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Some potential theoretic results on an infinite 
network 
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Abstract. 

The greatest harmonic minorant of a superharmonic function is 
determined as the limit of a sequence of solutions for discrete Dirichlet 
problems on finite subnetworks. Without using the Green kernel 
explicitly, a positive superharmonic function is decomposed uniquely 
as a sum of a potential and a harmonic function. The infimum of a 
left directed family of harmonic functions is shown to be either -oo 
or harmonic. As applications, we study the reduced functions and 
their properties. We show the existence of the Green kernel with the 
aid of our reduced function. 

§1. Introduction 

Let N ={X, Y, K, r} be an infinite network which is connected and 
locally finite and has no self-loop. Here X is a countable set of nodes, Y 
a countable set of arcs, K a node-arc incidence function and r a strictly 
positive real function on Y. 

We say that a network N' = {X', Y', K', r'} is a subnetwork of N 
if X' and Y' are subsets of X and Y respectively, K' is the restriction 
of K onto X' x Y' and r' is the restriction of r onto Y'. For simplicity, 
we write N' =<X', Y' >in case N' ={X', Y',K',r'} is a subnetwork 
of N. We say that N' =<X', Y' >is a finite subnetwork of N if X' or 
Y' is a finite set. For later use, we recall a notion of an exhaustion. We 
say that a sequence of finite subnetworks {Nn}(Nn =< Xn, Yn >) of N 
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is an exhaustion of N if 

Y(x) := {y E Y; K(x, y) -:/= 0} C Yn+l for all x E Xn, 
00 00 

X = U Xn and Y = U Yn 
n=l n=l 

Notice that Xn C Xn+l and Yn C Yn+l· For notations and termi­
nologies we mainly follow [2] and [3]. Let L(X) be the set of all real 
functions on X and £+(X) be the set of all non-negative functions on 
X. For x EX, denote by Wx the neighboring nodes of x, i.e., 

Wx = {z E X;K(x,y)K(z,y) = -1 for some y E Y(x)}. 

For every u E L(X), the Laplacian ~u E L(X) is defined by 

where 

~u(x) = -t(x)u(x) + L t(x, z)u(z), 
zEWx 

t(x) 

t(x, z) 

"' r(y)-liK(x, y)i 
~yEY 

"' r(y)- 1 IK(x,y)K(z,y)i for z-:/= x. 
~yEY 

Notice that t(x, z) = t(z, x) and t(x, z) = 0 fori EX\ (Wx U {x}) 

t(x) = L t(x, z). 
zEW, 

We say that a function u E L(X) is superharmonic on a set A~ X 
if ~u(x) :=::; 0 for all x EA. We say that u is subharmonic on A if -u is 
superharmonic on A. If u is both superhar:rhonic and subharmonic on 
A, we say that u is harmonic on A. The following minimum principle 
and maximum principle are well-known: 

Lemma 1.1 (Minimum principle). Let X' be a finite subset of X. 
If u is superharmonic on X' and u(x) ~ 0 on X\ X', then u(x) ~ 0 on 
X'. 

Lemma 1.2 (Maximum principle). Let X' be a finite subset of X. 
If u is subharmonic on X' and u(x) :=::; 0 on X\ X', then u(x) :=::; 0 on 
X'. 

Lemma 1.3 (Harnack's principle). Let {Xn} be a sequence of sub­
sets of X such that Xn C Xn+l and X = U~=l Xn and let { un} be a 
sequence of functions on X such that un(x) :=::; Un+l (x) on X. If Un is 
superharmonic on Xn for every n, then the pointwise limit of { un} is 
equal to either oo or a real valued superharmonic function. 
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For a finite subnetwork N' =<X', Y' >of N, the harmonic green 
function of N' with pole at a E X' is the unique function u determined 
by 

Llu(x) = -c:a(x) on X' and u(x) = 0 on X\ X', 

where C:a denotes the characteristic function of {a}. Denote by g[!' the 
harmonic Green function of N' with pole at a. Notice that g[!' (b) = 
gf:' (a) > 0 for all a, bE X'(cf. [1]). For f E L(X), the Green potential 
G N' f is defined by 

§2. The greatest harmonic minorant 

We begin with a discrete Dirichlet problem: 

Lemma 2.1. [1] Let f E L(X) and N' =< X', Y' > be a finite 
subnetwork of N. There exists a unique function u' such that 

Llu'(x) = 0 on X' and u'(x) = f(x) on X\ X'. 

Proof The uniqueness follows from the maximum and minimum 
principles. We see easily that u' = f + G N' ( Llf) satisfies our require­
ments. 0 

Denote by hiJ' the unique function u' determined in Lemma 2.1. 

Corollary 2.1. Let N' =< X', Y' > be a finite subnetwork of N. 
N' N' N' Then haf+f3g = ah1 + (3h9 for f, g E L(X) and real numbers a, (3. 

By Lemmas 1.1 and 1.2, we obtain 

Lemma 2.2. Let N' =<X', Y' > be a finite subnetwork of N. 
(1) Ifu is superharmonic on X', then h!;j' (x):::; u(x) on X. 
(2) Ifu is subharmonic on X', then h!;j'(x) ~ u(x) on X. 

Corollary 2.2. If u is harmonic on X', then h!;j' = u. 

Lemma 2.3. Let N' =<X', Y' > be a finite subnetwork of N and 
u~,u2 E L(X). Ifu1(x):::; u2(x) on X, then h!;i,_'(x):::; h~'(x) on X. 

Proof Let v(x) = h!;f; (x)- h!;f,_' (x). Then vis harmonic on X' and 
v(x) = u2(x) -u1 (x) ~ 0 on X\X'. By the minimum principle,v(x) ~ 0 
on X'. Hence v(x) ~ 0 on X. 0 

Lemma 2.4. Let N' =<X', Y' > be a finite subnetwork of N. If 
u is a superharmonic function on X, then h!;j' is superharmonic on X. 
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Proof. By Lemma 2.2, hf;!' (x) ::; u(x) on X. It suffices to show 
that h;[' (x) is superharmonic on X\ X'. For x E X\ X', we have 
h;[' (x) = u(x) and 

!:1hf;!' (x) -t(x)h;[' (x) + 2: t(x, z)h;[' (z) 
zEWx 

-t(x)u(x) + 2: t(x, z)u(z) = !:1u(x) ::; 0. 
zEWx 

< 

Therefore u is super harmonic on X. 0 

Lemma 2.5. Let N1 =< X1. Y1 > and N2 =< X2, Y2 > be finite 
subnetworks of N such that Y ( x) C Y2 for all x E X 1. If u is superhar­
monic on X, then hf;!1 (x) ;:::: hf;!2 (x) on X. 

Proof. Letv(x) = h;[1 (x)-hf;!2 (x). Thenv(x) = u(x)-hf;!2 (x);:::: 0 
on X\ X 1 and !:1v(x) = 0 on X1. Therefore v(x) 2: 0 on X by the 
minimum principle. 0 

Theorem 2.1. Let u be superharmonic on X and {Nn} be an ex­
haustion of N and put 

1fu(x) = lim h;[n(x) for each x EX. 
n--+oc 

Then either 1fu = -oo or 1fu E L(X) is harmonic on X. 

Proof Put Un = hf;!n. Then Un+l(x)::; un(x)::; u(x) on X and Un 
is harmonic on Xn. By Harnack's principle, we see that the limit v of 
the sequence { -un} is equal to either oo or a real valued superharmonic 
function on X. In case v = oo, we have 7fu = -oo. Assume that v #- oo. 
Then we see 1fu = -v E L(X) and l:17ru(x) 2: 0 on X. Let x E X. 
Since N is locally finite, there exists no such that Wx U { x} C Xn for 
all n 2: no. Since Un is harmonic on Xn and un(z) --+ 1fu(z) for all 
z E Wx U {x} as n--+ oo, we have 

-t(X)1fu(x) + 2: t(x, z)7ru(z) 
zEWx 

lim { -t(x)un(x) +""' t(x, z)un(z)} 
n--+oc L....,zEW, 

lim l:1un(x) = 0. 
n--+oc 

In case 7fu E L(X), we call 7fu the harmonic part of u. Notice that 7fu 
does not depend on the choice of an exhaustion of Nand that 7ru(x) ::; 
u(x) on X. 0 
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Proposition 2 .1. Let u 1, u2 be superharmonic functions on X. If 
there exists a subharmonic minorant v of min( u 1, u2), then 

Proof Let u = min(u1, u2) and {Nn}(Nn =< Xn, Yn >) be an 
exhaustion of N. Then u is superharmonic and 

v(x) :::; h{i"(x) :::; h~"(x) on X fork= 1, 2. 

Therefore 1Tu(x) :::; 1Tuk (x) on X fork= 1, 2. 0 

Proposition 2.2. Let u1 and u2 be superharmonic functions on X. 
If they have subharmonic minorants, then 1T u 1 +u2 = 1T u 1 + 1T u 2 • 

Proof Let Nn be the same as above. We have by Corollary 2.1 

0 

Corollary 2.3. Let u be a superharmonic function on X with a 
subharmonic minorant and let ¢ be a harmonic function on X. Then 

1Tu+</J = 1Tu + ¢. 

Theorem 2.2. Let u be superharmonic on X. If u has a subhar­
monic minorant v, i.e., v is subharmonic on X and v(x) :::; u(x) on 
X, then v(x) :::; 1Tu(x) on X. Moreover, 1Tu is the greatest harmonic 
minorant of u. 

Proof. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N. Since 
vis subharmonic on X and v(x) :::; u(x) on X, we have 

by Lemmas 2.2 and 2.3. Thus we have v(x) :::; 1Tu(x) on X. If s is a 
harmonic minorant of u, then we have s(x) = h~"(x) :::; hfi"(x) on X 
by Corollary 2.2 and Lemma 2.3, so that s(x) :::; 1Tu(x) on X. 0 

There are many characterizations for an infinite network N to be of 
hyperbolic type. We say here that N is of hyperbolic type (or shortly, 
hyperbolic) if there exists a nonconstant positive super harmonic func­
tion on X. It is well-known that N is hyperbolic if and only if N has 
a Green function, i.e., the limit 9a of {g~"} exists and satisfies the 
condition:~ga(x) = -Ea(x) on X. 

Without using this Green kernel explicitly, we introduce 
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Definition 2.1. We say that a positive superharmonic function u 
is a potential if the greatest harmonic minorant ofu is zero, i.e., 1fu = 0. 

Needless to say, we have 1r u E L(X) if u E L +(X) is super harmonic 
on X. 

Theorem 2.3. Let N be hyperbolic. 

(1) 
(2) 
(3) 

If u is a potential, then >.u (>. > 0) is also a potential. 
If UI and u2 are potentials, then UI + uz is also a potential. 
If UI is a potential and u 2 is a positive superharmonic function, 
then min( ui, uz) is a potential. 

Proof. (2) and (3) follow from Propositions 2.1 and 2.2. For (1), it 
suffices to note that 1f>.u = A1fu· D 

Theorem 2.4. Let N be hyperbolic. 

(1) 

(2) 

Assume that v is superharmonic on X and u is a potential. If 
u + v E £+(X), then v E £+(X). 
If u is a potential and if v is a subharmonic minorant of u, 
then v ::; 0. 

(3) Assume that u is a superharmonic function with a subharmonic 
minorant v. Then u can be expressed uniquely as the sum of a 
potential and a harmonic function. 

Proof. Since u;::: -v and-vis subharmonic, we have 0 = 1fu(x) ;::: 
1f-v(x) ;::: -v(x) on X. Thus (1) follows. The second assertion follows 
from the relation: v(x) ::; 7rv(x) ::; 7ru(x) = 0 on X. Let us prove (3). 
Since u has a subharmonic minorant, we have 1fu E L(X) is harmonic. 
We take p = u- 1fu. Then p E £+(X) and 1fp = 0 by Corollary 2.3. 
Therefore p is a potential. Assume that there exist potentials PI, p 2 and 
harmonic functions hi, hz satisfying the relation: u =PI+ hi = pz + hz. 
We have 

PI(x);::: PI(x)- pz(x) = hz(x)- hi(x) 

for all x E X. We see by the above observation (2) that h2 (x) -hi (x) ::; 0 
on X. We obtain similarly hi(x)- h2 (x)::; 0 on X, and hence hi(x) = 
h2 (x). This shows the uniqueness of our decomposition. D 

§3. Sets of Superharmonic Functions 

We say that a set <1> of functions on X is left directed if for every 
u I , uz E <1>, there exists u E <1> such that u ::; min ( u I , u2). We define 
inf <1> by 

inf<I>(x) = inf{u(x);u E <1>}. 

For simplicity, we set X(a) = Wa U {a} for a EX. 
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Theorem 3.1. If <I> is a left directed family of harmonic functions 
on X, then inf <I> is either equal to -oo identically or harmonic on X. 

Proof. For simplicity, put h = inf <I>. It suffices to show that h is 
harmonic on X unless h = -oo. Let a be any node such that h(a) > -oo. 
Since X (a) is a finite set, we can find a sequence { Un} in <I> such that 
Un+l(x) :::; un(x) on X and un(x)---+ h(x) as n---+ oo for every x E X(a). 
S. ( ) L:xEW t(x,a)un(x) h h( ) L:xEW t(x,a)h(x) s· 

lllCe Un a = a t(a) , we ave a = at( a) . mce 
h(a) > -oo, we see that h(x) > -oo for all x E W(a) and his harmonic 
at a. Taking bE W(a) and proceeding as before we get h(x) > -oo for 
all x E W (b) and h is harmonic at b. Since any point z E X is connected 
to a by a finite number of edges we get h(z) > -oo and h is harmonic 
at z. Hence we have his harmonic on X. D 

Similarly we can prove 

Theorem 3.2. If <I> is a left directed family of superharmonic func­
tions on X and inf<P E L(X), then inf<P is superharmonic on X. 

Let us use a discrete analogue of Poisson's integral. For u E L(X) 
and a EX, we define the function Pau E L(X) by 

u(x) if x y!o a 

""' [t(a, x)/t(a)]u(x). ~xEX 

Lemma 3.1. Assume that u is superharmonic on X. Then Pa u( x) :::; 
u(x) on X and Pau is superharmonic on X and harmonic at a. 

Proof. Since u is superharmonic at a, Pau(a) :::; u(a), so that 
Pau(x) :::; u(x) on X. For x tt X(a), it is clear that Pau is super­
harmonic at x. For x E Wa, we have 

< -t(x)u(x) + L t(z, x)u(z) = ~u(x) :::; 0. 
zEWx 

For x =a, we have 

~Pau(a) = -t(a)Pau(a) + L t(z, a)u(z) = 0. 
zEWa 

D 

Theorem 3.3. Let A be a subset of X and <I> be a left directed 
family of superharmonic functions on X. If inf <I> E L(X) and Pau E <I> 
for all a E A and u E <I>, then inf <I> is harmonic on A. 



360 Premalatha and A. K. Kalyani 

Proof Let us put h = inf <I>. Then h is superharmonic on X by 
Theorem 3.2. Let a E A. Then Pah(x) :::; h(x) by Lemma 3.1. By 
our assumption, we have h(a) :::; Pau(a) for all u E <I>. There exists a 
sequence {un} in <I> such that un(x) -t h(x) as n -too for all x E X(a). 
We see easily that Paun(a) -t Pah(a) as n -too, so that h(a):::; Pah(a). 
Namely, h(a) = Pah(a), i.e., b.h(a) = 0. D 

§4. Reduced Functions and their properties 

In this section, we always assume that N is hyperbolic. Denote by 
SH+(N) the set of all non-negative superharmonic functions on X. For 
f E L+(X), let us put St = {u E SH+(N);u(x) ~ f(x) on X} and 

Rt(x) = inf{u(x);u ESt}· 

Theorem 4.1. The function Rt is superharmonic on X and har­
monic on the set {x EX; f(x) = 0}. 

Proof We show that St is left directed. Let u1, u2 E St and 
u3(x) = min{u1(x),u2(x)} for x EX. Then u3 E SH+(N) and u3(x) ~ 
f(x) on X. Thus u3 E St. Since Rt(x) ~ f(x) ~ 0 on X, we see by 
Theorem 3.2 that Rt is superharmonic on X. Let A= {x EX; f(x) = 
0}. For any u E Sf, we see by Lemma 3.1 that Pau is superharmonic 
and Pau(x) = u(x) ~ f(x) for x =/=a. If a E A, then Pau(a) ~ 0 = f(a). 
Therefore Pau E St for all u E St and a E A. Our assertion follows 
from Theorem 3.3. D 

Let u E L+(X) and A be a subset of X. The function 

R~(x) = inf{v(x);v E SH+(N),v(x) ~ u(x) on A} 

is called the reduced function ( or balayage) of u on A. 

Theorem 4.2. R~ is superharmonic in X and harmonic in X\ A. 

Proof Consider the function f E L + (X) defined by f ( x) = u ( x) 
for x E A and f(x) = 0 for x E X\ A. Then R~ = R 1 and our assertion 
follows from Theorem 4.1. D 

Lemma 4.1. If N is hyperbolic, there exists a potential p such that 
p(x) > 0 on X. 

Proof By our definition, there exists a non-constant positive su­
perharmonic function v. Our assertion is clear if v is not harmonic by 
Theorem 2.4. Assume that v is harmonic on X. For a E X, we consider 
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the function sa E L(X) defined by sa(x) = min(v(x), v(a)) for x E X. 
Then Sa E SH+(N), sa(x) :::; sa(a) = v(a) on X. If ~sa(a) = 0, then 

L t(x, a)[sa(a)- sa(x)] = 0 
xEWa 

implies that sa(x) = sa(a) on X(a), i.e., v(x) 2: v(a) on X(a). Since vis 
harmonic, we must have v(x) = v(a) on X(a). Taking a 1 E X(a), a -I a 1 , 

we consider sa1 = min(v, v(al)). If ~sa 1 (al) = 0, we obtain v(x) = v(a) 
on X(a) U X(al). After repeating this procedure a finite number of 
times, we obtain bE X such that Sb = min(v,v(b)) and ~sb(b) < 0, 
since v is non-constant. 0 

Theorem 4.3. For any a E X, there exists a unique bounded po­
tential Ga(x) such that ~Ga(x) = -Ea(x). 

Proof. We see by Theorems 4.1 and 4.2 that ua(x) =REa = Rla} is 
super harmonic on X and harmonic on X\ {a}. Since 1 E SEa, we have 
0 :::; ua(x) :::; 1 on X. Since N is hyperbolic, there exists a potential 
p > 0 by Lemma 4.1. Notice that v(x) = p(x)/p(a) E SEa and v is 
also a potential. Thus ua(x) :::; v(x) on X and Ua is a potential by 
Theorem 2.3. We show that ~ua(a) < 0. Supposing the contrary, Ua 
is harmonic on X. Since Ua is a potential, we must have Ua = 0. On 
the other hand, we have ua(a) = 1. This is a contradiction. Let us 
put Ga(x) = -ua(x)/ ~ua(a). Then Ga is a bounded potential and 
~Ga(x) = -Ea(x) on X. 

We prove the uniqueness of Ga. Assume that there exists a potential 
¢ such that ~cj;(x) = -Ea(x) on X. Let h = ¢-Ga. Then ~h(x) = 
~cj;(x)- ~Ga(x) = 0 on X. Hence his harmonic on X and¢= Ga +h. 
By the uniqueness of the Riesz decomposition (Theorem 2.4(3)), we 
conclude that h = 0. Therefore¢= Ga. 0 

Acknowledgements. We thank the referee for very useful sugges­
tions. 
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