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On the behavior at infinity for non-negative
superharmonic functions in a cone

Minoru Yanagishita

Abstract.

This paper shows that a positive superharmonic function on a
cone behaves regularly outside an a-minimally thin set in a cone.
This fact is known for a half space which is a special cone.

§1. Introduction

Let R and R4 be the set of all real numbers and the set of all
positive real numbers, respectively. We denote by R™ (n > 2) the n-
dimensional Euclidean space. A point in R" is denoted by P = (X, y),
X = (x1,22,...,Zn-1). The Euclidean distance of two points P and Q
in R" is denoted by |P — @Q|. Also |P — O} with the origin O of R" is
simply denoted by |P|. The boundary and the closure of a set S in R"
are denoted by 9S and S, respectively.

We introduce spherical coordinates {r,0), © = (61,603,...,0,_1), in
R"™ which are related to cartesian coordinates (z1,xa,...,Zn_1,¥) by

xy = T(H;’;f sind;) (n>2), y=rcosb,
and if n > 3, then
Tntl—k = r(H?;ll sinf;)cosbr, (2<k<n-1),

where 0 < r < 400, —%7‘1’ < b1 < %ﬂ', and if n > 3, then 0 < 6; <
m(1<j<n-2).

The unit sphere and the upper half unit sphere are denoted by §™ 7!
and Si_l, respectively. For simplicity, a point (1,0) on S"~! and the
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set {©;(1,0) € Q} for a set Q, Q C S™ ! are often identified with
© and ), respectively. For two sets A C Ry and Q C S}, the set
{(r,®©) e R"; T € A, (1,0) € Q} in R" is simply denoted by A x Q. In
particular, the half-space Ry x ST = {(X,y) € R"; y > 0} will be
denoted by T,. By C,(Q), we denote the set R x Q in R" with the
domain Q on S""!(n > 2) having smooth boundary. We call it a cone.
Then T, is a special cone obtained by putting Q = Si_l.

Let Q be a domain on S™ ! (n > 2) with smooth boundary. Consider
the Dirichlet problem

Apn+7)f=0 onQ

f=0 on o9,
where A,, is the spherical part of the Laplace operator A,
n—120 0?
Ap = —=— 4+ == +1r2A,.
r or + or? +r A

We denote the least positive eigenvalue of this boundary value problem
by 7q and the normalized positive eigenfunction corresponding to mq by
fa(©); fQ f2(8)dog = 1, where dog is the surface element on st L
We denote the solutions of the equation t? + (n — 2)t — 7 = 0 by
aq, —PBa (aa,Ba > 0). If Q = S:L__l, then ag = 1, B = n — 1 and
fa(©) = (2ns71)1/2 cos 1, where s, is the surface area 27™/2{T'(n/2)} !
of 8",

In the following, we shall assume that if n > 3, then Q is a C%°-
domain (0 < a < 1) on 8" ! (e.g. see Gilbarg and Trudinger [4] for the
definition of C?®-domain).

It is known that the Martin boundary of C,, () is the set dC, () U
{00}, each of which is a minimal Martin boundary point. When we
denote the Martin kernel by K(P,Q) (P € Cn(Q),Q € 3C,(Q) U {o0})
with respect to a reference point chosen suitably, we know

K(P,o0) =122 fo(0), K(P,0)=kr=P2fa(0) (P e Cn(),

where & is a positive constant (Yoshida [8, p.292]).

Let u(P) be a non-negative superharmonic function on T, and let
c(u) = infp_(x y)er, u(P)/y. Aikawa [1] introduced the notion of a-
minimal thinness (0 < a < 1), which is identical to minimal thinness
when a = 1 and which is identical to rarefiedness when a = 0, and
showed that

(1.1) u(P) — c(u)y

li =0,
]P|—>oo,H}I’]€T,,,\E yo|P|t—e
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with a set FE in T, which is a-minimally thin at co. Aikawa also showed
that if £ C T, is unbounded and a-minimally thin at oo in T,, then
there exists a non-negative superharmonic function u on T, such that

u(P) —c(u)y

1.2 li =
(1.2) |P}—>0101T1P€E ye|P|i-a oo,

and showed that (1.1) is the best possible as to the size of the exceptional
set. The cases of a = 1 in (1.1) and (1.2) give the result of Lelong-
Ferrand [6, pp. 134-143], and the cases of a = 0 in (1.1) and (1.2) give
the result of Essén and Jackson [3, Theorem 4.6].

For a non-negative superharmonic function in a cone, the results
corresponding to @ = 1 of (1.1) and (1.2) are showed by the Fatou
boundary limit theorem for Martin space (Miyamoto and Yoshida |7,
Remark 2]). In detail, for a non-negative superharmonic function u on
Cn (), there exists a set E C Cy,(€2) which is minimally thin at co such
that

u(P) — cw(u)R(P, 00) _

(1.3) lim - 0,
|P|—+00, PEC,(Q\E K (P, o0)
where we put coo(u) = infpec, () K“go)o). On the other hand, Miyamoto

and Yoshida [7, Theorem 3} introduced the notion of rarefiedness at co
with respect to Cp(9), and showed that for a non-negative superhar-
monic function u on C,(f2), there exists a set E C C,(f2) which is
rarefied at oo such that

u(P) — coo(u) K (P, 00)

i =0.
| P|—+o0, II—I’%C,L(Q)\E | P|ee

(1.4)

(1.4) gives the extension of the case a = 0 in (1.1).

From these results, in this paper we shall introduce the notion of
a-mimal thinness (0 < a < 1) at co with respect to a cone and extend
the above results for a cone ((1.3) and (1.4)). We shall also extend the
results (1.1) and (1.2) bacause our main result contains (1.1) and (1.2)
as the case () = Si_l. The results of this paper are proved by modifying
the methods of Aikawa [1] and Essén and Jackson [3].

I would like to thank Professor Ikuko Miyamoto and Professor Hi-
denobu Yoshida for their help in preparing this paper.
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§2. Preliminaries

We denote by G(P, Q) (P € Cr(0),Q € Cyr(2)) the Green function
of Cp, (), and let Gu(P) = an(Q) G(P,Q)du(Q) be the Green potential
at P € C,(Q) of a positive Radon measure p.

Let S, (2) be the set 8C,(Q2)\ {O}. Now we shall define the Martin
type kernel K(P,Q) (P = (r,0) € Cr(Q2),Q = (¢,®) € Cr(2) U {c0})
as follows:

G(P,Q)

Fon foo(®) . on Cp () x Cr(92)
K(P,Q) = ?E% {tfm-1% fQ@)} on gngzl; x fn(?)

o2 fo on G, X 100

kr B¢ fo(©) on C,(Q) x {0},

where 9/0ng denotes the differentiation at @ along the inward nor-
mal into C,,(Q). We note that Kp(Q) = K(P,Q) is continuous in the
extended sence on Cp(02) U Sp(R). Following Brelot [2, p.31], we let
K*(P,Q) = K(Q, P) be the associated kernel of K on (Cy(2) U{oco}) x
Cn(Q).

If 41 is a measure on Cp(Q) U {oo}, we abbreviate [ K (P, Q)du(Q)

Cr (oo}

to Ku(P) and also an(Q) K*(P,Q)dv(Q) to K*v(P) for a measure v
on C,(Q).

Let u be a non-negative superharmonic function on C,(f2) and
put co(u) = infpec, () %. Then from Miyamoto and Yoshida [7,

Lemma 3], we see that there exists a unique measure p,, on C,(Q)U{oco}
such that v = Ku,. When we denote by p!, the restriction of the mea-
sure fi, on Cp(f2), we have u(P) = coo(u)K(P,o0) + co(w)K (P, 0) +
K, (P).

For a number a, 0 < a < 1, we define the positive superharmonic
function g, by ¢go(P) = (K(P,0))* (P € Cr()).

For a non-negative function v on Gy, (2) and E C C, (), let RE be
the regularized reduced function of v relative to E (Helms [5, p.116]).

Let E be a bounded subset of C,(2). We define the a-mass of E by
A% (Cn () for 0 < a < 1, where A% is the measure on C,(Q) such that
KX, = RE.

Let E C Cn(2) be bounded.. Then there exists a unique measure
Mg on Cn(Q) such that ng(. oy = GApoon Cu(Q). If0 < a <1,

then following Yoshida |8, Cofollary 5.3] we see the greatest harmonic
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minorant of IA%gEa is zero, so that A%(0C,(Q)) = 0. Then according to
the proof of Aikawa [1, Lemma 2.1] we can similarly have

(2.1) X8,(Cr(©)) = /C o oA

In particular AL(CL(Q)) = [ GArdAg and AL(Ch(Q)) = Ae(Cr(9)).
Let E be a subset of Cp,(2) and Ej, = E N I, where

I, ={PeC,(); 2 <|P|<2¥1} (k=0,1,2,...).

We say that E C Cr () is a-minimally thin at oo in Cp,(Q) if
328, (Cu(@)2Meent90) < oo,
k=0

Remark 2.1. From Theorems 1 and 2 of Miyamoto and Yoshida [7]
and (2.1), we see that the notion of a-minimal thinness contains the
notions of minimal thinness and rarefiedness.

In the following we set

Cn( a, b)={P=(r,0) € Cp(); a<r<b} (0 <a<b< +o0),
Sn(Q a, b)) ={P=(r,0) € S,(N); a<r <b} (0 < a<b<+00).

As far as we are concerned with a-minimal thinness in the following,
we shall restrict a subset E of C, () to the set located in Cp,(£2; 1, +00),
because the part of E separated from oo is unessential to a-minimal
thinness.

§3. Statements of results

Let n be a real number satisfying (2 — n)O%ﬂ —-1<n<1 We
define the positive superharmonic function A, on Cp(Q) by h,(P) =
K(P, oo)|P|{(2'")7*15~1_"}a”. Since K(P,c0) is a minimal harmonic
function on Cy, (), we see that there exists a measure v, on Cp(Q)
such that Gy, (P) = min(K (P, 00), hy(P)).

Let §, be the class of all non-negative superharmonic functions u
on Cp(Q) such that ¢ (u) = 0 and

(3.1) / Q|{Cmag=t=maag, (Q) < +oo.
Cr(Q1,4+00)US, (S451,400)
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Remark 3.1. If P € Cr(Q), then K*vyy(P) = Gvy(P)/K(P,00). If
P € 5,(9), then K*vy(P) = liminfg_,pgec, () K*vp(Q) (cf. Essén
and Jackson [3, p.240]). Hence for a point P € C,(Q) U 5,(Q), we have

\s P 1 for 0 < |P| <1,
(3.2) vn(P) = |p|{(2“")316_1“"}0‘n for |P| > 1.

Let u € §,. From (3.2) we see that (3.1) is equivalent to the following
condition; '

/ {u(P) — co(u)K(P,0)}dvy(P) < +oc.
Crn(2)

If w1, ug € §, and c is a positive constant, then u; + u2, cu; € .

Let v € §y such that co(v) = 0, and let u be a non-negative su-
perharmonic function such that co(u) = 0. Then 0 < u < v on C, ()
implies u € §, (cf. Aikawa [1, Lemma 3.1}).

We define the function hy o(P) = K (P, 00)?|P|("=®)2a (P € C,(Q)).

Theorem 3.1. If u(P) € §,, then there exists a set E C Cp(Q)
which is a-minimally thin ot co with respect to Cpn(Q) such that

u(P)

im =0.
|P| =400, PECL(O\E hp.o(P)

Conversely, if E is unbounded and a-minimally thin at oo with respect
to Cn(Q), then there exists u(P) € F,, such that

im u(P)
|P|—+o0, PEE hy o P)

= +00.

When Q = S7,7!, we obtain the result of Aikawa [1, Theorem 3.2].

Let u(P) be a non-negative superharmonic function on Cy,(£2). Since
u(P) = u(P) — coo(u)K (P, 00) belongs to F1, we obtain the following
Corollary 3.1 by applying Theorem 3.1 of the case n =1 to u;.

Corollary 3.1. Let u(P) be a non-negative superharmonic function
on Cp (). Then there exists a set E C Cyp(Q) which is a-minimally thin
at oo with respect to Cn(Q) such that

im u(P) — oo (u) K (P, 00)
|P|—>+o00, PEC.(O\E K(P,o00)e|P|1-a)aa

=0.

Conversely, if E is unbounded and a-minimally thin at oo with respect
to Cpn(Q)), then there exists a non-negative superharmonic function u{P)
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such that

w(P) — Coo(u) K (P, 00)

li =
|P|——»+IOI<I>1, pee K(P,c0)e|P|(1-a)an oo

The case a = 0 in Corollary 3.1 gives the result of Miyamoto and
Yoshida [7, Theorem 3].

84. Proof of Theorem 3.1

We remark that

(4.1) G(P,Q) < Mr*t P2 fo(0)fa(®)
(4.2) (rtesp. G(P,Q) < Myt r=P2fq(0)fa(®))

for any P = (r,0) € Cp(Q) and any @ = (¢t,D) € C,(Q) satisfying
0<Z <3 (resp. 0<icx 1), where M; (resp. M>) is a positive
constant. From (4.1) and (4.2) we have the following inequalities:

8G(P’Q) agr—Ba—1 ___8_
(4.3) TTLQ_ < Maroet fﬂ(e) One fQ(cI))
(44)  (resp. Qca(—ié@ < Myt lpmha fQ(e)'gg;fQ(q)))

for any P = (r,0) € Cn() and any Q = (¢,P) € S,(Q) satisfying
0<Z <1 (respp 0<ic< %), where M3 (resp. M,) is a positive
constant and d/0ne denotes the differntiation at ® € 9 along the
inward normal into  (Miyamoto and Yoshida [7]).

For two positive functions u and v, we shall write u ~ v if and only
if there exist constants A, B, 0 < A < B, such that Av < u < Bv

everywhere on Cp, ().

Lemma 4.1. E C Cp(;1,+00) is a-minimally thin at co if and
only if Y5 Rf:‘a €%,

Proof. We note that for every £ =0,1,2,...,

REr Q—k(ﬂ—a)aszéfk

Ga n,a’
5.(C) ~ oy HeETIT [ gy, ()

Cr()USL(Q)



410 M‘Ya;nagishita

where the constants of comparison are independent of k. Since

/ RE:(P)dvy(P) = / KXy, (P)dvy(P)
Cn(82) Cn(Q2)

- / K0y (Q)dNs, (Q) = / Q|{®-mas—t- "}““dAEk<Q>
C Cn ()

n(Q)USR(Q) USH ()

we have 2k(-aea=Ba)re (C,(Q)) ~ an’(Q) Rﬁ’:‘a (P)dv,(P) where the
constants of comparison are independent of k, which gives the conclu-
sion. O

Lemma 4.2. Let E be a set in Cp,(Q;1,400). If Rﬁ] . € 8y, then
E is a-minimally thin at co.

Proof. Since hy, o(P) satisfies

lim inf fn.a (P)

0
[Pl K (P, o0)[P[i-Daa ~

we find a positive constant C’ and a natural number Nj such that

hy.o(P) > C'K (P, 00)|P|(=Yea for |P| > 2N, Let Cy = M1 /C', Co =

MQ/C,, C3 = Mg/C, and Cy = M4/C,. And put C = max1§i§4{Ci}.
Let ]A{E = Kp, where p satisfies (3.1). Noting (3.1), we put

2— —1-—
A= fc (1, 400)US, (§:1,+00) |Q|{( n)“” n}a”dﬂ(Q) < +00. We take

a natural number Ny such that 44C < 9N . Then
there exists a natural number kg such that
)L —1-pla 1
o QUM 1 men ) <
{QGC,,,(Q)US”(Q); |Q|22k+N2+1}

for k > ko. Let N = max{Nj, N3, ko}. Hence it is sufficient to prove
SN Rf:a € §, beacause Y r_, Rf:a < (N + 1)Rfm € F,. We set
Jo=Ip_n, U UV - Ulgyn, Let k> N andlet P = (T,@) € Ek.
If Q € C,(Q) and |Q] < 25~N2, then from (4.2) we have

G(P.Q)

o (@) < M o0

K(P,Q) =
Hence
K(P,Q)du(Q) < C’th’a(P)T—(Tlasz+ﬂn)/ Q)
{QeC,.(Q); |Q<2k— N2} 1<|Q| <2k~ N2

Cahya(P) / Pl -1=men g ),

1<|@Ig2k N2

IN
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On the other hand, if @ € C,(Q2) and |Q| > 25TV2+1 then from (4.1)
we have

K(P,Q)du(Q) < Clhn’a(P)T—(nvl)an/ Q| (@ +89) 4 (Q)

{QeC,(Q); |Q|>2k+N2+1} |Q|>2k+Na+1
< Cihya(P) / Qi s —1=men g, ).
QIzat 2+

If Q € S,(Q) and |Q] < 25Nz or Q € S,(Q) and |Q| > 28+ N2+1 then
from (4.4) or (4.3) we have similar inequalities. From these inequalities,
we have

C‘l/ K(P,Q)du(Q) < hyo(P) / |P'{(2—n)%”—-l—n}and#(Q)
Crn()\Jk |Q|<2k—N2
hna(P) / Q| (@-m ek =1-mdan g o

|QIz2k s N2t

Since 4AC < 2_N2{(2‘n)7*ls_2-1—"}a9, we see that

{(2-n)t-1-n}an
—n)-L —1— [o] 1 P xQ0
C/ |p|{(2 )as —1-n} ﬂd,u(Q) < v 2|N1> du(Q)
|Q| <2k~ N2 |Q|<2k N2

1

IN

< flemaET T

jQI<2k~ N2

So we have fm\fk K(P,Q)du(Q) < hy,q(P) on Ej, which implies
that

hiolP) < BE, ()< | K(P.QN(Q)+ Fhno(P)

g.e. on Ey. Hence hy o(P) <2 fjk K(P,Q)du(Q) q.e. on Ej. Therefore
R (P) <2 [, K(P,Q)du(Q) on Cp(Q), by the definition of Rf* . If
we sum up fff’;a over k > N, we obtain } 22 Rf:a < 2(2Nay+ l)fziﬁ,,a'
By Remark 3.1 we see ), v R,ﬁ‘;a € §y. Thus the lemma follows from
Lemma 4.1. O

Proof of Theorem 3.1. Let ui(P) = u(P) — co(u)K(P,0) (P €
Cn(2)), then we see u; € §,. For each non-negative integer j, we set
Aj = {P € Co(251,+00); u1(P)/hn.a(P) > (j +1)71}. Since Ry’ <
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(4 + uy € §y, we see from Remark 3.1 that R ’ € §p, and then A;
is a-minimally thin by Lemma 4.2. Following Alkawa [1, Lemma 3.4,
we can similarly find an increasing sequence {m(j)} of natural numbers
such that 3, Ry 20 € g Set Uy Ugsm() (45 N Ik) = E.

Since RE < Z RUD’"(”(A 50k) , E is a-minimally thin by Lemma 4.2.

ItP ¢ E then P ¢ Uk>m () (A; N Ix) for every j. It follows that if
|P| > 2™, then P ¢ A;. This implies that uy(P)/hyq(P) < (j+1)7}

Hence we have ul(P)/hn,a(P) — 0 as |P| - o0, P € C,(2)\ E. On the
other hand, we see K(P,0)/hyo(P) = m{@"")ﬁ"l_"}aﬂfg(@)l_“ —
0 as |P| — oo. Thus we have

u(P)  ui(P)+co(u)K(P,0) .
hna(P) hn.a(P)

0 (|P| — 00, P € Co(Q) \ E).

For the converse we take an unbounded and a-minimally thin set
E. As in the proof of Aikawa [1, Lemma 2.4 (iv)], we see that if U
is bounded, then A (Cr(R)) = inf{A\4(Cn(2));U C 0,0 is open}.
By applying the above property to Ey (kK = 0,1,2,...,), we obtain
an open set O D E such that O is a-minimally thin. By Lemma
4.1 we have Y7, Ri?:,, (P) € §y, where Oy = O N Iy, which implies
>k ffig:‘a(P)dyT,(P) < +00. We find an increasing sequence {ci} of
positive numbers such that cx , oo and ), ckfR}?:a(P)dl/n(P) <
+00. Set u(P) = > po, ckRg:u(P). By Lebesgue’s monotone conver-
gence theorem, we see that u € §,. Since Oy is included in the interior
of Og_1 UOg,

RN (P)+ RY: (P) 2 R 9O(P) 2 ha(P)
for P € Oy. Hence, if P € E; C Oy, then
u(P) > cx 1 B2 (P) + e R (P) > ck1hna(P).
Therefore
u(P)

li — = oo,
;P|—>+l£l, PEE hyo(P) +oo
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