
Advanced Studies in Pure Mathematics 44, 2006 
Potential Theory in Matsue 
pp. 305-318 

£P-boundedness of Bergman projections for 
a-parabolic operators 

Masaharu Nishio, Katsunori Shimomura, and Noriaki Suzuki 

Abstract. 

We consider the a-parabolic Bergman spaces on strip domains. 
The Bergman kernel is given by a series of derivatives of the fun
damental solution. We prove the £P-boundedness of the projection 
defined by the Bergman kernel and obtain the duality theorem for 
1 < p < oo. At the same time, we give a new proof of the Huygens 
property, which enable us to verify all the results in [3] also for n = 1. 

§1. Introduction 

For 1 :::; p :::; oo, we denote by ~ the set of all £(aLharmonic 
functions which are p-th integrable with respect to (n +I)-dimensional 
Lebesgue measure on the upper half space H of the Euclidean space 
Rn+l and call it the a-parabolic Bergman space. In [3], we showed 
that ~ is a Banach space and discussed its dual space and the explicit 
formula of the Bergman kernel, where the Huygens property plays an 
important role. 

In this note, we consider an a-parabolic Bergman space b~(HT) on 
the strip domain HT = Rn X (0, T) (0 < T :::; oo) where H 00 = H. 
The main purpose of this note is to give an explicit form of the a
parabolic Bergman kernel and to show its boundedness on LP(HT) by 
using an interpolation theory. The a-parabolic Bergman kernel has a 
reproducing property for ~(HT)· As an application, we obtain the 
duality ~(HT)' ~ b~(HT) for 1 < p < oo. Here and in the following, 
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q always denotes the conjugate exponent of p. At the same time we 
show the Huygens property of a-parabolic Bergman functions for n ;::: 1. 
This enables us to remove from [3] the restriction n ;::: 2 on the space 
dimension. 

§2. Preliminary 

We denote the ( n+ 1 )-dimensional Euclidean space by R n+l ( n ;::: 1), 
and its point by (x, t) (x ERn, t E R). For 0 <a::; 1, we consider a 
parabolic operator £( 01 ) and its adjoint D 01l 

L(01) = !!_ + (-~)01 at ' L(01) = _!!_ + (-~)01 
at 

on Rn+l. We remark that if 0 < a < 1, ( -~) 01 is the convolution 
operator in the x-space R n defined by -cn, 01 p.f.lxl-n- 201 , where Cn, 01 = 

-401 7r-n/2f((n + 2a)/2)/f( -a)> 0. Then for t.p E C~(Rn+l ), 

(D 01 lt.p)(x, t) = - :t t.p(x, t) + (( -~)01 t.p)(x, t) 

= _aa t.p(x, t)- Cn, 01 lim { (t.p(y, t)- t.p(x, t))ix- Yi-n- 201 dy, 
t 810 jly-xl>8 

where we denote by C~ (R n+l) the totality of infinitely differentiable 
functions with compact support. 

Lemma 2.1. Let t.p E C~(Rn+l) with supp(t.p) C {(x, t)lt1 < t < 
t2, lxl < r}. Then supp(D01 lt.p) C Rn x (t1, t2) and when 0 <a< 1, 

I(D01l'P)(x, t)l ::; 2n+201 Cn,OI ( sup r I'P(Y, s)l dy)·lxl-n- 201 

t1 <s<t2 }Rn 

for (x, t) with lxl ;::: 2r. 

Now we define £( 01 l-harmonic functions. 

Definition 2.1. Let D be an open set in R n+l. We put 

s(D) := {(x, t)i(y, t) ED for some y ERn}. 

A Borel measurable function u on s(D) is said to be £( 01 l-harmonic on 
D if it satisfies the following conditions: 

(a) u is continuous on D, 
(b) ffs(D) lu · D 01 l'PI dxdt < oo and ffs(D) u · D01 lt.p dxdt = 0 holds for 

every 'P E C~(D). 



Bergman projections for a-parabolic operators 

Note that each component of s(D) is a strip domain. 
The fundamental solution w<a) of L(a) has the form: 

( ) { 
(27r)-n fan exp( -tl~l 2a +A X· ~)d~ 

W a (x, t) = 
0 

t>O 

t::::: 0, 
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where x ·~is the inner product of x and~' and 1~1 = (~ · ~) 1 12 . Then 
w<a) (x, t) := w<a) (x, -t) is the fundamental solution of £<a). Note 
that W(l) (x, t) is equal to the Gauss kernel, and w<112) (x, t) is equal to 
the Poisson kernel. 

The following estimates will be needed later. 

Lemma 2.2. Let ({3, k) be a multi-index, 1 ::; q::; oo and 0 < h < 
t2 < oo. Then there exists a constant C such that 

(2.1) 

(2.2) 

and 

(2.3) 

Proof. The assertions (2.1) and (2.2) are remarked in section 3 in 
[3]. Then we have 

1t2 
{ IB~BfW(a)(x, tWdxdt 

tt Jan 

1t2i ( n+ll~l )q k ( ) 1 
= C2"<>-k IB~at w a (C2<> x, 1Wdxdt 

t1 Rn 

= 1h (r nt~l-k r { IB~BfW(a)(y, 1Wt;;, dydt 
t 1 Jan 

( 
- n(l-v:>+l/31 k) q f3 k (a) q 

:S: (t2- t1) t1 IIBxBt W (·, 1)IIL•(Rn)' 

which shows (2.3) when 1 ::; q < oo. In the case of q = oo, (2.3) follows 
from (2.1) immediately, because agafw<al(y, 1) is bounded on Rn. 0 

§3. Huygens property 

In our previous paper [3], we proved the Huygens property under 
the condition n 2': 2. The condition n 2': 2 was not able to drop because 
the proof of the key lemma [3, Lemma 4.3] relied on a-harmonic function 
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theory ([1]). In this section, we shall give another proof of the Huygens 
property, which is valid for all n ::::0: 1. Here we shall use the a-parabolic 
dilation to estimate £(a)_harmonic measures. In [2] and [4], the notion 
of the £(<>Lharmonic measure is introduced and discussed by using the 
fundamental solutions w<a) and w<a) of £(<>) and j)a)' respectively. 
We handle infinite cylinders and use the following notation. 

Cr : = {(x, t)it E R, lxl < r}: infinite cylinder. 

E : the Dirac measure at the origin (0, 0). 

v;:' : the L(a)_harmonic measure at the origin of Cr. 

w~ : the projection of v~ to the x-space R n. 

w~ : = 12 
wfrd>.., a modified measure of w~. 

w~a); = w<a) * (c- v~). 

We list the properties of v~ in the following proposition. 

Proposition 3.1. (1) 0:::; W~a) :::; w<aJ and the support of W~a) 
is in the closure of the cylinder Cr. 

(2) v~ is rotationally invariant with respect to the space variable. 
(3) J dv~ :::; 1. 
(4) lfO <a< 1, v~ is supported by {(x,t)it:::; O,lxl ::::0: r} and abso

lutely continuous with respect to the (n + !)-dimensional Lebesgue 
measure on the exterior of Cr. The density of v~ is given by 

Cn,a { W~a)(y, t)ix- Yi-n-Zady. 
}lyl<;.r 

(5) !fa= 1, supp(v;) C {(x,t)it:::; 0, lxl = r}. 

Next lemma was the key in the proof of the Huygens property ([3, 
Lemma 4.3]). Now we give a new proof which is valid for all n ::::0: 1. 

Lemma 3.1. The modified measure w~ is absolutely continuous with 
respect to the n-dimensional Lebesgue measure, whose density w~ satis
fies 

w~(x):::; Cr2alxl-n-za and llw~IILq(R"l :::; cr-n(l-l/q), 

where the constant C is independent of r > 0 and 1 :::; q :::; oo. 

Proof. By Proposition 3.1, we can express w~ as 

(3.1) w~ = w~(x)dx + C(r)rTr, 
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where ar is the surface measure of the sphere {lxl = r}, C(r) is a non
negative function of r > 0 and 

w~(x) = {f~oo [cn,a ~YI:'Sr wj"'l(y, t)ix- Yi-n- 2"'dy]dt, 0 <a< 1, 

0, a:= 1. 

Then w~ is absolutely continuous and its density is given by 

where 1{r:'Sixi:'S2r} denotes the characteristic function. Considering a
parabolic dilations 7;:' : (x, t) f---t (rx, r 2"'t), we have 

W(a)(x, t) = rnW(a)(7,:'(x, t)), 

which shows that v~ is the image measure of vf by 7;:'. Thus we obtain 
w~(x) = r-nwf(x/r), C(r) J dar= C(1) J da1 and 

w~(x) = r-nwf(x/r). 

In this way, we have only to estimate wf. First, we shall show the 
boundedness. For every s:::: 1, 

J wf(x)da8 (x)::; J l 2 w~(x)d)..da8 (x) + C(s) J das 

= J l 2 ;,.-nwf(xj)..)d)..da8 (x) + C(1) J da1 

::; ~ 18 jwf(x)da;..(x)d).. + C(1) jda1 
S s/2 

::; 2 J dwf ::; 2. 

Since wf is rotationally invariant, we have the boundedness of wf. Next, 
we remark that wf(x)::; Clxl-n-2"'. In fact, from (3) and (4) of Propo
sition 3.1, follows 

1 :::: J dvf :::: 1 1° Cn,a { Wi"') (y, t)ix- Yi-n- 2"'dydtdx 
lxl>l -oo }IYI9 

:::: Cn,a 1° { Wf"'l (y, t) 1 ix- Yi-n- 2"'dxdydt 
-oo }IYI9 lx-yl>2 

:::: Cn,a(1 lxl-n-2"'dx) Jrf Wl(a)(y,t)dydt, 
lxl>2 } 
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which shows that w1") is integrable. Then taking X with lxl :::: 2, we 
have lxl ::; lx- Yl + IYI ::; 2lx- Yl and 

w?(x) = Cn,a Jo 1 W1(a)(y, t)lx- Yl-n- 2"dydt 
-oo IYI:'Ol 

< 2n+2a II w-Cal II I l-n-2a _ Cn,a 1 £1(Rn+l) X • 

Thus taking x with lxl 2: 4, we have 

w?(x) = 12 wf(x)d).. = 12 
)..-nw?(xj>.)d).. 

::; 2n+2aCn,aiiW1") II£1(R"+l) (12 )..2"d)..) lxl-n-2a. 

Since w!(x) is bounded, we obtain 

w?(x) ::; Clxl-n-2a 

for all x E R n. Therefore 

which also shows the norm inequality 

llw-all < cr-n(l-ljq) 
r Lq(R") - , 

because 

0 

Using the above lemma, in the quite same manner as in the proof of 
Theorem 4.1 in [3], we obtain the following Huygens property. For the 
completeness, we give an outline of the proof. 

Theorem 3.1. If an L(a)_harrnonic function u on Hr belongs to 
LP(Hr), then u satisfies the Huygens property: 

(3.2) u(x, t) = { u(y, s)WC"'l(x y, t- s)dy for 0 < s < t < T. 
}Rn 

Proof. Let u E LP(Hr) be an arbitrary L(a)_harmonic function 
with 1 ::; p::; oo. Take r5 > 0 such that u(·, r5) E LP(Rn), and put 

v(x, t) = u(x, t + r5) _ Ln w(a) (x _ y, t)u(y, r5)dy 
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and V(x, t) = J; v(x, T)dT. Here we remark that llviiLP(HT-o) ::; lluiiLP(HT) 
and that Vis £(<>)_harmonic(see [3, Lemma 2.3]). For any fixed (x, t) E 

Hr-8, taking a cylinder{(~, T)IO < T < t, I~- xl < r} with r > 0 and 
using the mean value property (cf. [4]), we have 

IV(x,t)l =I r V(~+x,T+t)dv~(~,T)I 
}l~l?_r,-t<:;,T$0 

1 1T+t 

:S: lv(~ + x, s)ldsdv~(~, T) 
l~l?_r,-t$T$0 0 

= t r lv(~+x,s)ldv~(~,T)ds Jo Jl~l?_r,s-t<:;,T$0 
rT-8! ::; Jo lv(~+x,s)ldw~(~)ds. 

Thus we obtain 

IV(x, t)l ::; 1T-8 j lv(~ + x, s)lw~(~)d~ds 
:S: Tl/qllviiLP(HT-o)llw~IILq(R") 
:S: CTlfqr-n/p !lull LP(HT), 

which shows V(x, t) = 0 for 1 ::; p < oo, because r > 0 is arbitrary. In 
this way, for c5 < s < t < T and x ERn, we have 

u(x, t) = Ln w(a)(x _ y, t _ c5)u(y, c5)dy 

= { { W("'l(x-z,t-s)W(al(z-y,s-c5)dzu(y,c5)dy 
}Rn }Rn 

= r w(a)(x- z, t- s)u(z, s)dz. 
}Rn 

Since c5 > 0 is arbitrary, we have (3.2) in the case of 1 ::; p < oo. When 
p = oo, (3.2) follows from [4, Proposition 11] immediately. 0 

§4. Some basic properties of a-parabolic Bergman functions 

In this section, for 0 < T < oo, we define an a-parabolic Bergman 
space on Hr. 

Definition 4.1. Let 1 ::; p ::; oo. We put 

b~(Hr) := { u E LP(Hr )IL(a)_harmonic on Hr }, 
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which is a closed subspace of LP(Hr) (by (4.1) below) and called the 
a-parabolic Bergman space on the strip domain. 

Remark 4.1. For any u E b~(Hr), the estimate 

(4.1) 

holds for (x, t) E Hr in the similar way to [3, Proposition 5.2]. Therefore 
u can be extended to an L(a)_harmonic function on the upper half space 
H by using the Huygens property. In this paper, every u E b~(Hr) is 
considered to be extended to the upper half space as 

(4.2) u(x, t + jT) := ln u(y, t)W(a)(x- y,jT)dy 

for (x, t) E Hr and j E N. We remark that the extension u also satisfies 
the Huygens property on the whole upper half space H. 

Remark 4.2. For each fixed p, ~(Hr) are the same and the LP(Hr )
norm is equivalent to one another for all 0 < T < oo. In fact, by the 
Minkowski inequality, for 0 < s < t < oo, 

which shows the equivalence of the norms. 

The Huygens property also yields the following estimate. 

Proposition 4.1. Let 1:::; p:::; oo and (;3, k) be a multi-index. Then 
there exists a constant C > 0 such that 

laf3ak ( )I {CIIuiiLP(Hr)c(){;J+k)-( 2:+1)~, t < T, 
X t U X, t :::; ( 11'1 ) n 1 

cr-lfplluiiLP(Hr)c 2,;+k - 20 p' t::::: T, 

for any u E ~(Hr) and (x, t) E H. In particular, if 1 :::; p < oo, 

t~+k8~8fu(·, t) converges uniformly to 0 as t---> oo. 

Proof If 0 < t < 2T, we can show 

in the quite same manner as in [3, Proposition 5.4]. Next we assume 
t 2: 2T. By the Huygens property, we have 

u(x, t) =~fir u(y, s)W(a)(x- y, t- s)dyds 
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and hence 

a~a~u(x, t) =~fiT u(y, s)a~a~w(a)(X- y, t- s)dyds. 

Then by (2.3) in Lemma 2.2 and the Holder inequality, we have 

l8~8~u(x, t)l = ~lluiiLP(Hr) IIB~a~w(a) IILq(R"x(t-T,t)) 

::::; cr-1/PIIuiiLP(Hr)C(!!:: +k)- 2';, f; · 
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0 

In the same manner as in [3, Proposition 5.5], we have the following 
norm inequality. 

Proposition 4.2. Let 1::::; p::::; oo and ((3, k) be a multi-index. Then 
there exists a constant C > 0 such that for every u E b~ ( H T), 

lit~:; +ka~a~ulb(Hr) :S: Cllulb(Hr)· 

§5. Reproducing property of the Bergman kernel 

In [3, Theorem 6.3], we have shown that the a-parabolic Bergman 
kernel 

Ra(x, t; y, s) := -28tW(a)(x- y, t + s) 
has a reproducing property for b~ with 1 ::::; p < oo. 

In the case of the strip domain Hr (0 < T < oo), we consider the 
following kernel: for (x, t), (y, s) E Hr, 

OQ 

Ra,r(x, t; y, s): = L Ra(x, t + jT; y, s + jT) 
j=O 

OQ 

= -2 Latw(a)(x- y, s + t + 2jT), 
j=O 

which turns out to be the a-parabolic Bergman kernel on Hr. 

Lemma 5.1. Let (x, t) E Hr be fixed. Then Ra,r(x, t; ·, ·) E Lq(Hr) 
for 1 < q ::::; oo. 

Proof Let j ::::0: 1. Then by (2.3) in Lemma 2.2, we have 

IIRa(x, t + jT; ·, ·)IILq(R" x(jT,jT+T)) = 2ll8tW(a) IILq(R"x(t+2jT,t+2jT+T)) 

::::; CT1/q(jT)- n(l~;fq) -1. 
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Thus, by [3, Lemma 6.1], 

IIRa,r(x, t;·, ·)IIL•(HT) 
00 

1/ """"' n(l-1/q) 1 
~ IIRa(x, t; ·, ·)IIL•(H) + CT q ~(jT)--2-"' -- < 00. 

j=1 

Thus we can define the integral operator 

Ra,ru(x, t) :=I iT Ra,r(x, t; y, s)u(y, s)dyds 

0 

for every u E LP(Hr) with 1 ~ p < oo. Next proposition shows that the 
kernel Ra,T has a reproducing property for b~(Hr ). 

Proposition 5.1. Let 1 ~ p < oo. Then we have 

(5.1) Ra,ru(x, t) = u(x, t) 

for every u E b~(Hr) and (x, t) E Hr. 

Proof Let u E ~(Hr) be considered to be extended to Has in 
(4.2). For 8 > 0, we put u0 (x, t) := u(x, t + 8). Then using the Huygens 
property, we have 

I iT u0(y,s)(-2)atw(a)(x- y, t + s + 2jT)dyds 

= ln {[u,s(y,s)(-2)W(<>)(x-y,t+s+2jT)]~=O 
-loT atu0(y,s)(-2)W(<>l(x-y,t+s+2jT)ds}dy 

=2u0 (x, t + 2jT) - 2u0 (x, t + 2(j + 1)T) 

fr a 
+ Jo as { u,s(x, t + 2s + 2jT) }ds 

=u0(x, t + 2jT)- u,s(x, t + 2(j + 1)T). 

Hence, by Proposition 4.1, we obtain 

I iT Ra,r(x, t; y, s)u0 (y, s)dyds 

00 

= L [u,s(x, t + 2jT)- u0(x, t + 2(j + 1)T)] = u0(x, t). 
j=O 

Letting 8--+ 0, we have (5.1). 0 
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Since the kernel R,Y.,T is symmetric and real-valued, the integral op
erator R,>c,T is the orthogonal projection on L 2(Hr) to b;(Hr). There
fore in particular, the operator Ra,T is bounded on L 2 (Hr ). We call 
Ra,T the Bergman projection. In the next section, we discuss the bound
edness for other exponents 1 < p < oo. 

§6. £P-boundedness of the Bergman projection 

In this last section, we shall prove the boundedness of the integral 
operator Ra,T on LP(Hr ). 

Theorem 6.1. Let 1 < p < oo. Then Ra,T is a bounded operator 
from LP(Hr) onto ll;.(Hr). 

To prove the theorem, we introduce the following theorem from the 
interpolation theory. We quote the theorem from [5]. 

Theorem 6.2. [5, p.29, Theorem 1]. Let K E L 2 (Rn) such that 

(a) IIKIIL=(R") <:::; B, 
(b) K E C1 (Rn \ {0}) and IV'K(x)l <:::; Blxl-n-l 

for some B > 0, where k denotes the Fourier transform of K. Then 
for 1 < p < oo, there exists a constant Ap, depending only on p, B and 
n, such that 

(6.1) 

Remark 6.1. In the above theorem, if in addition K E Lq(Rn), the 
inequality (6.1) holds for every f E LP(Rn). 

Now we return to the proof. Fort> 0, we put 

00 

Kr,t(x) := -2L8tW(cx)(x,t+2jT). 
j=l 

Lemma 6.1. The kernel Kr,t satisfies the condition in Theorem 
6. 2 with a constant B independent oft > 0. 

Proof By the definition of W(cx), the Fourier transform of W(cx) 
satisfies 
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Hence 
00 

kT,t(f.) = 2(2rr)-n/21el2a:e-tl~l2" L e-2iTI~I2" 
j=l 

I 12a: -2TI~I 2" 
= 2(2rr)-n/2e-tl~l2" .:...::e:..:....__e--::-=::-:oo-:::-

1 _ e-2TI~I 2" • 

This implies that KT,t E L2 (Rn), i.e., KT,t E L2 (Rn), and 

• (2rr)-n/2 sC8 

IKT,t(e)l ~ T ~~~ 1 _ e-s =: B < oo. 

Clearly, KT,t is of class C1 and by (2.2) in Lemma 2.2, 

00 !!±..! 

JVKT,t(x)J ~ CL ((t+2jT) + JxJ 2a:)- 2" - 1 

j=1 

c roo . !!±..! 1 
~ 2T Jo ((t + s) + lxl2a:)- 2<> - ds 

Ca _n+I Ca 
< (t + Jxl2a:) 2<> < Jxl-n-1 
- T(n+ 1) - T(n+ 1) · 

Proof of Theorem 6.1. We decompose Ra:,T as 

Ra:,T(x, t; y, s) = Ra:(x, t; y, s) + KT,t+s(x- y). 

For f E LP(HT) n L 1(HT ), we put fs(Y) := f(y, s) and 

j(y, s) := {f(y, s), 0 < s < T, 
0, s?: T. 

D 

In our previous paper [3], we have shown that the integral operator Ra: 
is bounded on LP (H). Then 

Since 

Ra:,T f(x, t) = Ra:j(x, t) +loT KT,t+s * fs(x)ds, 

the Minkowski inequality implies 
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Here by Theorem 6.2, we have 

Taking the LP(O, T)-norm, again by the Minkowski inequality, we obtain 

IIRa,T fiiLP(Hr) ::; IIRafiiLP(Hr) + T ApllfiiLP(Hr) 
::; (liRa II+ TAp)llflb(Hr)· 

This completes the proof. D 

As an application, we have the following duality ( cf. [3, Theorem 
8.1]). 

Corollary 6.1. For 1 < p < oo, the following duality holds; 

bf.(Hr)' ~ b~(Hr), 

where the pairing is given by 

(!,g) = j Lr f(x, t)g(x, t)dxdt 

for f E bf.(Hr) and g E b~(Hr). 
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