L^{p}-boundedness of Bergman projections for α-parabolic operators

Masaharu Nishio, Katsunori Shimomura, and Noriaki Suzuki

Abstract

. We consider the α-parabolic Bergman spaces on strip domains. The Bergman kernel is given by a series of derivatives of the fundamental solution. We prove the L^{p}-boundedness of the projection defined by the Bergman kernel and obtain the duality theorem for $1<p<\infty$. At the same time, we give a new proof of the Huygens property, which enable us to verify all the results in [3] also for $n=1$.

§1. Introduction

For $1 \leq p \leq \infty$, we denote by $\boldsymbol{b}_{\alpha}^{p}$ the set of all $L^{(\alpha)}$-harmonic functions which are p-th integrable with respect to ($n+1$)-dimensional Lebesgue measure on the upper half space H of the Euclidean space \mathbf{R}^{n+1} and call it the α-parabolic Bergman space. In [3], we showed that $\boldsymbol{b}_{\alpha}^{p}$ is a Banach space and discussed its dual space and the explicit formula of the Bergman kernel, where the Huygens property plays an important role.

In this note, we consider an α-parabolic Bergman space $\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ on the strip domain $H_{T}=\mathbf{R}^{n} \times(0, T)(0<T \leq \infty)$ where $H_{\infty}=H$. The main purpose of this note is to give an explicit form of the α parabolic Bergman kernel and to show its boundedness on $L^{p}\left(H_{T}\right)$ by using an interpolation theory. The α-parabolic Bergman kernel has a reproducing property for $\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$. As an application, we obtain the duality $\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)^{\prime} \simeq \boldsymbol{b}_{\alpha}^{q}\left(H_{T}\right)$ for $1<p<\infty$. Here and in the following,

[^0]q always denotes the conjugate exponent of p. At the same time we show the Huygens property of α-parabolic Bergman functions for $n \geq 1$. This enables us to remove from [3] the restriction $n \geq 2$ on the space dimension.

§2. Preliminary

We denote the ($n+1$)-dimensional Euclidean space by $\mathbf{R}^{n+1}(n \geq 1)$, and its point by $(x, t)\left(x \in \mathbf{R}^{n}, t \in \mathbf{R}\right)$. For $0<\alpha \leq 1$, we consider a parabolic operator $L^{(\alpha)}$ and its adjoint $\tilde{L}^{(\alpha)}$

$$
L^{(\alpha)}=\frac{\partial}{\partial t}+(-\Delta)^{\alpha}, \quad \tilde{L}^{(\alpha)}=-\frac{\partial}{\partial t}+(-\Delta)^{\alpha}
$$

on \mathbf{R}^{n+1}. We remark that if $0<\alpha<1,(-\Delta)^{\alpha}$ is the convolution operator in the x-space \mathbf{R}^{n} defined by $-c_{n, \alpha}$ p.f. $|x|^{-n-2 \alpha}$, where $c_{n, \alpha}=$ $-4^{\alpha} \pi^{-n / 2} \Gamma((n+2 \alpha) / 2) / \Gamma(-\alpha)>0$. Then for $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{n+1}\right)$,

$$
\begin{aligned}
& \left(\tilde{L}^{(\alpha)} \varphi\right)(x, t)=-\frac{\partial}{\partial t} \varphi(x, t)+\left((-\Delta)^{\alpha} \varphi\right)(x, t) \\
& =-\frac{\partial}{\partial t} \varphi(x, t)-c_{n, \alpha} \lim _{\delta \downarrow 0} \int_{|y-x|>\delta}(\varphi(y, t)-\varphi(x, t))|x-y|^{-n-2 \alpha} d y
\end{aligned}
$$

where we denote by $C_{c}^{\infty}\left(\mathbf{R}^{n+1}\right)$ the totality of infinitely differentiable functions with compact support.

Lemma 2.1. Let $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{n+1}\right)$ with $\operatorname{supp}(\varphi) \subset\left\{(x, t) \mid t_{1}<t<\right.$ $\left.t_{2},|x|<r\right\}$. Then $\operatorname{supp}\left(\tilde{L}^{(\alpha)} \varphi\right) \subset \mathbf{R}^{n} \times\left(t_{1}, t_{2}\right)$ and when $0<\alpha<1$,

$$
\left|\left(\tilde{L}^{(\alpha)} \varphi\right)(x, t)\right| \leq 2^{n+2 \alpha} c_{n, \alpha}\left(\sup _{t_{1}<s<t_{2}} \int_{\mathbf{R}^{n}}|\varphi(y, s)| d y\right) \cdot|x|^{-n-2 \alpha}
$$

for (x, t) with $|x| \geq 2 r$.
Now we define $L^{(\alpha)}$-harmonic functions.
Definition 2.1. Let D be an open set in \mathbf{R}^{n+1}. We put

$$
s(D):=\left\{(x, t) \mid(y, t) \in D \text { for some } y \in \mathbf{R}^{n}\right\}
$$

A Borel measurable function u on $s(D)$ is said to be $L^{(\alpha)}$-harmonic on D if it satisfies the following conditions:
(a) u is continuous on D,
(b) $\iint_{s(D)}\left|u \cdot \tilde{L}^{(\alpha)} \varphi\right| d x d t<\infty$ and $\iint_{s(D)} u \cdot \tilde{L}^{(\alpha)} \varphi d x d t=0$ holds for every $\varphi \in C_{c}^{\infty}(D)$.

Note that each component of $s(D)$ is a strip domain.
The fundamental solution $W^{(\alpha)}$ of $L^{(\alpha)}$ has the form :

$$
W^{(\alpha)}(x, t)= \begin{cases}(2 \pi)^{-n} \int_{\mathbf{R}^{n}} \exp \left(-t|\xi|^{2 \alpha}+\sqrt{-1} x \cdot \xi\right) d \xi & t>0 \\ 0 & t \leq 0\end{cases}
$$

where $x \cdot \xi$ is the inner product of x and ξ, and $|\xi|=(\xi \cdot \xi)^{1 / 2}$. Then $\tilde{W}^{(\alpha)}(x, t):=W^{(\alpha)}(x,-t)$ is the fundamental solution of $\tilde{L}^{(\alpha)}$. Note that $W^{(1)}(x, t)$ is equal to the Gauss kernel, and $W^{(1 / 2)}(x, t)$ is equal to the Poisson kernel.

The following estimates will be needed later.
Lemma 2.2. Let (β, k) be a multi-index, $1 \leq q \leq \infty$ and $0<t_{1}<$ $t_{2}<\infty$. Then there exists a constant C such that

$$
\begin{gather*}
\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)=t^{-\frac{n+|\beta|}{2 \alpha}-k} \partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\left(t^{-1 / 2 \alpha} x, 1\right) \tag{2.1}\\
\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)\right| \leq C t^{1-k}\left(t+|x|^{2 \alpha}\right)^{-\frac{n+|\beta|}{2 \alpha}-1} \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\right\|_{L^{q}\left(\mathbf{R}^{n} \times\left(t_{1}, t_{2}\right)\right)} \leq C\left(t_{2}-t_{1}\right)^{\frac{1}{q}} t_{1}^{-\frac{n(1-1 / q)+|\beta|}{2 \alpha}-k} \tag{2.3}
\end{equation*}
$$

Proof. The assertions (2.1) and (2.2) are remarked in section 3 in [3]. Then we have

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}} & \left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)\right|^{q} d x d t \\
& =\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}^{n}}\left(t^{-\frac{n+|\beta|}{2 \alpha}-k}\right)^{q}\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\left(t^{-\frac{1}{2 \alpha}} x, 1\right)\right|^{q} d x d t \\
& =\int_{t_{1}}^{t_{2}}\left(t^{-\frac{n+|\beta|}{2 \alpha}-k}\right)^{q} \int_{\mathbf{R}^{n}}\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(y, 1)\right|^{q} t^{\frac{n}{2 \alpha}} d y d t \\
& \leq\left(t_{2}-t_{1}\right)\left(t_{1}^{-\frac{n(1-1 / q)+|\beta|}{2 \alpha}}-k\right)^{q}\left\|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(\cdot, 1)\right\|_{L^{q}\left(\mathbf{R}^{n}\right)}^{q}
\end{aligned}
$$

which shows (2.3) when $1 \leq q<\infty$. In the case of $q=\infty$, (2.3) follows from (2.1) immediately, because $\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(y, 1)$ is bounded on \mathbf{R}^{n}.

§3. Huygens property

In our previous paper [3], we proved the Huygens property under the condition $n \geq 2$. The condition $n \geq 2$ was not able to drop because the proof of the key lemma [3, Lemma 4.3] relied on α-harmonic function
theory ([1]). In this section, we shall give another proof of the Huygens property, which is valid for all $n \geq 1$. Here we shall use the α-parabolic dilation to estimate $L^{(\alpha)}$-harmonic measures. In [2] and [4], the notion of the $L^{(\alpha)}$-harmonic measure is introduced and discussed by using the fundamental solutions $W^{(\alpha)}$ and $\tilde{W}^{(\alpha)}$ of $L^{(\alpha)}$ and $\tilde{L}^{(\alpha)}$, respectively. We handle infinite cylinders and use the following notation.

$$
\begin{array}{ll}
C_{r} & :=\{(x, t)|t \in \mathbf{R},|x|<r\}: \text { infinite cylinder. } \\
\varepsilon & : \text { the Dirac measure at the origin }(0,0) . \\
\nu_{r}^{\alpha} & : \text { the } L^{(\alpha)} \text {-harmonic measure at the origin of } C_{r} . \\
\omega_{r}^{\alpha} & : \text { the projection of } \nu_{r}^{\alpha} \text { to the } x \text {-space } \mathbf{R}^{n} . \\
\tilde{\omega}_{r}^{\alpha}:=\int_{1}^{2} \omega_{\lambda r}^{\alpha} d \lambda, \text { a modified measure of } \omega_{r}^{\alpha} . \\
\tilde{W}_{r}^{(\alpha)}:=\tilde{W}^{(\alpha)} *\left(\varepsilon-\nu_{r}^{\alpha}\right) .
\end{array}
$$

We list the properties of ν_{r}^{α} in the following proposition.
Proposition 3.1. (1) $0 \leq \tilde{W}_{r}^{(\alpha)} \leq \tilde{W}^{(\alpha)}$ and the support of $\tilde{W}_{r}^{(\alpha)}$ is in the closure of the cylinder C_{r}.
(2) ν_{r}^{α} is rotationally invariant with respect to the space variable.
(3) $\int d \nu_{r}^{\alpha} \leq 1$.
(4) If $0<\alpha<1$, ν_{r}^{α} is supported by $\{(x, t)|t \leq 0,|x| \geq r\}$ and absolutely continuous with respect to the $(n+1)$-dimensional Lebesgue measure on the exterior of C_{r}. The density of ν_{r}^{α} is given by

$$
c_{n, \alpha} \int_{|y| \leq r} \tilde{W}_{r}^{(\alpha)}(y, t)|x-y|^{-n-2 \alpha} d y
$$

$$
\begin{equation*}
\text { If } \alpha=1, \operatorname{supp}\left(\nu_{r}^{1}\right) \subset\{(x, t)|t \leq 0,|x|=r\} \tag{5}
\end{equation*}
$$

Next lemma was the key in the proof of the Huygens property ([3, Lemma 4.3]). Now we give a new proof which is valid for all $n \geq 1$.

Lemma 3.1. The modified measure $\tilde{\omega}_{r}^{\alpha}$ is absolutely continuous with respect to the n-dimensional Lebesgue measure, whose density \tilde{w}_{r}^{α} satisfies

$$
\tilde{w}_{r}^{\alpha}(x) \leq C r^{2 \alpha}|x|^{-n-2 \alpha} \quad \text { and } \quad\left\|\tilde{w}_{r}^{\alpha}\right\|_{L^{q}\left(\mathbf{R}^{n}\right)} \leq C r^{-n(1-1 / q)}
$$

where the constant C is independent of $r>0$ and $1 \leq q \leq \infty$.
Proof. By Proposition 3.1, we can express ω_{r}^{α} as

$$
\begin{equation*}
\omega_{r}^{\alpha}=w_{r}^{\alpha}(x) d x+C(r) \sigma_{r} \tag{3.1}
\end{equation*}
$$

where σ_{r} is the surface measure of the sphere $\{|x|=r\}, C(r)$ is a nonnegative function of $r>0$ and

$$
w_{r}^{\alpha}(x)= \begin{cases}\int_{-\infty}^{0}\left[c_{n, \alpha} \int_{|y| \leq r} \tilde{W}_{r}^{(\alpha)}(y, t)|x-y|^{-n-2 \alpha} d y\right] d t, & 0<\alpha<1 \\ 0, & \alpha=1\end{cases}
$$

Then $\tilde{\omega}_{r}^{\alpha}$ is absolutely continuous and its density is given by

$$
\tilde{w}_{r}^{\alpha}(x)=\int_{1}^{2} w_{\lambda r}^{\alpha}(x) d \lambda+\frac{C(|x|)}{r} 1_{\{r \leq|x| \leq 2 r\}}(x),
$$

where $1_{\{r \leq|x| \leq 2 r\}}$ denotes the characteristic function. Considering α parabolic dilations $\tau_{r}^{\alpha}:(x, t) \mapsto\left(r x, r^{2 \alpha} t\right)$, we have

$$
W^{(\alpha)}(x, t)=r^{n} W^{(\alpha)}\left(\tau_{r}^{\alpha}(x, t)\right)
$$

which shows that ν_{r}^{α} is the image measure of ν_{1}^{α} by τ_{r}^{α}. Thus we obtain $w_{r}^{\alpha}(x)=r^{-n} w_{1}^{\alpha}(x / r), C(r) \int d \sigma_{r}=C(1) \int d \sigma_{1}$ and

$$
\tilde{w}_{r}^{\alpha}(x)=r^{-n} \tilde{w}_{1}^{\alpha}(x / r)
$$

In this way, we have only to estimate \tilde{w}_{1}^{α}. First, we shall show the boundedness. For every $s \geq 1$,

$$
\begin{aligned}
\int \tilde{w}_{1}^{\alpha}(x) d \sigma_{s}(x) & \leq \iint_{1}^{2} w_{\lambda}^{\alpha}(x) d \lambda d \sigma_{s}(x)+C(s) \int d \sigma_{s} \\
& =\iint_{1}^{2} \lambda^{-n} w_{1}^{\alpha}(x / \lambda) d \lambda d \sigma_{s}(x)+C(1) \int d \sigma_{1} \\
& \leq \frac{2}{s} \int_{s / 2}^{s} \int w_{1}^{\alpha}(x) d \sigma_{\lambda}(x) d \lambda+C(1) \int d \sigma_{1} \\
& \leq 2 \int d \omega_{1}^{\alpha} \leq 2
\end{aligned}
$$

Since \tilde{w}_{1}^{α} is rotationally invariant, we have the boundedness of \tilde{w}_{1}^{α}. Next, we remark that $\tilde{w}_{1}^{\alpha}(x) \leq C|x|^{-n-2 \alpha}$. In fact, from (3) and (4) of Proposition 3.1, follows

$$
\begin{aligned}
1 & \geq \int d \nu_{1}^{\alpha} \geq \int_{|x|>1} \int_{-\infty}^{0} c_{n, \alpha} \int_{|y| \leq 1} \tilde{W}_{1}^{(\alpha)}(y, t)|x-y|^{-n-2 \alpha} d y d t d x \\
& \geq c_{n, \alpha} \int_{-\infty}^{0} \int_{|y| \leq 1} \tilde{W}_{1}^{(\alpha)}(y, t) \int_{|x-y|>2}|x-y|^{-n-2 \alpha} d x d y d t \\
& \geq c_{n, \alpha}\left(\int_{|x|>2}|x|^{-n-2 \alpha} d x\right) \iint \tilde{W}_{1}^{(\alpha)}(y, t) d y d t
\end{aligned}
$$

which shows that $\tilde{W}_{1}^{(\alpha)}$ is integrable. Then taking x with $|x| \geq 2$, we have $|x| \leq|x-y|+|y| \leq 2|x-y|$ and

$$
\begin{aligned}
w_{1}^{\alpha}(x) & =c_{n, \alpha} \int_{-\infty}^{0} \int_{|y| \leq 1} \tilde{W}_{1}^{(\alpha)}(y, t)|x-y|^{-n-2 \alpha} d y d t \\
& \leq 2^{n+2 \alpha} c_{n, \alpha}\left\|\tilde{W}_{1}^{(\alpha)}\right\|_{L^{1}\left(\mathbf{R}^{n+1}\right)}|x|^{-n-2 \alpha}
\end{aligned}
$$

Thus taking x with $|x| \geq 4$, we have

$$
\begin{aligned}
\tilde{w}_{1}^{\alpha}(x) & =\int_{1}^{2} w_{\lambda}^{\alpha}(x) d \lambda=\int_{1}^{2} \lambda^{-n} w_{1}^{\alpha}(x / \lambda) d \lambda \\
& \leq 2^{n+2 \alpha} c_{n, \alpha}\left\|\tilde{W}_{1}^{(\alpha)}\right\|_{L^{1}\left(\mathbf{R}^{n+1}\right)}\left(\int_{1}^{2} \lambda^{2 \alpha} d \lambda\right)|x|^{-n-2 \alpha}
\end{aligned}
$$

Since $\tilde{w}_{1}^{\alpha}(x)$ is bounded, we obtain

$$
\tilde{w}_{1}^{\alpha}(x) \leq C|x|^{-n-2 \alpha}
$$

for all $x \in \mathbf{R}^{n}$. Therefore

$$
\tilde{w}_{r}^{\alpha}(x)=r^{-n} \tilde{w}_{1}^{\alpha}(x / r) \leq C r^{2 \alpha}|x|^{-n-2 \alpha}
$$

which also shows the norm inequality

$$
\left\|\tilde{w}_{r}^{\alpha}\right\|_{L^{q}\left(\mathbf{R}^{n}\right)} \leq C r^{-n(1-1 / q)}
$$

because

$$
\int_{|x| \geq r}\left(|x|^{-n-2 \alpha}\right)^{q} d x=\frac{r^{-(q-1) n-2 \alpha q}}{(q-1) n+2 \alpha q} \int d \sigma_{1}
$$

Using the above lemma, in the quite same manner as in the proof of Theorem 4.1 in [3], we obtain the following Huygens property. For the completeness, we give an outline of the proof.

Theorem 3.1. If an $L^{(\alpha)}$-harmonic function u on H_{T} belongs to $L^{p}\left(H_{T}\right)$, then u satisfies the Huygens property:

$$
\begin{equation*}
u(x, t)=\int_{\mathbf{R}^{n}} u(y, s) W^{(\alpha)}(x-y, t-s) d y \quad \text { for } \quad 0<s<t<T \tag{3.2}
\end{equation*}
$$

Proof. Let $u \in L^{p}\left(H_{T}\right)$ be an arbitrary $L^{(\alpha)}$-harmonic function with $1 \leq p \leq \infty$. Take $\delta>0$ such that $u(\cdot, \delta) \in L^{p}\left(\mathbf{R}^{n}\right)$, and put

$$
v(x, t)=u(x, t+\delta)-\int_{\mathbf{R}^{n}} W^{(\alpha)}(x-y, t) u(y, \delta) d y
$$

and $V(x, t)=\int_{0}^{t} v(x, \tau) d \tau$. Here we remark that $\|v\|_{L^{p}\left(H_{T-\delta}\right)} \leq\|u\|_{L^{p}\left(H_{T}\right)}$ and that V is $L^{(\alpha)}$-harmonic(see [3, Lemma 2.3]). For any fixed $(x, t) \in$ $H_{T-\delta}$, taking a cylinder $\{(\xi, \tau)|0<\tau<t,|\xi-x|<r\}$ with $r>0$ and using the mean value property (cf. [4]), we have

$$
\begin{aligned}
|V(x, t)| & =\left|\int_{|\xi| \geq r,-t \leq \tau \leq 0} V(\xi+x, \tau+t) d \nu_{r}^{\alpha}(\xi, \tau)\right| \\
& \leq \int_{|\xi| \geq r,-t \leq \tau \leq 0} \int_{0}^{\tau+t}|v(\xi+x, s)| d s d \nu_{r}^{\alpha}(\xi, \tau) \\
& =\int_{0}^{t} \int_{|\xi| \geq r, s-t \leq \tau \leq 0}|v(\xi+x, s)| d \nu_{r}^{\alpha}(\xi, \tau) d s \\
& \leq \int_{0}^{T-\delta} \int|v(\xi+x, s)| d \omega_{r}^{\alpha}(\xi) d s
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
|V(x, t)| & \leq \int_{0}^{T-\delta} \int|v(\xi+x, s)| \tilde{w}_{r}^{\alpha}(\xi) d \xi d s \\
& \leq T^{1 / q}\|v\|_{L^{p}\left(H_{T-\delta}\right)}\left\|\tilde{w}_{r}^{\alpha}\right\|_{L^{q}\left(\mathbf{R}^{n}\right)} \\
& \leq C T^{1 / q} r^{-n / p}\|u\|_{L^{p}\left(H_{T}\right)},
\end{aligned}
$$

which shows $V(x, t)=0$ for $1 \leq p<\infty$, because $r>0$ is arbitrary. In this way, for $\delta<s<t<T$ and $x \in \mathbf{R}^{n}$, we have

$$
\begin{aligned}
u(x, t) & =\int_{\mathbf{R}^{n}} W^{(\alpha)}(x-y, t-\delta) u(y, \delta) d y \\
& =\int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}} W^{(\alpha)}(x-z, t-s) W^{(\alpha)}(z-y, s-\delta) d z u(y, \delta) d y \\
& =\int_{\mathbf{R}^{n}} W^{(\alpha)}(x-z, t-s) u(z, s) d z
\end{aligned}
$$

Since $\delta>0$ is arbitrary, we have (3.2) in the case of $1 \leq p<\infty$. When $p=\infty$, (3.2) follows from [4, Proposition 11] immediately.

§4. Some basic properties of α-parabolic Bergman functions

In this section, for $0<T<\infty$, we define an α-parabolic Bergman space on H_{T}.

Definition 4.1. Let $1 \leq p \leq \infty$. We put

$$
\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right):=\left\{u \in L^{p}\left(H_{T}\right) \mid L^{(\alpha)} \text {-harmonic on } H_{T}\right\}
$$

which is a closed subspace of $L^{p}\left(H_{T}\right)$ (by (4.1) below) and called the α-parabolic Bergman space on the strip domain.

Remark 4.1. For any $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$, the estimate

$$
\begin{equation*}
|u(x, t)| \leq C\|u\|_{L^{p}\left(H_{T}\right)} t^{-\left(\frac{n}{2 \alpha}+1\right) \frac{1}{p}} \tag{4.1}
\end{equation*}
$$

holds for $(x, t) \in H_{T}$ in the similar way to [3, Proposition 5.2]. Therefore u can be extended to an $L^{(\alpha)}$-harmonic function on the upper half space H by using the Huygens property. In this paper, every $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ is considered to be extended to the upper half space as

$$
\begin{equation*}
u(x, t+j T):=\int_{\mathbf{R}^{n}} u(y, t) W^{(\alpha)}(x-y, j T) d y \tag{4.2}
\end{equation*}
$$

for $(x, t) \in H_{T}$ and $j \in \mathbf{N}$. We remark that the extension u also satisfies the Huygens property on the whole upper half space H.

Remark 4.2. For each fixed $p, \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ are the same and the $L^{p}\left(H_{T}\right)$ norm is equivalent to one another for all $0<T<\infty$. In fact, by the Minkowski inequality, for $0<s<t<\infty$,

$$
\|u(\cdot, t)\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq\|u(\cdot, s)\|_{L^{p}\left(\mathbf{R}^{n}\right)}
$$

which shows the equivalence of the norms.
The Huygens property also yields the following estimate.
Proposition 4.1. Let $1 \leq p \leq \infty$ and (β, k) be a multi-index. Then there exists a constant $C>0$ such that

$$
\left|\partial_{x}^{\beta} \partial_{t}^{k} u(x, t)\right| \leq \begin{cases}C\|u\|_{L^{p}\left(H_{T}\right)} t^{-\left(\frac{|\beta|}{2 \alpha}+k\right)-\left(\frac{n}{2 \alpha}+1\right) \frac{1}{p}}, & t<T, \\ C T^{-1 / p}\|u\|_{L^{p}\left(H_{T}\right)} t^{-\left(\frac{|\beta|}{2 \alpha}+k\right)-\frac{n}{2 \alpha} \frac{1}{p}}, & t \geq T\end{cases}
$$

for any $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ and $(x, t) \in H$. In particular, if $1 \leq p<\infty$, $t^{\frac{|\beta|}{2 \alpha}+k} \partial_{x}^{\beta} \partial_{t}^{k} u(\cdot, t)$ converges uniformly to 0 as $t \rightarrow \infty$.

Proof. If $0<t<2 T$, we can show

$$
\left|\partial_{x}^{\beta} \partial_{t}^{k} u(x, t)\right| \leq C\|u\|_{L^{p}\left(H_{T}\right)} t^{-\left(\frac{|\beta|}{2 \alpha}+k\right)-\left(\frac{n}{2 \alpha}+1\right) \frac{1}{p}}
$$

in the quite same manner as in [3, Proposition 5.4]. Next we assume $t \geq 2 T$. By the Huygens property, we have

$$
u(x, t)=\frac{1}{T} \iint_{H_{T}} u(y, s) W^{(\alpha)}(x-y, t-s) d y d s
$$

and hence

$$
\partial_{x}^{\beta} \partial_{t}^{k} u(x, t)=\frac{1}{T} \iint_{H_{T}} u(y, s) \partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x-y, t-s) d y d s
$$

Then by (2.3) in Lemma 2.2 and the Hölder inequality, we have

$$
\begin{aligned}
\left|\partial_{x}^{\beta} \partial_{t}^{k} u(x, t)\right| & =\frac{1}{T}\|u\|_{L^{p}\left(H_{T}\right)}\left\|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\right\|_{L^{q}\left(\mathbf{R}^{n} \times(t-T, t)\right)} \\
& \leq C T^{-1 / p}\|u\|_{L^{p}\left(H_{T}\right)} t^{-\left(\frac{|\beta|}{2 \alpha}+k\right)-\frac{n}{2 \alpha} \frac{1}{p}}
\end{aligned}
$$

In the same manner as in [3, Proposition 5.5], we have the following norm inequality.

Proposition 4.2. Let $1 \leq p \leq \infty$ and (β, k) be a multi-index. Then there exists a constant $C>0$ such that for every $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$,

$$
\left\|t^{\frac{|\beta|}{2 \alpha}+k} \partial_{x}^{\beta} \partial_{t}^{k} u\right\|_{L^{p}\left(H_{T}\right)} \leq C\|u\|_{L^{p}\left(H_{T}\right)} .
$$

§5. Reproducing property of the Bergman kernel

In [3, Theorem 6.3], we have shown that the α-parabolic Bergman kernel

$$
R_{\alpha}(x, t ; y, s):=-2 \partial_{t} W^{(\alpha)}(x-y, t+s)
$$

has a reproducing property for $\boldsymbol{b}_{\alpha}^{p}$ with $1 \leq p<\infty$.
In the case of the strip domain $H_{T}(0<T<\infty)$, we consider the following kernel: for $(x, t),(y, s) \in H_{T}$,

$$
\begin{aligned}
R_{\alpha, T}(x, t ; y, s): & =\sum_{j=0}^{\infty} R_{\alpha}(x, t+j T ; y, s+j T) \\
& =-2 \sum_{j=0}^{\infty} \partial_{t} W^{(\alpha)}(x-y, s+t+2 j T)
\end{aligned}
$$

which turns out to be the α-parabolic Bergman kernel on H_{T}.
Lemma 5.1. Let $(x, t) \in H_{T}$ be fixed. Then $R_{\alpha, T}(x, t ; \cdot, \cdot) \in L^{q}\left(H_{T}\right)$ for $1<q \leq \infty$.

Proof. Let $j \geq 1$. Then by (2.3) in Lemma 2.2, we have

$$
\begin{aligned}
\left\|R_{\alpha}(x, t+j T ; \cdot, \cdot)\right\|_{L^{q}\left(\mathbf{R}^{n} \times(j T, j T+T)\right)} & =2\left\|\partial_{t} W^{(\alpha)}\right\|_{L^{q}\left(\mathbf{R}^{n} \times(t+2 j T, t+2 j T+T)\right)} \\
& \leq C T^{1 / q}(j T)^{-\frac{n(1-1 / q)}{2 \alpha}-1}
\end{aligned}
$$

Thus, by [3, Lemma 6.1],

$$
\begin{aligned}
& \left\|R_{\alpha, T}(x, t ; \cdot, \cdot)\right\|_{L^{q}\left(H_{T}\right)} \\
& \quad \leq\left\|R_{\alpha}(x, t ; \cdot, \cdot)\right\|_{L^{q}(H)}+C T^{1 / q} \sum_{j=1}^{\infty}(j T)^{-\frac{n(1-1 / q)}{2 \alpha}-1}<\infty .
\end{aligned}
$$

Thus we can define the integral operator

$$
R_{\alpha, T} u(x, t):=\iint_{H_{T}} R_{\alpha, T}(x, t ; y, s) u(y, s) d y d s
$$

for every $u \in L^{p}\left(H_{T}\right)$ with $1 \leq p<\infty$. Next proposition shows that the kernel $R_{\alpha, T}$ has a reproducing property for $\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$.

Proposition 5.1. Let $1 \leq p<\infty$. Then we have

$$
\begin{equation*}
R_{\alpha, T} u(x, t)=u(x, t) \tag{5.1}
\end{equation*}
$$

for every $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ and $(x, t) \in H_{T}$.
Proof. Let $u \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ be considered to be extended to H as in (4.2). For $\delta>0$, we put $u_{\delta}(x, t):=u(x, t+\delta)$. Then using the Huygens property, we have

$$
\begin{aligned}
& \iint_{H_{T}} u_{\delta}(y, s)(-2) \partial_{t} W^{(\alpha)}(x-y, t+s+2 j T) d y d s \\
& =\int_{\mathbf{R}^{n}}\left\{\left[u_{\delta}(y, s)(-2) W^{(\alpha)}(x-y, t+s+2 j T)\right]_{s=0}^{T}\right. \\
& \left.\quad \quad-\int_{0}^{T} \partial_{t} u_{\delta}(y, s)(-2) W^{(\alpha)}(x-y, t+s+2 j T) d s\right\} d y \\
& =2 u_{\delta}(x, t+2 j T)-2 u_{\delta}(x, t+2(j+1) T) \\
& \quad \quad+\int_{0}^{T} \frac{\partial}{\partial s}\left\{u_{\delta}(x, t+2 s+2 j T)\right\} d s \\
& =u_{\delta}(x, t+2 j T)-u_{\delta}(x, t+2(j+1) T)
\end{aligned}
$$

Hence, by Proposition 4.1, we obtain

$$
\begin{aligned}
\iint_{H_{T}} R_{\alpha, T} & (x, t ; y, s) u_{\delta}(y, s) d y d s \\
& =\sum_{j=0}^{\infty}\left[u_{\delta}(x, t+2 j T)-u_{\delta}(x, t+2(j+1) T)\right]=u_{\delta}(x, t)
\end{aligned}
$$

Letting $\delta \rightarrow 0$, we have (5.1).

Since the kernel $R_{\alpha, T}$ is symmetric and real-valued, the integral operator $R_{\alpha, T}$ is the orthogonal projection on $L^{2}\left(H_{T}\right)$ to $\boldsymbol{b}_{\alpha}^{2}\left(H_{T}\right)$. Therefore in particular, the operator $R_{\alpha, T}$ is bounded on $L^{2}\left(H_{T}\right)$. We call $R_{\alpha, T}$ the Bergman projection. In the next section, we discuss the boundedness for other exponents $1<p<\infty$.

$\S 6 . \quad L^{p}$-boundedness of the Bergman projection

In this last section, we shall prove the boundedness of the integral operator $R_{\alpha, T}$ on $L^{p}\left(H_{T}\right)$.

Theorem 6.1. Let $1<p<\infty$. Then $R_{\alpha, T}$ is a bounded operator from $L^{p}\left(H_{T}\right)$ onto $\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$.

To prove the theorem, we introduce the following theorem from the interpolation theory. We quote the theorem from [5].

Theorem 6.2. [5, p.29, Theorem 1]. Let $K \in L^{2}\left(\mathbf{R}^{n}\right)$ such that (a) $\|\hat{K}\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} \leq B$,
(b) $K \in C^{1}\left(\mathbf{R}^{n} \backslash\{0\}\right)$ and $|\nabla K(x)| \leq B|x|^{-n-1}$
for some $B>0$, where \hat{K} denotes the Fourier transform of K. Then for $1<p<\infty$, there exists a constant A_{p}, depending only on p, B and n, such that

$$
\begin{equation*}
\|K * f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq A_{p}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \tag{6.1}
\end{equation*}
$$

for every $f \in L^{p}\left(\mathbf{R}^{n}\right) \cap L^{1}\left(\mathbf{R}^{n}\right)$.
Remark 6.1. In the above theorem, if in addition $K \in L^{q}\left(\mathbf{R}^{n}\right)$, the inequality (6.1) holds for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$.

Now we return to the proof. For $t>0$, we put

$$
K_{T, t}(x):=-2 \sum_{j=1}^{\infty} \partial_{t} W^{(\alpha)}(x, t+2 j T)
$$

Lemma 6.1. The kernel $K_{T, t}$ satisfies the condition in Theorem 6.2 with a constant B independent of $t>0$.

Proof. By the definition of $W^{(\alpha)}$, the Fourier transform of $W^{(\alpha)}$ satisfies

$$
\hat{W}^{(\alpha)}(\xi, t)=(2 \pi)^{-n / 2} e^{-t|\xi|^{2 \alpha}}, \quad \partial_{t} \hat{W}^{(\alpha)}(\xi, t)=-(2 \pi)^{-n / 2}|\xi|^{2 \alpha} e^{-t|\xi|^{2 \alpha}}
$$

Hence

$$
\begin{aligned}
\hat{K}_{T, t}(\xi) & =2(2 \pi)^{-n / 2}|\xi|^{2 \alpha} e^{-t|\xi|^{2 \alpha}} \sum_{j=1}^{\infty} e^{-2 j T|\xi|^{2 \alpha}} \\
& =2(2 \pi)^{-n / 2} e^{-t|\xi|^{2 \alpha}} \frac{|\xi|^{2 \alpha} e^{-2 T|\xi|^{2 \alpha}}}{1-e^{-2 T|\xi|^{2 \alpha}}}
\end{aligned}
$$

This implies that $\hat{K}_{T, t} \in L^{2}\left(\mathbf{R}^{n}\right)$, i.e., $K_{T, t} \in L^{2}\left(\mathbf{R}^{n}\right)$, and

$$
\left|\hat{K}_{T, t}(\xi)\right| \leq \frac{(2 \pi)^{-n / 2}}{T} \sup _{s>0} \frac{s e^{-s}}{1-e^{-s}}=: B<\infty
$$

Clearly, $K_{T, t}$ is of class C^{1} and by (2.2) in Lemma 2.2,

$$
\begin{aligned}
\left|\nabla K_{T, t}(x)\right| & \leq C \sum_{j=1}^{\infty}\left((t+2 j T)+|x|^{2 \alpha}\right)^{-\frac{n+1}{2 \alpha}-1} \\
& \leq \frac{C}{2 T} \int_{0}^{\infty}\left((t+s)+|x|^{2 \alpha}\right)^{-\frac{n+1}{2 \alpha}-1} d s \\
& \leq \frac{C \alpha}{T(n+1)}\left(t+|x|^{2 \alpha}\right)^{-\frac{n+1}{2 \alpha}} \leq \frac{C \alpha}{T(n+1)}|x|^{-n-1}
\end{aligned}
$$

Proof of Theorem 6.1. We decompose $R_{\alpha, T}$ as

$$
R_{\alpha, T}(x, t ; y, s)=R_{\alpha}(x, t ; y, s)+K_{T, t+s}(x-y)
$$

For $f \in L^{p}\left(H_{T}\right) \cap L^{1}\left(H_{T}\right)$, we put $f_{s}(y):=f(y, s)$ and

$$
\tilde{f}(y, s):= \begin{cases}f(y, s), & 0<s<T \\ 0, & s \geq T\end{cases}
$$

In our previous paper [3], we have shown that the integral operator R_{α} is bounded on $L^{p}(H)$. Then

$$
\left\|R_{\alpha} \tilde{f}\right\|_{L^{p}\left(H_{T}\right)} \leq\left\|R_{\alpha}\right\| \cdot\|f\|_{L^{p}\left(H_{T}\right)}
$$

Since

$$
R_{\alpha, T} f(x, t)=R_{\alpha} \tilde{f}(x, t)+\int_{0}^{T} K_{T, t+s} * f_{s}(x) d s
$$

the Minkowski inequality implies

$$
\left\|R_{\alpha, T} f(\cdot, t)\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq\left\|R_{\alpha} \tilde{f}(\cdot, t)\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}+\int_{0}^{T}\left\|K_{T, t+s} * f_{s}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} d s
$$

Here by Theorem 6.2, we have

$$
\begin{aligned}
\int_{0}^{T}\left\|K_{T, t+s} * f_{s}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} d s & \leq A_{p} \int_{0}^{T}\left\|f_{s}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)} d s \\
& \leq A_{p}\left(\int_{0}^{T}\left\|f_{s}\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}^{p} d s\right)^{1 / p}\left(\int_{0}^{T} d s\right)^{1 / q} \\
& \leq A_{p}\|f\|_{L^{p}\left(H_{T}\right)} T^{1 / q}
\end{aligned}
$$

Taking the $L^{p}(0, T)$-norm, again by the Minkowski inequality, we obtain

$$
\begin{aligned}
\left\|R_{\alpha, T} f\right\|_{L^{p}\left(H_{T}\right)} & \leq\left\|R_{\alpha} \tilde{f}\right\|_{L^{p}\left(H_{T}\right)}+T A_{p}\|f\|_{L^{p}\left(H_{T}\right)} \\
& \leq\left(\left\|R_{\alpha}\right\|+T A_{p}\right)\|f\|_{L^{p}\left(H_{T}\right)}
\end{aligned}
$$

This completes the proof.
As an application, we have the following duality (cf. [3, Theorem 8.1]).

Corollary 6.1. For $1<p<\infty$, the following duality holds;

$$
\boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)^{\prime} \simeq \boldsymbol{b}_{\alpha}^{q}\left(H_{T}\right)
$$

where the pairing is given by

$$
\langle f, g\rangle=\iint_{H_{T}} f(x, t) g(x, t) d x d t
$$

for $f \in \boldsymbol{b}_{\alpha}^{p}\left(H_{T}\right)$ and $g \in \boldsymbol{b}_{\alpha}^{q}\left(H_{T}\right)$.

References

[1] Masayuki Itô, On α-harmonic functions, Nagoya Math. J., 26 (1966), 205221.
[2] Masayuki Itô and Masaharu Nishio, Poincaré type conditions of the regularity for the parabolic operator of order α, Nagoya Math. J., 115 (1989), 1-22.
[3] Masaharu Nishio, Katsunori Shimomura and Noriaki Suzuki, α-parabolic Bergman spaces, Osaka J. Math., 42 (2005), 133-162.
[4] Masaharu Nishio and Noriaki Suzuki, A characterization of strip domains by a mean value property for the parabolic operator of order α, New Zealand J. Math., 29 (2000), 47-54.
[5] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970.

Masaharu Nishio
Department of Mathematics
Graduate School of Science
Osaka City University
Osaka 558-8585, Japan
E-mail address: nishio@sci.osaka-cu.ac.jp

Katsunori Shimomura
Department of Mathematical Sciences
Faculty of Science
Ibaraki University
Mito 310-8512, Japan
E-mail address: shimomur@mx.ibaraki.ac.jp

Noriaki Suzuki
Graduate School of Mathematics
Nagoya University
Nagoya 464-8602, Japan
E-mail address: nsuzuki@math.nagoya-u.ac.jp

[^0]: Received March 31, 2005.
 Revised May 17, 2005.
 2000 Mathematics Subject Classification. Primary 31B10, 35K05; Secondary 46 E 15 .

 Key words and phrases. parabolic operator of fractional order, Bergman space, Bergman projection, Huygens property, reproducing kernel.

 Partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science, (C) (2) (No. 13640186, 15540163 and 15540153).

