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§0. Introduction 

Let X be a smooth projective variety over C. Let a := { aijk E 

H 0 (Ui n U1 n Uk, 0~)} be a 2-cocycle representing a torsion class [a] E 

H2 (X,O~). An a-twisted sheaf E := {(Ei,'PiJ)} is a collection of 
sheaves Ei on ui and isomorphisms 'Pij : EiiUinUj -+ EJIUinUj such that 

'Pii = idei, 'PJi = 'Pi/ and 'Pki o 'PJk o 'PiJ = aijk idei. We assume that 
there is a locally free a-twisted sheaf, that is, a gives an element of the 
Brauer group Br( X). A twisted sheaf naturally appears if we consider a 
non-fine moduli space lif of the usual stable sheaves on X. Indeed the 
transition functions of the local universal families satisfy the patching 
condition up to the multiplication by constants and gives a twisted sheaf. 
If the patching condition is satisfied, i.e., the moduli space M is fine, 
than the universal family defines an integral functor on the bounded de­
rived categories of coherent sheaves D(M) -+ D(X). Assume that X is 
a K3 surface and dimM =dim X. Then Mukai, Orlov and Bridgeland 
showed that the integral functor is the Fourier-Mukai functor, i.e., it is 
an equivalence of the categories. In his thesis [C2], Cald3xaru studied 
the category of twisted sheaves and its bounded derived category. In 
particular, he generalized Mukai, Orlov and Bridgeland's results on the 
Fourier-Mukai transforms to non-fine moduli spaces on a K3 surface. 
For the usual derived category, Orlov [Or] showed that the equivalence 
class is described in terms of the Hodge structure of the Mukai lattice. 
Caldararu conjectured that a similar result also holds for the derived 
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category of twisted sheaves. Recently this conjecture was modified and 
proved by Huybrechts and Stellari, if p(X) 2: 12 in [H-St]. As is well­
known, twisted sheaves also appear if we consider a projective bundle 
over X. 

In this paper, we define a notion of the stability for a twisted sheaf 
and construct the moduli space of stable twisted sheaves on X. We also 
construct a projective compactification of the moduli space by adding 
the S-equivalence classes of semi-stable twisted sheaves. In particular if 
H 1 (X, Ox) = 0 (e.g. X is a K3 surface), then the moduli space of lo­
cally free twisted sheaves is the moduli space of projective bundles over 
X. Thus we compactify the moduli space of projective bundles by using 
twisted sheaves. The idea of the construction is as follows. We consider 
a twisted sheaf as a usual sheaf on the Brauer-Severi variety. Instead 
of using the Hilbert polynomial associated to an ample line bundle on 
the Brauer-Severi variety, we use the Hilbert polynomial associated to 
a line bundle coming from X in order to define the stability. Then the 
construction is a modification of Simpson's construction of the moduli 
space of usual sheaves ( cf. [Y3]). M. Lieblich informed us that our 
stability condition coincides with Simpson's stability for modules over 
the associated Azumaya algebra via Morita equivalence. Hence the con­
struction also follows from Simpson's moduli space [S, Thm. 4. 7] and 
the valuative criterion for properness. 

In section 3, we consider the moduli space of twisted sheaves on a K3 
surface. We generalize known results on the moduli space of usual stable 
sheaves to the moduli spaces of twisted stable sheaves (cf. [Mu2], [Y1]). 
In particular, we consider the non-emptyness, the deformation type and 
the weight 2 Hodge structure. Then we can consider twisted version 
of the Fourier-Mukai transform by using 2 dimensional moduli spaces, 
which is done in section 4. As an application of our results, Huybrechts 
and Stellari prove CaJdararu's conjecture generally (see Appendix). 

Since our main example of twisted sheaves are those on K3 surfaces 
or abelian surfaces, we consider twisted sheaves over C. But some of the 
results (e.g., subsection 2.2) also hold over any field. 

E. Markman and D. Huybrechts communicated to the author that 
M. Lieblich independently constructed the moduli of twisted sheaves. 
In his paper [Li], Lieblich developed a general theory of twisted sheaves 
in terms of algebraic stack and constructed the moduli space intrinsic 
way. He also studied the moduli spaces of twisted sheaves on surfaces. 
There are also some overlap with a paper by N. Hoffmann and U. Stuh­
ler [Ho-St]. They also constructed the moduli space of rank 1 twisted 
sheaves and studied the symplectic structure of the moduli space. 
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§ 1. Twisted sheaves 

Notation: For a locally free sheaf E on a variety X, IP'(E) -t X 
denotes the projective bundle in the sense of Grothendieck, that is, 
IP'(E) = Proj(ffi:=o sn(E)). 

Let X be a smooth projective variety over <C. Let a := { aijk E 

H 0 (Ui n U1 n Uk, 0~)} be a 2-cocycle representing a torsion class [a] E 

H 2(X, 0~ ). An a-twisted sheaf E := {(Ei, tpij)} is a collection of 
sheaves Ei on ui and isomorphisms lpij : EiiU,nUj --) EjiU,nUj such 
that lpii = idE,, lpji = rpij1 and rpki o tpjk o lpij = aijk idE,. If all Ei are 
coherent, then we say that E is coherent. Let Coh(X, a) be the category 
of coherent a-twisted sheaves on X. 

If Ei are locally free for all i, then we can glue 'JPl(En together 
and get a projective bundle p : Y -t X with 8([Y]) = [a], where 
[Y] E H 1 (X, PGL(r)) is the corresponding cohomology class of Y and 
8 : H 1 (X, PGL(r)) -t H 2 (X, 0~) is the connecting homomorphism 
induced by the exact sequence 

1 -t 0~ -t GL(r) -t PGL(r) -t 1. 

Thus [a] belongs to the Brauer group Br(X). If X is a smooth projective 
surface, then Br(X) coincides with the torsion part of H 2 (X, o;;:). Let 
Or(E{l(.Ai) be the tautological line bundle on IP'(En. Then, tpij induces 
an isomorphism 'PiJ : Or(E{l(.Ai)lp-l(U,nUj) -t Or(Ej)(.AJ)Ip-l(U,nUj)· 
.C(p*(a-1 )) := {(Or(E{l(.Ai),cpij)} is an p*(a- 1 )-twisted line bundle on 
Y. 

1.1. Sheaves on a projective bundle 

In this subsection, we shall interpret twisted sheaves as usual sheaves 
on a Brauer-Severi variety. Let p: Y -t X be a projective bundle. Let 
X = UiUi be an analytic open covering of X such that p- 1(Ui) ~ 
ui X wr- 1 . We set Yi := p- 1 (Ui)· We fix a collection of tautological line 
bundles Oy, (.Xi) on Yi and isomorphisms ¢Ji : <'Y,nYj (.Aj) -t OY,nYj (.Xi)· 
We set Gi := p*(Oy,(..\i))v. Then Gi are vector bundles on Ui and 
p*(Gi)(.Ai) defines a vector bundle G of rank ron Y. We have the Euler 
sequence 

0 -tOy -t G -t Ty;x -t 0. 

Thus G is a non-trivial extension of Ty;x by Oy. 

Lemma 1.1. Ext1 (Ty;x, Oy) = <C. Thus G is characterized as a 
non-trivial extension ofTy;x by Oy. In particular, G does not depend 
on the choice of the local trivialization of p. 
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Proof. Since Rp.(Gv) = 0, the Euler sequence inplies that 

Q.E.D. 

Definition 1.1. For a projective bundle p: Y--> X, let t(Y)(:= G) 
be a vector bundle on Y which is a non-trivial extension 

0 __. Oy--> t(Y)--> Ty;x __. 0. 

By the exact sequence 0 --> f..ir --> SL(r) --> PGL(r) --> 1, we have 
a connecting homomorphism 5' : H 1(X, PGL(r)) --> H 2 (X, f..ir ). Let 
o : H 2 (X,p,r) --> H 2 (x,o;;) be the homomorphisminduced by the 
inclusion f..ir '----+ o;;. Then we have 5 = o o 5'. 

Definition 1.2. For a J!Dr- 1-bundle p : Y --> X corresponding to 
[Y] E H 1 (X,PGL(r)), we set w(Y) := 5'([Y]) E H 2 (X,p,r)· 

Lemma 1.2 ([C1],[H-Sc]). lfp: Y--> X is aJ!Dr- 1-bundle associated 
to a vector bundle E on X, i.e., Y = J!D(Ev), then 

w(Y) = [c1 (E) mod r]. 

Lemma 1.3. [c1 (G) mod r] = p*(w(Y)) E H 2 (Y, f..ir)· 

Proof. There is a line bundle Lon Y xx Y such that LIYixu,Yi ~ 
Pi'(Oy;(->.i)) Q9p2(0yi(>.i)), where Pi: Y xx Y--> Y, i = 1,2 are i-th 
projections. By the definition of G, Ph (L) ~ cv. Hence Pl : Y x x Y --> 

Y is the projective bundle J!D(Gv) --> Y. Then we get 

-[c1(Gv) mod r] = w(Y xx Y) = p*(w(Y)). 

Q.E.D. 

Lemma 1.4. Let p: Y--> X be a J!Dr- 1 -bundle. Then the following 
conditions are equivalent. 

(1) Y = J!D(Ev) for a vector bundle on X. 
(2) w(Y) E NS(X) Q9 1-ir· 
(3) There is a line bundle Lon Y such that Llv-t(x) ~ Op-l(x)(1). 

Proof. (2) =? (3): If w(Y) = [D mod r], D E NS(X), then 
c1(t(Y)) - p*(D) = 0 mod r. We take a line bundle L on Y with 
c1 (t(Y))- p*(D) = rc1 (L). (3) =? (1): We set Ev := p.(L). Then 
Y = J!D(Ev). Q.E.D. 
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Definition 1.3. Coh(X, Y) is a subcategory of Coh(Y) such that 
E E Coh(X, Y) if and only if 

ElY, 2=! p*(Ei) 0 Oy, (>.i) 

for Ei E Coh(Ui)· For simplicity, we call E E Coh(X, Y) a Y-sheaf. 

By this definition, {(Ui, Ei)} gives a twisted sheaf on X. Thus we 
have an equivalence 

(1.1) 
AL(p*(a-t)) : Coh(X, Y) 

E 
Coh(X, a) 

---+ p*(E0Lv), 

where .C (p* (a -l)) : = { ( Oy, ( Ai), tPiJ)} is a twisted line bundle on Y and 

aij~ idoy, (>-.,) = tPki o rPJk o rPiJ. 
We have the following relations: 

p*(Gv 0 E)lu, =p*(p*(G'f) 0 Oy, ( ->.i) 0 p*(Ei) 0 Oy;(,\i)) 

=p*p*(G{ 0 Ei) = G{ 0 Ei, 

p*(E)Iu, =p*(p*(Ei) 0 Oy, (>.i)) 

=Ei 0 p*(Oy, (>.;)) = G{ 0 Ei· 

Lemma 1.5. A coherent sheaf E on Y belongs to Coh(X, Y) if and 
only if¢ : p*p* ( cv 0 E) ---+ cv 0 E is an isomorphism. In particular 
E E Coh(X, Y) is an open condition. 

Proof ¢1Y, is the homomorphism 

p*G{ 0 p*p*(E( ->.i))---+ p*G{ 0 E( ->.i)· 

Hence ¢1Y, is an isomorphism if and only if p*p*(E( ->.i)) ---+ E( ->.i) is 
an isomorphism, which is equivalent toE E Coh(X, Y). Q.E.D. 

Lemma 1.6. Assume that H 3 (X, Z)tor = 0. Then H*(Y, Z) 2=! 

H*(X, Z)[x]/(f(x)), where f(x) E H*(X, Z)[x] is a monic polynomial of 
degree r. In particular, H 2 (X, Z) 0 fJr' ---+ H 2 (Y, Z) 0 fJr' is injective for 
all r'. 

Proof R 2p*Z is a local system of rank 1. Since c1 (K Y/ x) is a 
section of this local system, R 2p*Z 2=! Z. Let h be the generator. Then 
R 2ip*Z 2=! Zhi. Since H 3 (X, Z)tor = 0, by the Leray spectral sequence, 
we get a surjective homomorphism H 2 (Y, Z) ---+ H 0 (X, R 2p*Z). Let 
x E H 2 (Y, Z) be a lifting of h. Then xi is a lifting of hi E H 0 (X, R 2ip*Z). 
Therefore the Leray-Hirsch theorem implies that 

H*(Y,Z) 2=! H*(X,Z)[x]j(f(x)). 
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Q.E.D. 

Lemma 1.7. Assume that o(w(Y)) = o(w(Y')). 

(i) Then there is a line bundle L on Y' xx Y such that 

LIP'-l(x)xp-l(x) 9:! op'-l(x)(l) l:8l Op-l(x)( -1) 

for all x EX. If L' E Pic(Y' xx Y) also satisfies the property, 
then L' = L 0 q*(P), P E Pic(X), where q: Y' xx Y---> X is 
the projection. 

(ii) We have an equivalence 

-;:;:L • 
~Y-+Y' · Coh(X, Y) ---> Coh(X, Y') 

E ~---> PY'*(p'~(E) 0 L), 

where PY' : Y' x x Y ---> Y' and p~ : Y' x x Y ---> Y are 
projections. 

Remark 1.1. We also see that Eisa Y-sheaf if and only if p'~(E) 0 
L 9:! P}n(E') for a sheaf E' on Y'. 

Definition 1.4. Assume that H 3 (X, Z)tar = 0. For a Y-sheaf E of 
rank r', [c1 (E) mod r'] E H 2 (Y, J.lr') belongs to p*(H2 (X, J.Lr' )). We set 

w(E) := (p*)- 1(h(E) mod r']) E H 2 (X,J.Lr')· 

By Lemmas 1.3 and 1.7, we see that 

Lemma 1.8. (i) By the functor 3~--+Y' in Lemma 1. 7, 

w(S~-Y'(E)) = w(E), forE E Coh(X, Y). 

(ii) w(t(Y)) = w(Y). 

§2. Moduli of twisted sheaves 

2.1. Definition of the stability 

Let (X, Ox(l)) be a pair of a projective scheme X and an ample 
line bundle Ox(l) on X. Let p: Y---> X be a projective bundle over X. 

Definition 2.1. A Y-sheaf E is of dimension d, if p*(E) is of di~ 
mension d. 

For a coherent sheaf F of dimension d on X, we define ai (F) E Z 
by the coefficient of the Hilbert polynomial ofF: 

d ( + ') x(F(m)) = ~ai(F) m i z . 
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Let G be a locally free Y -sheaf. For a Y -sheaf E of dimension d, we set 
af(E) := ai(P*(Gv ®E)). Thus we have 

Definition 2.2. Let E be Y-sheaf of dimension d. Then E is (G­
twisted) semi-stable (with respect to 0 x ( 1)), if 

(i) E is of pure dimension d, 
(ii) 

(2.1) 
x(p*(Gv ® F)(m)) < x(p*(Gv ® E)(m)) ~ 0 

a~(F) - a~(E) 'm ~ 

for all subsheaf F -/=- 0 of E. 

If the inequality in (2.1) is strict for all proper subsheaf F -/=- 0 of E, 
then E is (G-twisted) stable with respect to Ox(1). 

Theorem 2.1. Let p : Y ----+ X be a projective bundle. There is a 

coarse moduli scheme M~;c parametrizing S-equivalence classes of G­
twisted semi-stable Y -sheaves E with the G-twisted Hilbert polynomial 

h. M~;c is a projective scheme. 

Remark 2.1. The construction also works for a projective bundle 
Y ----+ X over any field and also for a family of projective bundles, by the 
fundamental work of Langer [L]. 

Lemma 2.2. Let p' : Y' ----+ X be a projective bundle with o( w(Y')) = 
o(w(Y)) and 3~_,y, the correspondence in Lemma 1. 7. Then a Y-sheaf 
E is G-twisted semi-stable if and only if 3~ _,y, (E) E Coh(X, Y') is 
3~ _,y, (G)-twisted semi-stable. In particular, we have an isomorphism 
of the corresponding moduli spaces. 

Indeed, since 3~~~:=:..Y' xs( * )8 = 3~ ->Y' ( * ® k(s)), if we have a fiat 
family of Y-sheaves {Es}sES, E E Coh(Y x S), then {E~}sES is also a 
fiat family of Y'-sheaves, where E' := 3~~~:Y'xs(E). 

Remark 2.2. For a locally free Y-sheaf G, we have a projective bun­
dle Y' ----+ X with E(Y') = 3~ ___, Y' (G). Hence it is sufficient to study the 
E(Y)-twisted semi-stability. 

Remark 2.3. This definition is the same as in [C1]. If Y = IP'(Gv) 
for a vector bundle G on X, then Coh(X, Y) is equivalent to Coh(X) 
and G-twisted stability is nothing but the twisted semi-stability in [Y3]. 
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Definition 2.3. Let .A be a rational number. Let E be a Y-sheaf 
of dimension d. Then E is of type .A with respect to the G-twisted 
semi-stability, if 

(i) E is of pure dimension d, 
(ii) 

a~_ 1 (F) < a~_ 1 (E) 
a~(F) - a~(E) +.A 

for all subsheaf F of E. 

If .A = 0, then E is ~.t-semi-stable. 

2.2. Construction of the moduli space 

From now on, we assume that G = E(Y) ( cf. Remark 2.2). Let 
P(x) be a numerical polynomial. We shall construct the moduli space 
of G-twisted semi-stable Y-sheaves E with x(p*(Gv Q9 E)(n)) = P(n). 

2.2.1. Boundedness Let E be a Y-sheaf. Then 

is surjective. Indeed p*p*(Gv Q9 E) --+ Gv Q9 E is an isomorphism and 
G Q9 Gv --+ Oy is surjective. 

We take a surjective homomorphism Ox( -n0 )tf!N --+ p*(Gv Q9 G), 
na » 0. Then we have a surjective homomorphism p*(Ox( -na))ffiN--+ 
Gv l8l G. 

Lemma 2.3. Let E be a Y -sheaf of pure dimension d. If 

(2.2) 

for all quotient E--+ F, then ad-1 (F') ~ ad(F') (a!~(~~) - v- na) for 

all quotient p* ( Gv Q9 E) --+ F'. In particular 

{ I 
E satisfies (2.2) and } 

Sv := E E Coh(X, Y) 
x(p*(Gv l8l E)(nH)) = P(n) 

is bounded. 

Proof. Since p*p*(Gv Q9 E) ~ Gv Q9 E, we have a surjective homo­
morphism 
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By our assumption, we get 

ad-l(P*(Gv 0 G) 0 F') 

> ( (Gv ,o, G) ,o, F') (ad-l(P*(Gv 0 E)) _ _ ) 
_ad p* '61 '61 ad(P*(GV 0 E)) na v . 

Since ad-l(P*(Gv 0 G) 0 F') = rk(G) 2ad-l(F') and ad(P*(Gv 0 G) 0 
F') = rk(G) 2ad(F'), we get our claim. The boundedness of Sv follows 
from the boundedness of {p*(Gv 0 E)IE E Sv} and Lemma 2.4 below. 

Q.E.D. 

Lemma 2.4. Let S be a bounded subset of Coh(X). Then T := 

{E E Coh(X, Y)IP*(Gv 0 E) E S} is also bounded. 

Proof. ForE E T, we set I(E) := ker(p*p*(Gv 0 E) 0 G ~ E). 
We shall show that T' := {I(E)IE E T} is bounded. We note that 
I(E) E Coh(X, Y) and we have an exact sequence 

Since p*(Gv 0 E) E S, {p*(Gv 0 I(E))IE E T} is also bounded. Since 
p*p*(Gv 0 I(E)) 0 G ~ I(E) is surjective and I(E) is a subsheaf of 
p*p*(Gv 0 E) 0 G, T' is bounded. Q.E.D. 

Corollary 2.5. Under the same assumption (2.2), there is a ratio­
nal number v' which depends on v such that 

for a sub sheaf F' C p* ( Gv 0 E). 

Combining this with Langer's important result [L, Cor. 3.4], we 
have the following 

Lemma 2.6. Under the same assumption (2.2), 

h0 (G,E) [1 (a~_ 1 (E) , )d] 
a~(E) ::; d! a~(E) +v +c ' 

+ 

where c depends only on (X, Ox(l)), G, d and a~(E). 
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2.2.2. A quat-scheme Since p*(Gv ® E)(n), n » 0 is generated by 
global sections, 

is surjective. Since Rip*(Gv ® E) = 0 for i > 0, we also see that 
Hi(Gv ® E ® p*Ox(n)) = 0, i > 0 and n » 0. 

We fix a sufficiently large integer no. We set N : = x (p* ( cv ® 
E)(n0 )) = P(n0 ). We set V := c_N_ We consider the quot-scheme 0 
parametrizing all quotients 

¢:V®G-+E 

such that E E Coh(X, Y) and x(p*(Gv ® E)(n)) = P(no + n). By 
Lemma 2.4, 0 is bounded, in particular, it is a quasi-projective scheme. 

Lemma 2.7. 0 is complete. 

Proof. We prove our claim by using the valuative criterion. Let R 
be a discrete valuation ring and K the quotient field of R. Let ¢ : VR ® 
G-+ £ beaR-flat family of quotients such that£ ®R K E Coh(X, Y), 
where VR := V ®c R. We set I := ker ¢. We have an exact and 
commutative diagram: 

0 -+ p*p*(I ® Gv) 

1 
0 -+ I® cv 

-+ VR ®G®Gv 

II 
-+ VR ®G®Gv 

-+ p*p*(£ ® cv) -+ 0 
lw 

-+ £ ® cv -+ 0 

We shall show that 1/J is an isomorphism. Obviously 1/J is surjective. 
Since£ is R-flat, £has noR-torsion, which implies that p*p*(£ ® Gv) is 
a torsion free R-module. Hence ker 1/J is also torsion free. On the other 
hand, our choice of £ implies that 1/J ® K is an isomorphism. Therefore 
ker 1/J = 0. Q.E.D. 

Since ker¢ E Coh(X, Y), we have a surjective homomorphism 

V ® Hom(G, G ® p*Ox(n))-+ Hom(G, E ® p*Ox(n)) 

for n » 0. Thus we can embed 0 as a subscheme of an Grassmann va­
riety Gr(V ® W, P(n0 + n)), where W = Hom(G, G ® p*Ox(n)). Since 
all semi-stable Y -sheaf are pure, we may replace 0 by the closure of 
the open subset parametrizing pure quotient Y-sheaves. The same ar­
guments in [Y3] imply that 0//GL(V) is the moduli space of G-twisted 
semi-stable sheaves. The details are left to the reader. For the proof, 
we also use the following. 
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Let (R, m) be a discrete valuation ring Rand the maximal ideal m. 
Let K be the fractional field and k the residue field. Let £ be a R-flat 
family of Y ® R-sheaves such that £ ® R K is pure. 

Lemma 2.8. There is a R-ftat family of coherent Y ® R-sheaves :F 
and a homomorphism 'ljJ : £ ---> :F such that :F ® R k is pure, 'ljJ K is an 
isomorphism and '1/Jk is an isomorphic at generic points ofSupp(:F®Rk). 

By using [S, Lem. 1.17] or [H-L, Prop. 4.4.2], we first construct :F as 
a usual family of sheaves. Then the very construction of it, :F becomes 
a Y ® R-sheaf. 

2.3. A family of Y -sheaves on a projective bundle over 

M'X;c 

Assume that nss consists of stable points. Then nss ---> M~;c is 
a principal PGL(N)-bundle. For a scheme S, fs : Y x S ---> S de­
notes the projection. Let Q be the universal quotient sheaf on y X nss. 
V := Homfo•• (G ~ On••, Q) is a locally free sheaf on .088 • We consider 
the projective bundle q : lP'(V) ---> .oss. Since Q is GL(N)-linearized, 
V is also GL(N)-linearized. Then we have a quotient 'ljJ : lP'(V) ---> 

lP'(V)/ PGL(N) with the commutative diagram: 

lP'(V) ~ nss 

1 1 
-h q -h 
Mx;c := lP'(V)/PGL(N) ---------> Mx;c 

Since (1y x q)*(Q) ® J;(V)(OIP'(V)( -1)) is PGL(N~arlized, we have 

a family of G-twisted stable Y-sheaves £onYx M~;c with 

(1y X '1/J)*(£) = (1y X q)*(Q) ® J;(V)(OIP'(V)( -1)). 

-h -h 
Hence £V E Coh(Y x Mx~ x Mx;d (if£ is locally free). Let W 

-h 
be a locally free sheaf~x;c such that~)= q*(V)(-1). Then 

v -h -h -h ) ( v) wealsohaveW =t:(Mx;dECoh(Mx;c,Mx;c and£®/~ W 
Mx;~:-

-h 
descends to a sheaf on Y x M x;c. 

Remark 2.4. There is also a family of G-twisted stable Y-sheaves £' 
onYx lP'(Vv)/ PGL(N) such that 

£' E Coh(Y x M~1c, Y x lP'(Vv)/ PGL(N)). 
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§3. Twisted sheaves on a projective K3 surface 

3.1. Basic properties 

Let X be a projective K3 surface and p : Y ----> X a projective 
bundle. 

Lemma 3.1. For a locally free Y -sheaf E of rank r, 

Proof. First we note that (r- 1)(D2 ) mod 2r is well-defined for 
DE H 2 (Z,J.Lr), Z = X,Y. We take a representative a E H 2(X,Z) 
of w(E). Then c1 (E) = p*(a) mod r. Hence c2(p*(Rp*(Ev ®E))) = 
2rc2 (E)- (r- 1)(c1 (E) 2 ) = -(r- 1)(p*(a2 )) mod 2r. Since H 4(X, Z) 
is a direct summand of H 4 (Y, Z), 

Q.E.D. 

Let K(X, Y) be the Grothendieck group of Y-sheaves. 

Lemma 3.2. ( 1) There is a locally free Y -sheaf Eo such that 

rkE0 = min{rkE >OlE E Coh(X, Y)}. 

(2) K(X, Y) = ZE0 EB K(X, Y):-:;t, where K(X, Y):-:;t is the sub­
module of K(X, Y) generated byE E Coh(X, Y) of dimE::=; 1. 

Proof. (1) Let F be a Y-sheaf such that rkF = min{rkE >OlE E 
Coh(X, Y) }. Then E0 := pvv satisfies the required properties. (2) 
We shall show that the image of E E Coh(X, Y) in K(X, Y) belongs 
to ZE0 EBK(X, Y)<l by the induction of rkE. We may assume that 
rkE > 0. LetT be the torsion submodule of E. Then E = T + E/T 
in K(X, Y). Since Hom(Eo( -nH), E/T) =f 0 for n» 0, we have a non­
zero homomorphism cp : Eo(-nH) ----> EfT. By our choice of Eo, cp is 
injective. Since Eo( -nH) =Eo- EolnH in K(X, Y), E = ((E/T)/Eo + 
Eo)+(T-EolnH)· Sincerk(E/T)/Eo < rkE, we get (E/T)/Eo E ZEoEB 
K(X, Y):-:;t, and hence E also belongs to ZEo EB K(X,Y):-:;t. Q.E.D. 

Remark 3.1. rkE0 is the order of the Brauer class of Y. 

Let ( , ) be the Mukai pairing on H* (X, Z): 

(x,y) =-L xvy, x,y E H*(X,Z). 
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Definition 3.1. Let G be a locally free Y-sheaf. For a Y-sheaf E, 
we define a Mukai vector of E as. 

(3.1) 
(E) ·- ch(Rp*(E ® av)) ~d va .- ytux 

ych(Rp*(G ® GV)) 

=(rk(E), (,b) E H*(X, Q), 

where p*(() = c1(E) - rk(E) c:~~) and b E Q. More generally, for 
G E Coh(X, Y) with rkG > 0, we define va(E) by (3.1). 

Since 

( (E ) (E )) = _ { ch(Rp*(E1 ® Gv)) ch(Rp*(E2 ® av))v d 
VG 1 ,VG 2 lx ch(Rp*(G ® QV)) t X 

=- i ch(Rp*(E1 ® E~)) tdx 

=- x(E2, Et). 

We define an integral structure on H*(X, Q) such that va(E) is 
integral. This is due to Huybrechts and Stellari [H-St]. For a positive 
integer rand~ E H 2(X, Z), we consider an injective homomorphism 

T-~/r : H*(X, Z) 
X 

T-~/r preserves the bilinear form ( , ). 

Lemma 3.3. We take a representative ~ E H 2 (X, Z) of w(G) E 

H 2(X, J.Lr), where rk(G) = r. We set (rk(E), D, a):= e~frva(E). Then 
(rk(E), D, a) belongs to H*(X, Z) and [D mod rk(E)] = w(E). 

Proof. We set IJ := (c1(G)- p*(~))/r E H 2(Y, Z). Since p*(D) = 
p*(() + rk(E)p*(~)/ rk(G) = c1(E)- rk(E)iJ E H 2 (Y, Z), we get D E 

H 2(X, Z). By Lemma 3.1, we see that 

(e~frva(E), e~frva(E)) =(va(E), va(E)) 

=c2(Rp*(E ® Ev))- 2 rk(E)2 

=(D2) mod 2 rk(E). 

Hence a E Z. The last claim is obvious. Q.E.D. 
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Remark 3.2. eU"vc(E) is the same as the Mukai vector defined by 
the rational B-field ~/r in [H-St]. More precisely, there is a topological 
line bundle Lon Y with c1 (L) = CJ and E0L -I is the pull-back of a topo­
logical sheaf Ee;r on X. Then we see that eU"vc(E) = ch(Ee;r)vtclX 
(we use Hi(X, Q) = 0 for i > 4, or we deform X so that L becomes 
holomorphic). 

Definition 3.2. [H-St] We define a weight 2 Hodge structure on 
the lattice (H*(X,Z), ( , )) as 

H 2•0 (H*(X, Z) 0 q :=T~e\(H2 • 0 (X)) 
2 

H 1 •1 (H*(X, Z) 0 C) :=T~f1,.(ffi HP·P(X)) 
p=O 

H 0•2 (H*(X, Z) 0 C) :=T~f1,.(H0 • 2 (X)). 

We denote this polarized Hodge structure by (H*(X, Z), ( , ), -~). 

Lemma 3.4. The Hodge structure (H*(X,Z), ( , ), -~) depends 
only on the Brauer class 6'([~ mod r]). 

Proof If 6'([~ mod r]) = 6'([e mod r']) E H 2 (X, 0~ ), then we 
haver'~- re = L + rr' N, where L E NS(X) and N E H 2 (X, Z). Then 
we have the following commutative diagram: 

_s_ 
e r 

------7 H*(X,Q) 

H*(X,Z) ------> H*(X,Q). 
5.'.. e- ,..t 

Thus we have an isometry of Hodge structures 

~ e (H*(X,Z),(, ),--)~(H*(X,Z),(, ),--,). 
r r 

Q.E.D. 

Definition 3.3. Let Y __, X be a projective bundle and G a locally 
free Y-sheaf. Let~ E H 2 (X, Z) be a lifting of w(G) E H 2 (X, p,,.), where 
r = rk(G). 

(i) We define an integral Hodge structure of H* (X, Q) as 

~ T-e;,-((H*(X, Z), ( , ), -- )). 
r 
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(ii) v := (r,(,b) is a Mukai vector, if v E T-t,jr(H*(X,Z)) and 
( E Pic(X)@Q. MoreoverifvisprimitiveinT_t,;r(H*(X,Z)), 
then v is primitive. 

Definition 3.4. Let v := (r, (,b) E H*(X, Q) be a Mukai vector. 

(i) M~0 (r,(,b) (resp. Mj;' 0 (r,(,b)) denotes the coarse moduli 
space of S-equivalence classes of G-twisted semi-stable (resp. 
stable) Y-sheaves E with va(E) = v. 

(ii) Mji0 (r,(,b) 88 (resp. Mji 0 (r,(,b) 8 ) denotesthemodulistack 
of G-twisted semi-stable (resp. stable ) Y-sheaves E with 
va(E) = v. 

Lemma 3.5. Assume that o(w(Y)) = o(w(Y')). Then 3~----.Y' in­
duces an isomorphism 

where G' := 3~----.y,(G). Moreover if dim Y 
w(Y'), then M~E(Y)(v) 88 ~ M1',,(Y')(v) 88 • 

dim Y' and w(Y) 

Proof. We use the notation in Lemma 1.7. For a Y-sheaf E, we 
set E' := 3~----.y,(E). Then p~ *(E@ Gv) ~ py,(E'@ G'v). Hence 
va(E) = va' (E'). If dim Y = dim Y' and w(Y) = w(Y'), then since 
w(t:(Y)) = w(t:(Y')), replacing L by L@ q*(P), P E Pic(X), we may 
assume that c1(3~--.Y'(t:(Y))) = c1(E(Y)). Thus 3~----.y,(t:(Y)) = t:(Y)+ 
T in K(X, Y'), where T is a Y-sheaf with dim T = 0. From this fact, 

t MY',S~~y,(E(Y))( )ss _ MY',,(Y')( )ss QED we ge H v - H v . . .. 

Let E be a Y -sheaf. Then the Zariski tangent space of the K uranishi 
space is Ext 1 ( E, E) and the obstruction space is the kernel Ext2 ( E, E) 0 

of the trace map 

Hence as in the usual sheaves on a K3 surfaces [Mul], we get the fol­
lowing. 

Proposition 3.6. Let E be a simple Y -sheaf. Then the Kuranishi 
space is smooth of dimension (va(E)2 )+2 with a holomorphic symplectic 
form. In particular, (va(E) 2 ) 2': -2. 

Corollary 3. 7. Let E be a J.L-semi-stable Y -sheaf such that E = 
lEo+ FE K(X, Y), FE K(X, Y) 9 . Then (va(E) 2 ) 2': -2l2 . 
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3.1.1. Wall and Chamber In this subsection, we generalize the no­
tion of the wall and the chamber for the usual stable sheaves to the 
twisted case. 

Lemma 3.8. Assume that there is an exact sequence of twisted 
sheaves 

(3.2) 

such that Ei, i = 1, 2 are J.L-semi-stable Y -sheaves. We set Ei = liEo + 
FiE K(X, Y) with FiE K(X, Y):::; 1 . Then we have 

(va(E)2) 2l > _ (l2va(F1)- hva(F2)) 2 
l + - lhl2 . 

This lemma easily follows from Corollary 3. 7 and the following lemma. 

Lemma 3.9. Let Eo be a locally free Y-sheaf such that rkEo = 
min{rkE >OlE E Coh(X, Y)}. For an exact sequence of twisted sheaves 

(3.3) 

we have 

(va(El)2) (va(E2)2) (va(E)2) (l2va(F1)- hva(F2))2 
..:........C.-':--':.:.......!.. + - = .o....::..--=-.:_:::.:.=-=,..::-=-o._..:::..:..:._ 

h l2 l lhl2 , 

where Ei = liEo + Fi and E = lEo + F in K(X, Y) with Fi, F E 
K(X,Y)9. 

Proof. 

(va(El)2) (va(E2)2) (va(E)2) 
-'----=-':---''-'----'- + - -'-----':---.:........;.. 

h l2 l 

= (h (va(Eo)2) + 2(va(Eo), va(Fl)) + (va(Fl)i1va(F1))) 

+ (l2(va(Eo)2) + 2(va(Eo), va(F2)) + (va(F2)z'2va(F2))) 

- (l(va(Eo) 2) + 2(va(Eo), va(F)) + (va(F)~ va(F))) 

= (va(Fl),va(Fl)) + (va(F2),va(F2)) _ (va(F),va(F)) 
h l2 l 

(l2va(F1)- hva(F2)) 2 

lhl2 

Q.E.D. 
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Definition 3.5. We set v = va(lE0 +F), where F is of dimension 
1 or 0. 

(i) For a~ E NS(X) with 0 < -(e) :::; ?(2l2 + (v2 ) ), we define a 
wall We as 

We:= {L E Amp(X) ®lRI(~, L) = 0}. 

(ii) A chamber with respect to v is a connected component of 
Amp(X) ®lR \ U~; We. 

(iii) A polarization H is general with respect to v, if H does not 
lie on any wall. 

Remark 3.3. The concept of chambers and walls are determined by 
rk(lE0 +F) and (v2 ). Thus they do not depend on the choice of Y and 
G. 

Proposition 3.10. Keep notation as above. 

(i) If H and H' belong to the same chamber, then Mj/(v) 88 ~ 
Mij?(v)ss. 

YG YG' . 
(ii) If His general, then Mii (vc(F)) 88 ~ Mii (vc,(F)) 88 for 

FE K(X, Y) with rkF > 0. Thus Mij 0 (vc(F)) 88 does not 
depend on the choice of a Y -sheaf G. 

(iii) If 

l2 
min{ -(D2) >OlD E NS(X), (D, H) = 0} > "4 (2l2 + (v2) ), 

then H is general with respect to v. 

The proof is standard (cf. [H-L]) and is left to the reader. By 
Proposition 3.10 and Proposition 3.6, we have 

Theorem 3.11. Assume that v is a primitive Mukai vector and H 
is general with respect to v. Then all G-twisted semi-stable Y -sheaves 
E with v0 (E) = v are G-twisted stable. In particular Mj;' 0 (v) is a 
projective manifold, if it is not empty. 

In the next subsection, we show the non-emptyness of the moduli 
space. We also show that Mj;' 0 (v) is a K3 surface, if (v2) = 0. 

Proposition 3.12. (cf. [Mu3, Prop. 3.14]} Assume that Pic(X) = 
ZH. Let E be a simple twisted sheaf with (va(E) 2 ) :::; 0. Then E is 
stable. 

For the proof, we use Lemma 3.9 and the following: 

Lemma 3.13. [Mu3, Cor. 2.8] IfHom(El, E2) = 0, then 

dimExt1(E1, El) + dimExt1(E2, E 2):::; dimExt1(E, E). 
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3.2. Existence of stable sheaves 

In this subsection, we shall show that the moduli space of twisted 
sheaves is deformation equivalent to the usual one. In particular we 
show the non-emptyness of the moduli space. 

Theorem 3.14. [H-Sc] H 1 (X, PGL(r))--+ H 2 (X, f.Lr) is surjective. 

Proposition 3.15. For a w E H 2 (X, f.Lr), there is a rr- 1 -bundle 
p: Z--+ X such that w(Z) = w and E(Z) is f.L-stable. 

D. Huybrechts informed us that the claim follows from the proof 
of Theorem 3.14. Here we give another proof which works for other 
surfaces. 

Proof. Let p : Y --+ X be a lP'r- 1-bundle with w(Y) = w. We set 
Eo := E(Y). In order to prove our claim, it is sufficient to find a f.L­
stable locally free Y-sheaf E of rank r with c1 (E) = c1 (Eo). For points 
x1, x2, ... , Xn E X, let F be a Y -sheaf which is the kernel of a surjection 
Eo --+ EB~=l Ov-'(x,)(1). We take a smooth divisor DE lmHI, m » 0. 

We set D := p- 1(D). Let Exti(F,F(-D))o be the kernel of the trace 
map 

If n » 0, then by the Serre duality, 

2 ~ ~ 

Ext (F,F(-D))o ~ Hom(F,F(D))o = 0. 

Hence Ext1 (F, F) 0 --+ Ext1 (F115, F115)o is surjective. Since F1i5 deforms 

to a f.L-stable vector bundle on D, F deforms to a Y-sheaf F' such that 
F(i5 is f.L-stable. Then F' is also f.L-stable. Then E := (F') vv satisfies 

required properties. Q.E.D. 

Theorem 3.16. Let Y --+ X be a projective bundle and G a lo­
cally free Y -sheaf. Let va := (r, (,b) be a primitive Mukai vector with 

r > 0. Then M };'0 ( va) is an irreducible symplectic manifold which is 

deformation equivalent to Hilb ~z,) 12+1 for a general polarization H. In 
particular 

(1) M};' 0 (va) "/:- 0 if and only if (vb! 2 -2. 
(2) If (vb! = 0, then M};' 0 (va) is a K3 surface. 

We divide the proof into several steps. 
Step 1 (Reduction to M};'E(Y)(r,O, -a)): Let~ be a lifting ofw(G). 

Then eU rk(G)v0 = (r, D, b') E H*(X, Z). By Theorem 3.14, there is 
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a projective bundle Y' ----+ X such that w(Y') = [D mod r]. Since 
D/r- U rk(G) = (/r E Pic(X) 0 Q, o(w(Y')) = o(w(Y)). Let G' 
be a locally free Y-sheafsuch that 3~__,Y'(G') = E(Y'), where we use 
the notation in Lemma 1.7. By Lemma 1.8, w(G') = w(E(Y')) = [D 
mod r]. Then replacing L by L 0 q*(P), P E Pic(X), we may assume 
that eEfrkGva(G') = (r,D,c), c E Z. Hence va,(E) = (r,O,-a) for a 
Y-sheaf E with va(E) = (r, (,b). Since H is general with respect to 

(r, (,b), Proposition 3.10 implies that Mj;· 0 (r, (,b) ~ Mj;· 0 ' (r, 0, -a). 

By Lemma 3.5, Mj;· 0 ' (r, 0, -a)~ Mj;',,(Y')(r, 0, -a). Therefore replac­

ing (Y, G) by (Y', E(Y')), we shall prove the assertion for Mj;,G(r, 0, -a) 
with G = E(Y). 

Step 2: First we assume that w(Y) E NS(X) 0 P,r C H 2(X, ~Jr)· 
Then the Brauer class of Y is trivial, that is, Y = IF'( F) for a locally free 
sheaf F on X. Since His general with respect to (r, 0, -a), Proposition 
3.10 (ii) and Lemma 3.5 imply that Mj;• 0 (r, 0, -a) ~ MjJ"'h (r, D, c) 
with 2ra = (D2)- 2rc. By [Y1, Thm. 8.1], Mjf.Ox (r, D, c) is deforma­
tion equivalent to Hilb~+l. 

We next treat the general cases. We shall deform the projective 
bundle Y ----+ X to a projective bundle in Step 2. 

Step 3: We first construct a local family of projective bundles. 

Proposition 3.17. Let f: (X, H) ----+ T be a family of polarized K3 
surfaces. Let p : Y ----+ Xt0 be a projective bundle associated to a stable 
Y -sheaf E. Then there is a smooth morphism U ----+ T whose image 
contains t 0 and a projective bundle p : Y ----+ X x T U such that Yto ~ Y. 

Proof. We note that p*(K~;x,) is a vector bundle on Xto and 

we have an embedding Y '----+ lP'(p*(K~;x )). We take an embedding 
to 

lP'(p*(Kyv; v )) '----+ lP'N ~I x Xto by a suitable quotient Ox, ( -n'Ht0 )EF!N ----+ 
~~ 0 

p*(K~;x ). More generally, let Ys ----+ X xr S be a projective bundle 
'o 

and a surjective homomorphism Oxxrs( -nH)EF!N ----+ p*(K~s/Xxrs)· 
Then we have an embedding Ys <----+ JIDN~l x X xr S. 

Let~ be a connected component of the Hilbert scheme HilbpN-1 xX/T 

containing Y. Let Y C lP'N~l x X xr~ be the universal subscheme. Let 
VJ: Y----+ X Xr ~ be the projection. Let ~0 be an open subscheme of~ 
such that 'PIXxr{t} is smooth and H 1 (T'P-l(x,t)) = 0 for (x, t) E Xxr~0 . 
Since Y E ~0 , it is non-empty. Then VJ is locally trivial on X x T ~0 . 
Thus Y----+ X Xr ~0 is a projective bundle. 
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If Y is a projective bundle associated to a twisted vector bundle E, 
then the obstruction for the infinitesimal liftings belongs to 

where £nd(E) 0 is the trace free part of £nd(E). Hence if E is simple 
(and rk E is not divisible by the characteristic), then there is no ob­
struction for the infinitesimal liftings. In particular q) 0 ---> T is smooth 
at Y. Q.E.D. 

Step 4 (A relative moduli space of twisted sheaves): Let f: (X, H) ---> 

T be a family of polarized K3 surfaces and p : Y ---> X a projective 
bundle on X. We set g := fop. We note that Hi(Yt, fly,;x,) = 0, 

i #-1 and H 1(Yt,fly, 1x,) = C fortE T. Hence L := Ext;(Tylx,Oy) ~ 
R 1 g. (fly 1 x) is a line bundle on T. By the local-global spectral sequence, 
we have an isomorphism 

We take the extension corresponding to 1 E H 0 (T, Or): 

0 ---> g* ( L v) ---> Q ---> Ty 1 x ---> 0 

such that 9t = E(Yt)- Let v := (r, (,b) E R* f,Q be a family of 
Mukai vectors with ( E NS(X /T) Q9 Q. Then as in the absolute case, 
we have a family of the moduli spaces of semi-stable twisted sheaves 

MZ/rt)IT(v) ---> T parametrizing 9t-twisted semi-stable Yt-sheaves E 

on Xt, t E T with vg, (E) = Vt· MZx\)1r(v) ---> T is a projective 
morphism. Let E be a 9rtwisted stable Yt-sheaf. By our choice of(, 
det(E) is unobstructed under deformations overT, and hence E itself is 

unobstructed. Therefore M~~H)IT(v) is smooth overT. 
Step 5 (A family of K3 surfaces): Let Md be the moduli space of the 

polarized K3 surfaces (X, H) with (H2 ) = 2d. Md is constructed as a 
quotient of an open subscheme T of a suitable Hilbert scheme Hilbii'N IC· 
Let (X, H) ---> T be the universal family. Let r be the abstruct K3lattice 
and h a primitive vector with (h2 ) = 2d. Let D be the period domain for 
polarized K3 surfaces (X, H). Let T : T---> T be the universal covering 

and cPi: H 2 (X7 (t),Z)---> r, i ETa trivialization on T. We may assume 

that cPi(HT(t)) = h. Then we have a period map p : T ---> D. By the 
surjectivity of the period map, we can show that p is surjective: Let U 
be a suitable analytic neighborhood of a point x E D. Then we have a 
family of polarized K3 surfaces (Xu, Hu) ---> U and an embedding of X 
as a subscheme of IP'N x U. Thus we have a morphism h: U---> T. The 
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embedding is unique up to the action of PGL(N + 1). Moreover if there 

is a point i0 E T such that p ( i 0 ) E U, then we have a lifting h : U ---+ T 
of h: U---+ T such that i0 = h(p(t0 )). Then U---+ T---+ Vis the identity. 
Hence we can construct a lifting of any path on V intersecting p(T). 
Since V is connected, we get the assertion. 

Step 6 (Reduction to step 2): We take a point t E f. We set 
(X, H) := (XT(t)' 1iT(i)· Let p : Y ---+ X be a lP'r- 1-bundle. Assume 
that H is general with respect to v := (r, 0, -a). We take a D E r 
with [D mod r] = "¢t(w(Y)). Let e1, e2, ... , e22 be a Z-basis of r such 
that e1 = ¢;(1iT(i)) and D = ae1 + be2. For an rJ E EB;~3Zei with 
(ei)(TJ2) - (e1, TJ) 2 < 0, we set Tf := e2 + rkrJ E r, k » 0. Since 

( (ei) (e1, e2 + rkrJ)) . 
det ( k ) (( k )2) « 0 for k » 0, the s1gnature of e1, e2 + r rJ e2 + r rJ 
the primitive sublattice L := Ze1 EB Zfj of r is of type (1, 1). Moreover 
ef" n L does not contain a (-2)-vector. We take a general w E £.l n r 181 C 
with (w,w) = 0 and (w,w) > 0. Then w.l n r = L. Replacing w by its 
complex conjugate if necessary, we may assume that w E V. Since p 
is surjective, there is a point i 1 E f) such that p(it) = w. Then XT(t,) 

is a K3 surface with Pic(XT(t,)) = Z1iT(t,) EB Z¢i,1(e2 + rkrJ). Hence 

[¢.=:: 1(D) mod r] = [¢.=:: 1(ael + br;) mod r] E Pic(XT(t )) 181 J.lr· Since t, t, 1 

Proposition 3.10 (iii) implies that 1iT(t,) is a general polarization with 
respect to v. Then by the following lemma, we can reduce the proof to 
Step 2. Therefore we complete the proof of Theorem 3.16. 

- - - i · r-1 Lemma 3.18. For t 1 , t 2 E T, let Y ---+ XT(t;)' ~ = 1, 2 be lP' -

bundles with w(Yi) = [¢[, 1(D) mod r] and Gi := c:(Yi). Let v = 

(r,O, -a) be a primitive Mukai vector. Assume that 1iT(i;)' i = 1,2 are 

general polarization. Then M]:;_' ·?' (r, 0, -a) is deformation equivalent 
T(tl) 

Proof. In order to simplify the notation, we denote Mi;.',E(Y) (r, 0, -a) 
by M(Y) for a projective bundle Y over (Xt, 1it)· By Proposition 3.15 
and Lemma 3.5, we may assume that c:(Yi) ( i = 1, 2) is p,-stable. Let 

1: [0, 1]---+ T be a path from i1 = 1(0) to i2 = 1(1) and'/:= To1. Then 
we have a trivialization ¢s : H 2 (X-y(s), J.Lr) ---+ r 181z J.Lr· By Proposition 
3.15, there is a projective bundle Ys---+ X,(s) such that "¢8 (w(Ys)) = [D 
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mod r] and E(Y,) is p.-stable for each s E [0, 1]. By Proposition 3.17, 
we have a family of projective bundles ys ---->X xr !?)s over aT-scheme 
1/Js : !?Js ----> T such that there is a point ys E (1/Js)- 1 (-y(s)) C !?)s with 
Ys = Y;. and '1/Js is smooth at y8 • Then we have a family of moduli 

-Y·' Q' -
spaces M(A-:'xy'I)•,R)/'Ds (r, 0, -a) ----> !?)s, where 1i is the pull-back of 1i to 
Xxr!?Js (Step 4). Since 1/J 8 is smooth, 1/Js(!?.Js) is an open subscheme ofT 
containing I'( s). We take an analytic open neighborhood Us of I'( s) such 
that Us is contractible and has a section as : Us ----> !?} 8 with a8 ('y(s)) = 
y 8 • Let Va be a connected neighborhood of s which is contained in 
f'- 1(U8 ). Since [0, 1] is compact, we can take a finite open covering of 
[0, 1]: [0, 1] = U'J=l Vai, s1 < s2 < · · · < Sn. Since {t E Tl rkPic(Xt) = 1} 
is a dense subset of T, there is a point tj E Usi n Us1+1 such that 
tj is sufficiently close to a point f'(Sj,J+i), Sj,J+l E Va1 n Vai+ 1 and 
Pic(XtJ = Z1it1. Under the identification H 2 (Xt, JLr) ~ H 2 (X"f(s), JLr) 
fortE Us, we have w(Ysi(t·)) = w(Ys;) and w(Ys1 +1 (t·)) = w(Ys;t~), 

a 1 1 Y "1+1 1 Y 

where we set aj := as1 and yJ := ys1. Since tj is sufficiently close to the 

point f'(Sj,j+l), we have w(Y;~(til) = w(Y;;:~(tj)). Hence by Lemma 

3.5, M(Y81 (t·)) is isomorphic to M(Y8 i+ 1 (t·)). By Step 4, M(Y81 (t· )) a1 1 o-1 +1 1 a1 1 -1 

is deformation equivalent to M(Y;;(t1 )). Therefore M(Y;~(h)) is de-
formation equivalent to M(Y;:(tn-ll). By using Step 4 again, we also 

see that M(Y 1) = M(Y~o) is deformation equivalent to M(Y;~(tl)) and 

M(Y2 ) = M(Y;1 ) is deformation equivalent to M(Y;:(t"_l)). Therefore 
our claim holds. Q.E.D. 

Remark 3.4. Let va := (r, (,b) be a Mukai vector with r, (vb) > 0 
which is not necessary primitive. By the same proof, we can also show 

that M~0 ( va) is an irreducible normal variety for a general H ( cf. [Y2]). 

3.3. The second cohomology groups of moduli spaces 

By Theorem 3.16, M};'0 (va) is an irreducible symplectic manifold, 
if va is primitive and H is general. Then H 2 (M};' 0 (va ), Z) is equipped 
with a bilinear form called the Beauville form. In this subsection, we 
shall describe the Beauville form in terms of the Mukai lattice. 

Let p : Y ----> X be a projective bundle with w(Y) = [~ mod r] and 
set G := E(Y). We consider a Mukai lattice with a Hodge structure 
(H:(X, Z), ( , ), -~) in this subsection. We set w := r(1, 0, ~ -

! ~), a E Z. In this subsection, we assume that w is primitive, that 
is, gcd(r,~,a) = 1. We set v := we~lr = (r,~,a) E H*(X,Z). Then vis 
algebraic. 
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----------
Let q: Mj;'G(w) ----> Mj;,G(w) be a projectiv~ndle in subsection 

2.3 ~the family of twisted sheav~ Y x M~). We set wv := 

E(Mj;,G(w)). Let 1f Y.G : Y x Mj;'G(w) ----> Mj;,G(w) and wy : Y x 
Mu (w) 

M};C(w)----> Y be projections. Then (ly x q)* (£ ® ?f* ~- (Wv)) is 
Mj;· 0 (w) 

a quasi-universal family onYx Mj;,G(w). 
Let 7fX :X x Mj;,G(w)----> X be the projection. We define a homo­

morphism ();j: vl. ----> H*(Mj;,G(w), Q) by 

where [ ... ]3 means the degree 6 part and 

Q: 
JtdX JtdMj;G(w) 

J ch(Rp* ( GV ® G)) J ch(Rq* (WV ® W)) 

. ch (R(p X q)* (wv(Gv) ® £ ® ?f* ~. (Wv))) 
MV'(w) 

E H*(X x Mj;'G(w), Q). 

Remark 3.5. If~ is algebraic, then Y is isomorphic to the projective 
bundle lP'(Fv) and G = pv ® Ov(l), where F is a vector bundle of 
rank r on X with c1 (F) = -~. In this case, Mj;,G(w) is the usual 
moduli space of stable sheaves F with the Mukai vector v and R(p x 
q)* (1fy(Oy ( -1)) ® £ ® ?f* -------,-- (Wv)) is a quasi-universal family. Since 

Mj;·c'(w) 

chF/ Jch(F ® FV) = e-f.fr, we have 

Hence e;j is the usual Mukai homomorphism, which is defined over Z. 

Let p' : Y' ----> X be another lP'r- 1-bundle with w(Y') = w(Y). 
Then by the proof of Lemma 3.5, we see that the following diagram is 
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commutative: 

H 2 (Mj) 0 (w), Q) ------+ H 2 (Mj;',G' (w), Q), 

where G' := B~_,y,(G) = c(Y'). Since Q is algebraic, efj preserves 
the Hodge structure. By the deformation argument, Remark 3.5 implies 
that efj is defined over Z. Moreover it preserves the bilinear forms. 

Theorem 3.19. For~ E H 2 (X, Z) with[~ mod r] = w(Y), we set 
v = weUr. 

(i) If (v2 ) > 0, then efj: v.l......., H 2 (Mj;' 0 (w),Z) is an isometry 
of the Hodge structures. 

(ii) If (v2 ) = 0, then efj induces an isometry of the Hodge struc­
tures v.ljzv......., H 2 (Mj;' 0 (w),Z). 

The second claim is due to Mukai [Mu4]. 

§4. Fourier-Mukai transform 

4.1. Integral functor 

Let p : Y ......., X be a projective bundle such that J([Y]) = [a] E 

Br(X) and p' : Y' ......., X' a projective bundle such that J([Y']) = [a'] E 

Br(X'). Let 1rx :X' x X......., X and 7rX' :X' x X......., X' be projections. 
We also let 7i'y : Y' x Y ......., Y and 1fy, : Y' x Y ......., Y' be projections. We 
set G := c(Y) and G' := c(Y'). 

Definition 4.1. Let Coh(X' x X, Y', Y) be the subcategory of 
Coh(Y' x Y) such that Q E Coh(Y' x Y) belongs to Coh(X' x X, Y', Y) 
if and only if (p' X p)*(p' X p).(G' ® Q ® av) ~ G' ® Q ® av. In terms 
of local trivialization of p, p', this is equivalent to 

QIY,' XYj ~ Oy; (-A.;) I:8J Oyj (.\j) ® (p' X p)*(Qij ), 

QiJ E Coh(U; x U1). Coh(X' x X, Y', Y) is equivalent to Coh(X' x 
X ,-1 ) ,a x a. 

Remark 4.1. We take twisted line bundles .C(p'*(a'-1)) on Y' and 
.C(p*(a-1)) on Y respectively which give equivalences A.C(p'*(a'-')) : 

Coh(X', Y') ~ Coh(X', a') and A.C(p*(a-'JJ : Coh(X, Y) ~ Coh(X, a) 
in (1.1). Then we have an equivalence A.C(p'*(a'-'))v x A.C(p*(a-')): 

Coh(X' x X, Y', Y) ......., Coh(X' x X, a'- 1 x a) 
Q f-4 (p' x p).(.C(p'*(a'-1)) ® Q ® .C(p*(a-1))v). 
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Let D(X' x X, Y', Y) ~ D(X' x X, a'- 1 x a) be the bounded derived 
category of Coh(X' x X, Y', Y). For Q E D(X' x X, Y', Y), we define 
an integral functor 

~~,_,x : D(X', Y') ---+ D(X, Y) 
X f-+ Rny*(Q ® ny,(x)). 

For Q E D(X' x X, Y', Y) andRE D(X" x X', Y", Y'), we have 

where S = R7fy, xY*(n¥, xY' (R) ®nv'xY(Q)) and 1f( ) : Y" x Y' x Y---+ 
( ) is the projection. 

4.1.1. Cohomological correspondence For simplicity, we denote the 
pull-backs of G and G' to Y' x Y by the same letters. For example 
G' ® Q ® Gv implies rry,(G') ® Q ® rry(Gv). We note that 

R(p' x p)*(G' ® Q ® Gv) E D(X' x X) 

satisfies 

We define a homomorphism 

by 

IJ!~,_,x : H*(X', Q) ---+ H*(X, Q) 

IJ!~,-x(Y) 

:=rrx* o (p' x p)* ( (p' x p)* o rrx, (y) ch(G') ch( Q) ch(Gv) 

. ~tdY'/X' y'tdXtdy;x ) 

Jch(G,v ® G') Jch(GV ®G) 

( * ~ v'tdX 
=rrx* rrx,(Y) Jch(Rp~(G'v ® G')) Jch(Rp*(Gv ®G)) 

· ch(R(p' X p)*(G' ® Q ® Gv))), 

where tdx, tdx' , ... are identified with their pull-backs. 

Lemma 4.1. w'k,_,x = IJ!~,-x o w'§,_.x,· 
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Proof. 'lr( ) : X" x X' x X ----> ( ) denotes the projection to ( ). 
We note that 

'lrxu xX ( R(p" X p')*(G" (;?) n (;?) G'v)) 

(;?) 'lrx,xx (R(p' x p)*(G' (;?) Q (;?) Gv)) 

=R(p" x p' x p)*(G" (;?) n (;?) Q (;?) av) (;?) 'lrx' (Rp~(G'v (;?) G')). 

Then 

7rx"xX ( ch ( R(p" X p')*(G" (;?) n (;?) G'v))). 

7rx'x.x (ch (R(p' x p)*(G' (;?) Q (;?) Gv))) 7rx, ch(Rp~~~~~ (;?) G'))) 

= ch (R(p" X p1 X p)*(G" (;?) n (;?) Q (;?) Gv)) 7rx,(tdx, ). 

Since 

'lrX"xX* (ch (R(p" X p' X p)*(G" (;?) n (;?) Q (;?) Gv)) 7rx' (tdx' )) 

= ch (R7rx"xX* (R(p" X p' X p)*(G" (;?) n (;?) Q (;?) Gv))) 

= ch(R(p" X p)* 0 R7i'Y"XY*(G" (;?) n (;?) Q (;?) Gv)) 

= ch(R(p" x p)*(G" (;?) S (;?) Gv)), 

we get 

\[rk,_,x(z) =7rx* ( 7rx" (z) ch(R(p" x p)*(G" (;?) S (;?) Gv)) 

~ JtdX) 
. vfch(Rp~(G"v (;?) G")) Jch(Rp*(Gv (;?)G)) 

=W~,_,x o \ll~,_,x,(z). 

Q.E.D. 

Lemma 4.2. Assume that the canonical bundles Kx, Kx, are triv­
ial. Then 

Q Qv (x, W X'_,x(Y)) =(\II x_,x,(x), y), X E H*(X, Q), y E H*(X', Q), 

where ( , ) is the Mukai pairing. 
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Proof 

(x, wi?,_,x(Y)) 

=-L xwi?,_,x(Y)v 

1 *()(*() JtdXr v'tdX = - 7rx x 7rx' Y 
X'xX Jch(Rp~(G'v 0 G')) Jch(Rp*(GV 0 G)) 

· ch(R(p' X p).(G' 0 Q 0 Gv))) v 

r ( JtdXr v'tdX 
=- Jx,xx vfch(Rp~(G'v 0 G')) vfch(Rp*(Gv 0 G)) 

. ch(R(p' X p)*(G'v 0 Qv 0 G))7rx(x)) 7rx,(Yv) 

- 1 Qv ( V -- W X-.X' x)y 
X' 

Qv 
=(W X-.X' (x), y). 

Q.E.D. 

4.2. Fourier-Mukai transform induced by stable twisted 
sheaves 

Let p: Y--+ X be a projective bundle over an abelian surface or a 
-YG 

K3 surface. Let G be a locally free Y -sheaf. Assume that X'~ H ( v) 

is a surface and consists of stable sheaves. We set Y' := M~0 (v). Let 
£be the family on Y' x Y. 

We consider integral functors 

<I>e . 
X'-.X · D(X', Y') --+ D(X,Y) 

X f--+ R1ry*(£ 0 ?r}r,(x)), 

ev [ <I> X ->X' 2] : D(X,X) --+ D(X', Y') 
y f--+ R7fy,*(£V 0 1r}r(y)[2]). 

Remark 4.2. Let .C(p'*(o:- 1 )) and .C(p*(o:- 1 )) be twisted line bun­
dles on Y' and Y respectively in (1.1). Then A.C(p*(<>- 1

)) o <I>i-,_,x o 

(A.C(p'*(<>'- 1 ll)-1: D(X',o:')--+ D(X,o:) is an integral functor with the 
kernel R(p' xp)*(.C(p'* (o:'- 1 ))0£0.C(p*(o:-1 ))v) E D(X' x X, o:'- 1 x a:). 
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Caldararu [C2] developed a theory of derived category of twisted 
sheaves. In particular, Grothendieck-Serre duality holds. Then we see 
that <I>f ..... x, [2] is the adjoint of <I>~,_,x· As in the usual Fourier-Mukai 
functor, we see that the following theorem holds (see [Br], [C1]). 

Theorem 4.3. <I>f ..... x, [2] o<I>~~ ..... x ~ 1 and <I>~~ ..... x o<I>f ..... x, [2] ~ 1. 
Thus <I>~~ ..... x is an equivalence. 

Then we have the following which also follows from a more general 
statement [H-St, Thm. 0.4]. 

Corollary 4.4. w~, ..... x induces an isometry of the Hodge struc­
tures: 

(H*(X',Z),(, ),-e)~(H*(X,Z),(, ),-~). 
r r 

Proof. Obviously w~, ..... x induces an isometry of the Hodge struc­
tures over Ql. If X is a K3 surface such that w(Y) E NS(X) Q9 f.Lr and 
X' is a fine moduli space, then \ll~, ..... x is defined over Z. For a general 
case, we use the deformation arguments. Q.E.D. 

We also have the following which is used in [Y 4]. 

Corollary 4.5. Assume that X' consists of locally free Y -sheaves. 
Then E1\r'x{y}' y E Y is a simple Y'-sheaf. If NS(X) ~ ZH, then 
E1\r, x {y}, y E Y is a stable Y' -sheaf. 

Proof. Since <I>f ..... x,[2] is an equivalence, <I>f ..... x,(Op-l(p(yJJ(1)) = 
E

1
v'x{y} is a simple Y'-sheaf. If NS(X) ~ Z, then Proposition 3.12 

implies the stability of E
1
v'x{y}· Q.E.D. 
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