yp) < (=1,2).

S ES,.;].

Then we crudely estimate (17) by

(logR)> sup [ > Y enén

R-100n <y 45 <1 51€Sk; T1ES1 (1)

x Y Y cndnliseo):

S2€8k, T2ES2(72)

(19)

In (19), since |cr, /v;] < 1, we can absorb the factor cr; /v; harmlessly
into ¢r; and thus it suffices to consider

(logR)> sup  mval >, > én

R-100n <y 45 <1 $1€8n, T1ES1 (1)

x Z Z ¢1, || La(Br(0))-

S2€Sk, T2E€S2(72)

(20)

In what follows, in (20), we concentrate on the factor

(21) > > > > 6nénllLaEao)

S1€Sk; S26€Sk, THE€S1(71) ToE€S2(72)

for all R7100" < ~) 4, < 1, and thus, for the desired estimate (12), it

~

suffices to estimate (21) by

1 1 a-n(1-3) {((1-8)a,C8}+Cv p—1,~1, 1
; max{(1-8)a, vp-1.-1,—
i { Ve(sinf)2’ (sin )4 } R By
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In (21), we may assume that #S51(y1) > 1 and #S2(72) > 1. We set
Sk; (vi) = {S; € S, (v5) = #S;(7;) > 1}. We easily see that

(22) #Se, (1) S5

To employ the inductive argument, for any 1 > § > 0, we make a coarse-
scale decomposition. Let B be a finitely overlapping covering of Br(0)
by balls B of radius R!~°. Then we estimate (21) by

(23) S > > > énonliLes)

BEB  51€8x, (71) S52€8ky (v2) TLES1(m1) T2ES2(72)
We will easily see that
(24) #B < R™.

4.3. Major portion 2; local and global portions

For v1,72 > 0, we introduce some relation ”~., -,” between sticks
in Sk, (71) USk, (2) and balls B € B, which is the same as Tao’s one [6]
except for the dependence on 7; and ~s.

Let Q be a finitely overlapping covering of Bgr(0) by balls @ of radius
VR. Then we set

Sk, (Q;75) = {SJ €8k, () = 5 NR'Q# (b} (j=1,2),

where R%Q denotes the ball with the same center as @ and radius R°v/R.
Let 1, o be dyadic numbers > 1 or 0. We set

Q(p1, 2371, 72)

25
B Qe < #5n, @im) < 2 (= 1.2)}.

n—1

Then we see that p; ranges at most 0 < p; S gt RUT H(n-1)8 (j =
1,2). Since p; dyadically varies, we see that the possible number of p;
<log R for j = 1,2, and therefore the possible number of pairs (1, fi2)
< (log R)2.

Let A be a dyadic number > 1 or 0. Then we set

Sh‘,l()\].mu‘l? H2;71772) = {Sl € Snl(’yl) :
M < #{Q € Qu1, p2;v1,72) + SINR°Q # 0} <2M\}.
Thus each S; € Sk, (A1, 1, p2; 71, v2) intersects about A; (slight en-

largement of) balls @ € Q(u1, u2;y1,7v2). We easily see that A; ranges
0 < A1 < R% and therefore the possible values of A\; < log R.

(26)
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Let Ay, p1,p2 > 1 and 1 2> 1,72 > R7199". For each stick S; €
Sn1 ()\1,/111,/12;’}/1,’}’2), let B(Sl, /\1,}1,1,,11,2;’}/1,’)/2) be the ball in B which
maximizes the quantity

#{Q €Q(u1, p2;71,72) :
SINR°Q #0, QN B(S1, At fi1, 25 71, v2) # 0}

(Choose one, if such ball is not unique.)

We first define the relation ~x, ., uoiv.v, Petween sticks in S, (71)
and balls in B by defining S1 ~x, 4y paivive B If S1 € Sicq (A1, pe1, 23 715 v2)
and B € B with B C 10B(S1, A1, p1, 251, v2)- Then we define St ~, +,
B if one has St ~x,,u; 571,72 B for some dyadic numbers Ay, p1, p2 > 1.
We also define ~.,, 4, between Sy, (72) and B by a completely symmet-
rical procedure. For this relation, we have the following lemma, which
is the same as Proposition 5.1 of [6].

Lemma 4.3. Let 1 > v1,7v2 > R™19" Then we have
#{BeB:S ~v1,y2 B} S (IOgR)B

for all S € Sk, (71) U Sk, (72).

Now we estimate (23} by sum of the following two terms:

en D > > S Y énonlis

BEB  Si€8kq(71) ‘-26\;@2(72) T1€81(v1) T2€S2(v2)
Si~ypv2 B S2rvyp iy B

(28) Z I Z Z Z ¢, 97, || La(B)-

BEB 5163k (11) . 5268k (v2) T1ES1(v1) T2€S2(72)
S17y1 ye B or Spkyg 4y B

We call (27) local portion and (28) global portion.

The local portion (27) is estimated by the inductive hypothesis and a
way similar to Wolff [10]. Thus it remains to estimate the global portion
(28).

4.4. Global portion 1; interpolation setting
Our aim is to bound the global portion (28) by

(29)  min . 1 " D(l_%)RC‘”C”R 1yt
Jz(sin6)?  (sin6) e

for all v > 0 and some constants C depending only on n and p.
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By (24) and the symmetry of the relation ~., ., with respect to
Sk, (71) and Sk, (v2), it suffices for (29) to prove

[ Z Z Z Z é1, 91, || La(B)

21 iﬁﬂl (’YIB) S2€8k, (v2) T1€S1(71) T2€52(72)
(30) 17v1:72

! 1 a=(=3) Co+Cv p—1,,-1,,-1
S i R UR— — -
~ { VE(sin#)?’ (sin 0)4 } Y1 Y2 s

for all B € B.
We prove (30) by interpolating between bilinear L! and L? estimates
below:

IV > > > énonllie St

S1€8k1 (71) S2€8k, (v2) T1€S1(71) T2 €S2(v2)
S17y1.72 B

and

> > > > énonls

S1€8k1 (71) S2€S8k, (v2) T1ES1(71) T2E€S2(72)
(32) S1%y1.79 B

< RY%+CY min ! ! e R_"“Q’)’_IV_I
~ VZ(sin#)2’ (sin #)* 12

for some constant C' > 0 depending only on n.

4.5. Global portion 2; bilinear L'-estimate
By the Schwarz inequality, the L.H.S. of (31) is estimated by

@33 0> o onleell Y > onlis)

81689 (v1) T1€S1(m1) S2€S8k, (v2) T2€S2(72)
S1%y1.92 B

By (iv) of Proposition 3.1 and (18), we estimate (33) by 77 *v5 !, which
is the desired estimate (31).

4.6. Global portion 3; bilinear L?-estimate

4.6.1. Fine-scale decomposition. Let Q be a finitely overlapping cov-

ering of Br(0) by balls Q with radius v/R. Note that
(34) #Q < RE.

We make a fine-scale decomposition. Then the squared L.H.S. of (32) is
estimated by

(35) ZH Z Z Z Z o1, 07 1 72(0)-

Qeq  Sy€dm, (v1)
e Si’%"/‘jl-’y;/l S26€8k, (v2) T1E€S1(71) T2€S2(72)
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To obtain the desired estimate (32), we have to show that

1—-v
1 1 nt2
5} < mi RC5+CUR————— -2 —2‘
(36)  (35) % m{\/g(sinH)Q’ (sin9)4} e

We divide the sum with respect to S; into two cases and thus we estimate
(35) by the sum of the followings:

(37) Z | Z Z Z o197, 1 72(q)

B
slgsf;ﬂ” (M) . S2€8my (72) T1€851(v1) T2€52(72)
S1NROQ=0 or SoNROQ=0

) S 3 S Y Y énénlio

€¢
QC2B

< B So €8
GCon siesyt 12 oy PEea i) TiES (1) Ta€S2(7)
S1NRSQ#0 2

where Sffl’”B('yl) denotes the set of Sy € Sg,(y1) with S1 %, 4, B.
We call (37) minor global portion and (38) major global portion.

In (37), by the condition S; N R’Q = 0 or Sy N R°Q = @, (iii) of
Proposition 3.1 and (34), we obtain the desired bound. Thus it remains
to consider (38).

4.6.2. Major global portion 1; pigeonholing of Q and S.,. We con-
sider the major global portion (38). We first do the dyadic pigeonholing
of Q. Then we have

(38) § sup > X > en

SR Ea T o
ie  QEW(ky.p2iv1-v2) #1792 B
dyadic Qg aaimn2) g egZm 2P0y Ti€81(m)

X Z Z ¢T2”%2(Q)a

S2€8k, (Qiv2) T2€52(72)

(39)

where Szfl'”B(Q;'yl) = {Sl € SL‘;WB(%) : S1NRQ # (b} and
Sk, (@;72) = {82 € Sk, (72) : S2NR°Q # 0}. We do the dyadic pi-

geonholing of S, (71). Note that Sffil”B(Q; Y1)NSk, (0, 1, 2571, 72) =

¢ for all Q € Q(u1, 42571, 72)- Thus, the R.H.S. of (39) is estimated by

R sup Z > > ¢m

g2, A2l oo 0 v2) 4
}éc’zzBﬂ 2)  S1€81(Q) ThE€S1(71)

x >, D ¢nlie

S2€85(Q) T2€S52(72)
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4, B
where ${(Q) := S 2% (Qi71) 0 S, (A1, i1, i2i 11, 72) and S5(Q) =
Sk, (@;72). Thus, it suffices to show that

> >y > > ononliag

Qellrr.prziviv2)  S1€81(Q) S2€85(Q) T1€S1(71) T2€852(72)
(40) QC2B

1 YO w2
< mi RCs+Cv p—742 -2, -2
~ i { VE(sin )2’ (sin 0)4} LR

for all Ay, py, pue > 1.
4.6.3. Major global portion 2; constraint from the supports of wave
packets. We first consider the summand of the L.H.S. of (40):

(41) Y S > Y éndnlie

51€81(Q) 52€85(Q) T1E€S1(71) T2€52(72)

for all @ € Q(u1, p2;71,7v2) with @ C 2B.
The factor (41) is estimated by the global L2-norm and thus, by the

Plancherel theorem, it suffices to consider

51€81(Q),52€5;(Q) 51€51(Q),52€8:(Q)

( Z Z (}5@2’ Z Z ¢/TZE§ )L2-

T1€81(71) T2€S52(72) T{€S1(71) T3€S55(72)

(42)

JFrom the support properties of Wz and (b?lf—qﬁ\Té, (42) is further re-

duced to
$51€81(Q),52685(Q) 51€81(Q).55€35(Q)
(43) NoyR(s(S1)+Ny/ p(k(52))NNy g(K(S]))+ Ny g (x(55))#0
S —
( E E é1, 0715 E E d1id1y L2 (R
T1€S51(71) T2€S2(72) T{€81 (1) T3€85(72)

where x(S5;) is the cap in I'r(k;) whose center corresponds to the direc-
tion of the stick S;.
Now let us consider the constraint

(44) No/r(K(S1)) + Noyr(K(S2)) N Noyr(k(S1)) + Noyr(K(S3)) # 0.

We denote the center of x(S;) (resp. x(S})) by w(S;) (resp. w(S})).
We easily see that

Na/r(K(S1)) + N2yr(K(S2)) C Bgy /g (w(S1) + w(S2))
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and

Noyr(K(S1)) + Noyr(K(S3)) € Beyyr(w(Sh) + w(S3))

for some universal constant C > 0. Therefore, for Ny p(x(S1)) +
NQ/R(H,(SQ)) N NQ/R(K)(Si)) + NQ/R(K(SQ)) 7é @, it is required that

(45) (1) +w(S2) —w(S) — w(SH)] < %

(From (45), we find that

_ w(S1) +w(Ss) ! _ ’ w(51) — w(Ss) ‘ ‘
2 2

IECH

(46) .

< ?
Y VR|w(51) — w(S2) |

which is observed by Bourgain in [2]. Note that, by the transversality
of £(S1) and K(S2), |w(S1) —w(S2)| 2 sin§ in the R.H.S. of (46).
Replacing the constraint (44) with (45) in (43), we have

2 2.

51€81(Q),52€85(Q) S1E91(Q) S5 e85 (@)
(47) [ w(81) 4w (Sg)—(w(S])+w(s4) |1/ VR

( Z Z ¢71E“27 Z Z d)@é )LZ(Rn).

T1€851(7y1) T2€52(v2) T7€S1 (1) T3€85(2)

Then, using the Schwarz inequality and the Plancherel theorem, we es-
timate (47) by

(48)

2 >

51€81(Q),52€54(Q) 51€51(Q).S5€35(Q)
[w(S1)+w(S2) = (w(s])+w(55)) |S1/ VR

> > onénleenll Y > oronyle@e-

T1€81(m1) T2€82(72) Tie81 (1) T3€855(72)
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By Lemma 4.2 and (46),

(48) § (sin6) 'R~ 481 (Q)#S5(Q)

w1 €Qq
we €Ny

) w1 +ws — w(81) — w(82)) | S —=
| W1 2 1 2 \/—

’w1~w2

X sup {(51755)65'1(Q)><S'2(Q)r

w1 + w2

s - 24

2

S
\/ﬁsing

where recall that Q; (j = 1,2) is the set of centers of x; € Tr(k;).
We estimate the R.H.S. of (49) by

(sin6)” 1(Q)#S5(Q)

X sup # {51 c Sll(Q) (Sl) e NN__c —c (T(wl,wg))}
(50) :;gg; Rsu|§

1
x ul,sul}le)nl # {.5'2 €S5(Q) : w1 +wa —wi —w(S2)| < ﬁ} ,
wo €Ny
where
n w1 + wsy w1 — w9
YT(wi,we) =gz eR™ : |z — 5 = 5 .

In (50), we easily see that

sup #{SQGS;(Q):|w1+w2 wl—w(Sg)IN\/l_} 1.

wy.w €0y
wo €y

Moreover, we have #S5(Q) < pg for all @ € Q(u1, 12; 71, v2). Hence we
have

(50) 5 (sin6) "' R™F ua#8;(Q)
X sup # {51 €S : (Sl) e1NN__¢ (T(wl,WQ))}
w1€M R<|n%
wp €S2y

Now we set

sin

SIII(Q) = {Sl S Sll(Q) H w(S’l) e N NJ_R_(:?(T(wl,wg))} .
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For the desired result (40), it remains to prove that

Y #S1(Q) sup #SV(Q)

cq . w1€8]
(51) Q»a(ué-cuzzl-j'uwz) wy €Ny
1 1 1-2v 2 .92
SR06+CV min T 72 .
~ Vesing ' (sin6)3 2

We prove this combinatorial estimate in the next subsections.
4.6.4. Combinatorial estimate 1; preliminary estimates. We prove
the combinatorial estimate (51). The L.H.S. of (51) is estimated by

(52) Cswp s #S1(Q) Y #51(Q)
QE“(%'C?&”"Q) :;gné QGQ(%'C}?EYI’W)

By an estimate similar to that in p.1378 of [6] and (22), we see that

> #SUQ) S’

Qe 122:71-72)
QC2B

and thus (52) is estimated by

-2 "
A1 sup sup #S7(Q).
QET(py 12571 -v2) w1€8Q]
QCIB Wy EQy

Hence, to prove the desired result (51), it suffices to show that

1 1 1-2v 772
53 S// S Cs+Cv - 2
(53)  #S(Q) <R i Vesinf '’ (sin )3 Ao

for all @ € Q(u1, p2;v1,7v2) with Q C 2B and all w; € Q3, wa € Qo.

4.6.5. Combinatorial estimate 2; Crucial geometric observation and
conclusion. Our aim is to prove (53). Now we fix Qo € Q (g1, p2; 71, 72)
with Qo C 2B and recall B{S1, A1, u1, t2; 71, v2) which is the ball in B
maximizing the quantity

#{Q € Qu1, p2;71,72)  S1NR°Q, QN B(Sy, A1, 1, 23 v1,72) # 0 }

for each Sy € S, (A1, p1, #2;71,72). Note that we have

R_(n+1)5)\1

< inf € 123 Y1, :
(54) Sl€§n1()\17/~L1a#2§’Yla'Yz)#{Q Qi 2 m, 72)

SiNRQ, QN B(Si, A1, p1, pz;v1,72) # 0 }-
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Indeed, if not, then we have #{Q € Q(u1,p2;71,72) @ S1 N R°Q #
#} <« A1, which contradicts that Sy € S, (A1, 1, 2571, V2), see (26).

Now let S; € S{(Qo). Then, since S1 € S, (A1, p1, 42;71,72) and
S1 %~y 4. B, we have B ¢ 10B(Sy, A1, p1, p2; 71,72). From this and
Qo C 2B, we have (cf. p.1379 of [6])

diSt(Q()a 2B(Sla )‘17 M1,y 12571, 72)) Z R1_6

and therefore, for any Q € Q with Q N B(Sy, A1, p1, 2371, 72) # 0, we
have
R Z di’St(Q07 Q) 2 R1_67

where we have used the triangle inequality dist(Qo, Q) < dist(Qg,0) +
dist(0,Q) < R for the upper bound. Thus, by (54), we have,

R™\ £ inf #{Q € Q(u1, p2;71,72) :
S1€8k; (M 1,01,42;71,72)

S1NR°Q, R 2 dist(Qo,Q) 2 R'"™°}.

On the other hand, by the definition of Q(u1, t2;v1,72) (see (25)), for
each Q € Q(u1,p2;7v1,72) there are at least ug sticks in Sk, (y2) which
intersect R%Q. Thus we have

R~n5)\1u2

< inf ,92) € S 125 Y1, xS :
~ SlES.gl(/\l,ltl,ltz;’Yh’Yz)#{(Q 2) Q(,Ud Hzmn 72) e (72)

SINRQ#0,SNRQ+#0, RZdist(Qo,Q) 2 R™°}.
Summing over all S; in S7(Qo), we obtain

R™™ A2 #S7(Qo)
(55) S #{(Q,S1,52) € Qur, 2571, 72) X ST(Qo) X Sk, (72) :
SINRQ#0,S8,NRQ#0,R2dist(Qo,Q) Z R }.
Now we give the following crucial geometric observation.
Proposition 4.4. For each Sz € Si.,, we have

#{(Q,51) € QxS{(Qo) : SINRQ#,
S3NR’Q #0, R 2 dist(Qo,Q) 2 R’}

1 1 1-2v
< RC5+CV : .
~ i VEsing ' (sin )3
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We omit the proof. Combining this proposition with (55), we see
that

R A2 #57(Qo)

. 1 1
min
Vesinf ' (sinf

5 RC5+CV

1-2v
)3 } #SRZ (72)

and thus we obtain the desired result (53), since #Sy,(72) < 752 by
(22). Hence we have proved Theorem 2.2. g
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