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Some potential theoretic results on an infinite
network
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Abstract.

The greatest harmonic minorant of a superharmonic function is
determined as the limit of a sequence of solutions for discrete Dirichlet
problems on finite subnetworks. Without using the Green kernel
explicitly, a positive superharmonic function is decomposed uniquely
as a sum of a potential and a harmonic function. The infimum of a
left directed family of harmonic functions is shown to be either —oco
or harmonic. As applications, we study the reduced functions and
their properties. We show the existence of the Green kernel with the
aid of our reduced function.

§81. Introduction

Let N ={X,Y, K, 7} be an infinite network which is connected and
locally finite and has no self-loop. Here X is a countable set of nodes, Y
a countable set of arcs, K a node-arc incidence function and r a strictly
positive real function on Y.

We say that a network N’ = {X',Y’, K’,7'} is a subnetwork of N
if X’ and Y’ are subsets of X and Y respectively, K’ is the restriction
of K onto X’ x Y’ and 7’ is the restriction of r onto Y’. For simplicity,
we write N' =< X' )Y’ > in case N' = {X',Y',K’',r'} is a subnetwork
of N. We say that N =< X', Y’ > is a finite subnetwork of N if X’ or
Y’ is a finite set. For later use, we recall a notion of an exhaustion. We
say that a sequence of finite subnetworks { N, }(Np, =< X, Y, >) of N
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is an exhaustion of N if
Y():={yeY;K(z,y) #0} C Y,piforallzeX,,
o0 o0
X=JXn and Y=V,
n=1

Notice that X, C X,4+1 and Y,, C Y,41. For notations and termi-
nologies we mainly follow [2] and [3]. Let L(X) be the set of all real
functions on X and L*(X) be the set of all non-negative functions on
X. For z € X, denote by W, the neighboring nodes of z, i.e.,

W, ={z¢€ X;K(z,y)K(z,y) = —1 for some y € Y(z)}.
For every u € L(X), the Laplacian Au € L(X) is defined by

Au(z) = —t(z)u(z) + Zzem t(z, z)u(z),

where
t(x) = Z y) K (z,y)]
t(z,2) = Z y) YK (z,y)K (z,y)| for z # .
Notice that t(z,z) = t(z,z) and t(z,z) =0 for z € X \ (W, U {z})

t(z) = ZZEWE t(x, 2).

We say that a function u € L(X) is superharmonic on a set A C X
if Au(z) <0 for all x € A. We say that v is subharmonic on A if —u is
superharmonic on A. If u is both superharmonic and subharmonic on
A, we say that u is harmonic on A. The following minimum principle
and maximum principle are well-known:

Lemma 1.1 (Minimum principle). Let X' be a finite subset of X.
If u is superharmonic on X' and u(z) > 0 on X \ X', then u(z) > 0 on
X'

Lemma 1.2 (Maximum principle). Let X' be a finite subset of X.
If u s subharmonic on X' and u(z) < 0 on X \ X', then u(z) <0 on
X'. .

Lemma 1.3 (Harnack’s principle). Let {X,} be a sequence of sub-
sets of X such that X, C Xny1 and X = U2, X, and let {u,} be a
sequence of functions on X such that un(z) < upi1(x) on X. If u, is
superharmonic on X, for every n, then the pointwise limit of {un} is
equal to either co or a real valued superharmonic function.
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For a finite subnetwork N’ =< X', Y’ > of N, the harmoﬁic green
function of N’ with pole at a € X’ is the unique function u determined
by

Au(z) = —g4(z) on X’ and u(z) =0on X \ X',
where €, denotes the characteristic function of {a}. Denote by gV’ the
harmonic Green function of N’ with pole at a. Notice that gV’ (b) =
g (a) > 0 for all a,b € X'(cf. [1]). For f € L(X), the Green potential
Gy f is defined by

O f@) =Y ¥ @f).

zeX’

§2. The greatest harmonic minorant

We begin with a discrete Dirichlet problem:

Lemma 2.1. [1] Let f € L{(X) and N' =< X'.Y’ > be a finite
subnetwork of N. There exists a unique function u’ such that

Au'(z) =0 on X' and v/ (x) = f(x) on X \ X'.

Proof. The uniqueness follows from the maximum and minimum
principles. We see easily that v’ = f + Gn/(Af) satisfies our require-
ments. 0

Denote by hjcv " the unique function v’ determined in Lemma 2.1.

Corollary 2.1. Let N' =< X', Y’ > be a finite subnetwork of N.
Then hgf'+ﬂg = ah}v, + 5,119\7’ for f,g € L(X) and real numbers a, 3.

By Lemmas 1.1 and 1.2, we obtain

Lemma 2.2. Let N' =< X', Y’ > be a finite subnetwork of N.

(1) If u is superharmonic on X', then hY (z) < u(x) on X.

(2)  If u is subharmonic on X', then hY' (z) > u(x) on X.

Corollary 2.2. If u is harmonic on X', then hY = u.

Lemma 2.3. Let N' =< X', Y’ > be a finite subnetwork of N and
u1,uz € L(X). If u1(z) < ua(z) on X, then hl (z) < hl (z) on X.

Proof. Let v(z) = hY () — hlY(z). Then v is harmonic on X’ and
v(z) = uz(x)—ui(z) > 0 on X \ X’. By the minimum principle,v(z) > 0
on X'’. Hence v(z) > 0 on X. ]

Lemma 2.4. Let N' =< X', Y’ > be a finite subnetwork of N. If
u is a superharmonic function on X, then hlY is superharmonic on X.
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Proof. By Lemma 2.2, kY (z) < u(z) on X. It suffices to show
that hY'(z) is superharmonic on X \ X’. For z € X \ X', we have
RN (z) = w(z) and

—t(z)hY (z) +Z t(z, 2)hY (2)

ARY (z) =
< —t(z)ulz) + Z Ju(z) = Au(z) < 0.
Therefore u is superharmonic on X. O

Lemma 2.5. Let N1 =< X1,Y1 > and Nay =< X3,Ys > be finite
subnetworks of N such that Y (x) C Y2 for all x € X1. If u is superhar-
monic on X, then hlY1(z) > h2(x) on X.

Proof. Letv(x) = hl+(z)—hN2(x). Then v(z) = u(x)—hl2(z) >0
on X \ X; and Av(z) = 0 on X;. Therefore v(z) > 0 on X by the
minimum principle. O

Theorem 2.1. Let u be superharmonic on X and {Np} be an ex-
haustion of N and put

mu(x) = lim hY"(z) for each z € X.

Then either m, = —o0 or mu € L(X) is harmonic on X.

Proof. Put u, = hl». Then up41(z) < un(x) < u(z) on X and u,
is harmonic on X,. By Harnack’s principle, we see that the limit v of
the sequence {—uy} is equal to either oo or a real valued superharmonic
function on X. In case v = oo, we have 7, = —oo. Assume that v # oco.
Then we see m, = —v € L(X) and Amy(z) > 0 on X. Let z € X.
Since N is locally finite, there exists ng such that W, U {z} C X, for
all n > ng. Since u, is harmonic on X, and un(z) — myu(z) for all
z € W, U{z} as n — oo, we have

Amy(z) = —t(z)mu(z) + Z t(z, z)my(2)

= hm { +Z W t(z, z)un(2)}
= hm Aun(x) =0.
n—oo
In case m, € L(X), we call 7, the harmonic part of u. Notice that =,

does not depend on the choice of an exhaustion of N and that m,(z) <
u(zx) on X. O
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Proposition 2.1. Let u;,us be superharmonic functions on X. If
there exists a subharmonic minorant v of min(uy,us), then

Tmin(uy ,ug)(x) < min(ﬂ'ul (:1:)) Tuz (I)) on X.

Proof. Let u = min(ug,u2) and {N,}(N,, =< X,,Y, >) be an
exhaustion of N. Then u is superharmonic and

v(z) < hM(z) < hi~(z) on X for k= 1,2.
Therefore m,(z) < my, (z) on X for k =1, 2. O

Proposition 2.2. Let u; and ug be superharmonic functions on X.
If they have subharmonic minorants, then Ty, 4y, = Ty, + Tu, -

Proof. Let N, be the same as above. We have by Corollary 2.1

N, — 1 Nn N,
hu1+uz - hul + huz :

O

Corollary 2.3. Let u be a superharmonic function on X with a
subharmonic minorant and let ¢ be a harmonic function on X. Then

Tutd = Ty + .

Theorem 2.2. Let u be superharmonic on X. If u has a subhar-
monic minorant v, i.e., v is subharmonic on X and v(z) < u(zx) on
X, then v(z) < m,(z) on X. Moreover, m, is the greatest harmonic
minorant of u.

Proof. Let {N,}N, =< X,,Y, >) be an exhaustion of N. Since
v is subharmonic on X and v(z) < u(z) on X, we have

v(z) < AV (z) < A" (z) on X

by Lemmas 2.2 and 2.3. Thus we have v(z) < my(z) on X. If sis a
harmonic minorant of u, then we have s(x) = hl¥"(z) < hd"(z) on X
by Corollary 2.2 and Lemma 2.3, so that s(z) < 7, (z) on X. (]

There are many characterizations for an infinite network N to be of
hyperbolic type. We say here that N is of hyperbolic type (or shortly,
hyperbolic) if there exists a nonconstant positive superharmonic func-
tion on X. It is well-known that N is hyperbolic if and only if N has
a Green function, i.e., the limit g, of {g)"} exists and satisfies the
condition:Ag,(z) = —e4(x) on X.

Without using this Green kernel explicitly, we introduce
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Definition 2.1. We say that a positive superharmonic function u
s a potential if the greatest harmonic minorant of u is zero, t.e., m, = 0.

Needless to say, we have m, € L(X) if u € L*(X) is superharmonic
on X.

Theorem 2.3. Let N be hyperbolic.

(1) If u is a potential, then Au (A > 0) is also a potential.

(2) If uy and uy are potentials, then ui + uz is also a potential.

(3)  Ifu; is a potential and ug is a positive superharmonic function,
then min(uy, ug) s a potential.

Proof. (2) and (3) follow from Propositions 2.1 and 2.2. For (1), it
suffices to note that my, = Amy. O

Theorem 2.4. Let N be hyperbolic.

(1) Assume that v is superharmonic on X and u is a potential. If
u+v € LY(X), thenv e LT(X).

(2) If u is a potential and if v is a subharmonic minorant of u,
then v < 0.

(3) Assume that u is a superharmonic function with a subharmonic
minorant v. Then u can be expressed uniquely as the sum of a
potential and a harmonic function.

Proof. Since u > —v and —v is subharmonic, we have 0 = 7, (z) >
m-y{z) = —v(zx) on X. Thus (1) follows. The second assertion follows
from the relation: v(z) < m,(z) < my(x) = 0 on X. Let us prove (3).
Since u has a subharmonic minorant, we have 7, € L(X) is harmonic.
We take p = v — m,. Then p € L*T(X) and 71, = 0 by Corollary 2.3.
Therefore p is a potential. Assume that there exist potentials py, ps and
harmonic functions hq, hy satisfying the relation: u = p; + hy = pa + ho.
We have

p1(z) = pi(z) — p2(x) = ha(z) — h1(2)
for all z € X. We see by the above observation (2) that ha(z)—h1(z) <0
on X. We obtain similarly h;(z) — he(z) < 0 on X, and hence h;(z) =
ha(x). This shows the uniqueness of our decomposition. O

§3. Sets of Superharmonic Functions

We say that a set @ of functions on X is left directed if for every
uj,ug € @, there exists u € @ such that v < min(u,uz). We define
inf @ by

inf ®(x) = inf{u(z);u € ¥}.

For simplicity, we set X (a) = W, U {a} for a € X.
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Theorem 3.1. If @ is a left directed family of harmonic functions
©on X, then inf @ is either equal to —oo identically or harmonic on X.

Proof. For simplicity, put A = inf ®. It suffices to show that h is
harmonic on X unless A = —oo. Let a be any node such that h(a) > —oc.
Since X {a) is a finite set, we can find a sequence {un} in @ such that
Un4+1(x) < up(x) on X and un(z) — h(z) as n — oo for every x € X (a).

Since u,(a) = .Zﬁ&;((;%)ﬂ'(_zz’ we have h(a) = Exewat(t((lﬂ)%a)h(ﬂc)

h{a) > —oo, we see that h(z) > —oo for all z € W(a) and h is harmonic
at a. Taking b € W (a) and proceeding as before we get h(z) > —oo for
all z € W(b) and h is harmonic at b. Since any point z € X is connected
to a by a finite number of edges we get h(z) > —oo and h is harmonic
at z. Hence we have h is harmonic on X. a

. Since

Similarly we can prove

Theorem 3.2. If & is a left directed family of superharmonic func-
tions on X and inf ® € L(X), then inf ® is superharmonic on X.

Let us use a discrete analogue of Poisson’s integral. For u € L(X)
and a € X, we define the function P,u € L(X) by

Pu(z) = wu(z) fz#a
Paule) = Y __[ta,2)/t(a)ju(a).

Lemma 3.1. Assume that u is superharmonic on X. Then Pyu(x) <
u(z) on X and P,u is superharmonic on X and harmonic at a.

Proof. Since u is superharmonic at a, Pyu(a) < u(a), so that
wu(z) < u(z) on X. For x ¢ X(a), it is clear that P,u is super-
harmonic at z. For x € W,, we have

APu(z) = —t(z)P,u(z) +Z t(z, ) Pau(z)
< ) + Z u(z) = Au(z) < 0.
For = = a, we have
AP,u(a) = —t(a) Pou( Z t(z,a)u(z) = 0.

a

Theorem 3.3. Let A be a subset of X and ® be a left directed
family of superharmonic functions on X. If inf ® € L(X) and P,u € ®
for all a € A and u € ®, then inf @ is harmonic on A.
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Proof. Let us put h = inf ®. Then h is superharmonic on X by
Theorem 3.2. Let a € A. Then Pyh(xz) < h(z) by Lemma 3.1. By
our assumption, we have h(a) < Pyu(a) for all u € ®. There exists a
sequence {u,} in ® such that u,(z) — h(z) as n — oo for all z € X (a).
We see easily that Pyu,(a) — P,h(a) as n — 00, so that h(a) < P,h(a).
Namely, h(a) = P,h(a), i.e., Ah(a) = 0. O

84. Reduced Functions and their properties

In this section, we always assume that IV is hyperbolic. Denote by
SH™(N) the set of all non-negative superharmonic functions on X. For
f € LT(X),let us put S = {u € SHT(N);u(z) > f(z) on X} and

Ry(z) = inf{u(x);u € St}

Theorem 4.1. The function Ry is superharmonic on X and har-
monic on the set {x € X; f(x) = 0}.

Proof. We show that Sy is left directed. Let u;,us € Sy and
ug(z) = min{u; (), uz(z)} for x € X. Then us € SH*(N) and usz(z) >
f(z) on X. Thus ug € Sy. Since Rs(z) > f(z) > 0 on X, we see by
Theorem 3.2 that Ry is superharmonic on X. Let A = {z € X; f(z) =
0}. For any u € Sy, we see by Lemma 3.1 that P,u is superharmonic
and Pyu(z) = u(z) > f(z) for  # a. If a € A, then Pyu(a) > 0 = f(a).
Therefore P,u € Sy for all u € Sy and a € A. Our assertion follows
from Theorem 3.3. O

Let u € LT(X) and A be a subset of X. The function
RA(2) = inf{v(z);v € SHT(N),v(z) > u(x) on A}
is called the reduced function ( or balayage) of u on A.

Theorem 4.2. Ry is superharmonic in X and harmonic in X \ A.

Proof. Consider the function f € LT (X) defined by f(z) = u(zx)
for z € A and f(z) =0for z € X \ A. Then R2 = R; and our assertion
follows from Theorem 4.1. o

Lemma 4.1. If N is hyperbolic, there exists a potential p such that
p(z) >0 on X.

Proof. By our definition, there exists a non-constant positive su-
perharmonic function v. Our assertion is clear if v is not harmonic by
Theorem 2.4. Assume that v is harmonic on X. For a € X, we consider
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the function s, € L(X) defined by s,(x) = min(v(z),v(a)) for z € X.
Then s, € SHT(N), 54(z) < sq(a) = v(a) on X. If As,(a) = 0, then

ZIIEW,, t(z,a)[sa(a) — sa(z)] =0

implies that s,(z) = s4(a) on X (a), i.e., v(z) > v(a) on X (a). Since v is
harmonic, we must have v(z) = v(a) on X (a). Taking a; € X(a),a # a1,
we consider s,, = min(v,v(a1)). If Asg, (1) = 0, we obtain v(x) = v(a)
on X(a) U X(a1). After repeating this procedure a finite number of
times, we obtain b € X such that s, = min(v,v(b)) and Asy(b) < 0,
since v is non-constant. g

Theorem 4.3. For any a € X, there exists a unique bounded po-
tential Go(x) such that AG,(x) = —eq(x).

Proof. We see by Theorems 4.1 and 4.2 that u,(z) = Re, = Ri* is
superharmonic on X and harmonic on X \ {a}. Since 1 € S, we have
0 < ug(z) < 1 on X. Since N is hyperbolic, there exists a potential
p > 0 by Lemma 4.1. Notice that v(z) = p(x)/p(a) € S., and v is
also a potential. Thus ue(z) < v(z) on X and u, is a potential by
Theorem 2.3. We show that Au,(a) < 0. Supposing the contrary, u,
is harmonic on X. Since u, is a potential, we must have u, = 0. On
the other hand, we have u,(a) = 1. This is a contradiction. Let us
put Go(z) = —uq(z)/Aug(a). Then G, is a bounded potential and
AGy(z) = —g4(x) on X.

We prove the uniqueness of G,. Assume that there exists a potential
¢ such that A¢(z) = —e4(x) on X. Let h = ¢ — G,. Then Ah(x) =
A¢p(z) — AG4(z) = 0 on X. Hence h is harmonic on X and ¢ = G4+ h.
By the uniqueness of the Riesz decomposition (Theorem 2.4(3)), we
conclude that h = 0. Therefore ¢ = G,. O
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