Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 305–318

L^p -boundedness of Bergman projections for α -parabolic operators

Masaharu Nishio, Katsunori Shimomura, and Noriaki Suzuki

Abstract.

We consider the α -parabolic Bergman spaces on strip domains. The Bergman kernel is given by a series of derivatives of the fundamental solution. We prove the L^p -boundedness of the projection defined by the Bergman kernel and obtain the duality theorem for 1 . At the same time, we give a new proof of the Huygensproperty, which enable us to verify all the results in [3] also for <math>n = 1.

§1. Introduction

For $1 \leq p \leq \infty$, we denote by $\boldsymbol{b}_{\alpha}^{p}$ the set of all $L^{(\alpha)}$ -harmonic functions which are *p*-th integrable with respect to (n + 1)-dimensional Lebesgue measure on the upper half space H of the Euclidean space \mathbf{R}^{n+1} and call it the α -parabolic Bergman space. In [3], we showed that $\boldsymbol{b}_{\alpha}^{p}$ is a Banach space and discussed its dual space and the explicit formula of the Bergman kernel, where the Huygens property plays an important role.

In this note, we consider an α -parabolic Bergman space $b_{\alpha}^{p}(H_{T})$ on the strip domain $H_{T} = \mathbf{R}^{n} \times (0,T)$ $(0 < T \leq \infty)$ where $H_{\infty} = H$. The main purpose of this note is to give an explicit form of the α parabolic Bergman kernel and to show its boundedness on $L^{p}(H_{T})$ by using an interpolation theory. The α -parabolic Bergman kernel has a reproducing property for $b_{\alpha}^{p}(H_{T})$. As an application, we obtain the duality $b_{\alpha}^{p}(H_{T})' \simeq b_{\alpha}^{q}(H_{T})$ for 1 . Here and in the following,

Received March 31, 2005.

Partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science, (C) (2) (No. 13640186, 15540163 and 15540153).

Revised May 17, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B10, 35K05; Secondary 46E15.

Key words and phrases. parabolic operator of fractional order, Bergman space, Bergman projection, Huygens property, reproducing kernel.

q always denotes the conjugate exponent of p. At the same time we show the Huygens property of α -parabolic Bergman functions for $n \ge 1$. This enables us to remove from [3] the restriction $n \ge 2$ on the space dimension.

§2. Preliminary

We denote the (n+1)-dimensional Euclidean space by \mathbf{R}^{n+1} $(n \ge 1)$, and its point by (x,t) $(x \in \mathbf{R}^n, t \in \mathbf{R})$. For $0 < \alpha \le 1$, we consider a parabolic operator $L^{(\alpha)}$ and its adjoint $\tilde{L}^{(\alpha)}$

$$L^{(\alpha)} = \frac{\partial}{\partial t} + (-\Delta)^{\alpha}, \qquad \tilde{L}^{(\alpha)} = -\frac{\partial}{\partial t} + (-\Delta)^{\alpha}$$

on \mathbf{R}^{n+1} . We remark that if $0 < \alpha < 1$, $(-\Delta)^{\alpha}$ is the convolution operator in the *x*-space \mathbf{R}^n defined by $-c_{n,\alpha} \mathbf{p.f.} |x|^{-n-2\alpha}$, where $c_{n,\alpha} = -4^{\alpha} \pi^{-n/2} \Gamma((n+2\alpha)/2) / \Gamma(-\alpha) > 0$. Then for $\varphi \in C_c^{\infty}(\mathbf{R}^{n+1})$,

$$\begin{split} &(\tilde{L}^{(\alpha)}\varphi)(x,t) = -\frac{\partial}{\partial t}\varphi(x,t) + ((-\Delta)^{\alpha}\varphi)(x,t) \\ &= -\frac{\partial}{\partial t}\varphi(x,t) - c_{n,\alpha}\lim_{\delta\downarrow 0} \int_{|y-x|>\delta} (\varphi(y,t) - \varphi(x,t))|x-y|^{-n-2\alpha}\,dy, \end{split}$$

where we denote by $C_c^{\infty}(\mathbf{R}^{n+1})$ the totality of infinitely differentiable functions with compact support.

Lemma 2.1. Let $\varphi \in C_c^{\infty}(\mathbf{R}^{n+1})$ with $\operatorname{supp}(\varphi) \subset \{(x,t) | t_1 < t < t_2, |x| < r\}$. Then $\operatorname{supp}(\tilde{L}^{(\alpha)}\varphi) \subset \mathbf{R}^n \times (t_1, t_2)$ and when $0 < \alpha < 1$,

$$|(\tilde{L}^{(\alpha)}\varphi)(x,t)| \le 2^{n+2\alpha} c_{n,\alpha} \left(\sup_{t_1 < s < t_2} \int_{\mathbf{R}^n} |\varphi(y,s)| \, dy \right) \cdot |x|^{-n-2\alpha}$$

for (x, t) with $|x| \ge 2r$.

Now we define $L^{(\alpha)}$ -harmonic functions.

Definition 2.1. Let D be an open set in \mathbb{R}^{n+1} . We put

$$s(D) := \{(x,t) | (y,t) \in D \text{ for some } y \in \mathbf{R}^n\}.$$

A Borel measurable function u on s(D) is said to be $L^{(\alpha)}$ -harmonic on D if it satisfies the following conditions:

- (a) u is continuous on D,
- (b) $\iint_{s(D)} |u \cdot \tilde{L}^{(\alpha)}\varphi| \, dx dt < \infty \text{ and } \iint_{s(D)} u \cdot \tilde{L}^{(\alpha)}\varphi \, dx dt = 0 \text{ holds for every } \varphi \in C_c^{\infty}(D).$

Note that each component of s(D) is a strip domain. The fundamental solution $W^{(\alpha)}$ of $L^{(\alpha)}$ has the form :

$$W^{(\alpha)}(x,t) = \begin{cases} (2\pi)^{-n} \int_{\mathbf{R}^n} \exp(-t|\xi|^{2\alpha} + \sqrt{-1} x \cdot \xi) d\xi & t > 0\\ 0 & t \le 0, \end{cases}$$

where $x \cdot \xi$ is the inner product of x and ξ , and $|\xi| = (\xi \cdot \xi)^{1/2}$. Then $\tilde{W}^{(\alpha)}(x,t) := W^{(\alpha)}(x,-t)$ is the fundamental solution of $\tilde{L}^{(\alpha)}$. Note that $W^{(1)}(x,t)$ is equal to the Gauss kernel, and $W^{(1/2)}(x,t)$ is equal to the Poisson kernel.

The following estimates will be needed later.

Lemma 2.2. Let (β, k) be a multi-index, $1 \le q \le \infty$ and $0 < t_1 < t_2 < \infty$. Then there exists a constant C such that

(2.1)
$$\partial_x^\beta \partial_t^k W^{(\alpha)}(x,t) = t^{-\frac{n+|\beta|}{2\alpha}-k} \partial_x^\beta \partial_t^k W^{(\alpha)}(t^{-1/2\alpha}x,1),$$

(2.2)
$$|\partial_x^\beta \partial_t^k W^{(\alpha)}(x,t)| \le Ct^{1-k} (t+|x|^{2\alpha})^{-\frac{n+|\beta|}{2\alpha}-1}$$

and

(2.3)
$$\|\partial_x^\beta \partial_t^k W^{(\alpha)}\|_{L^q(\mathbf{R}^n \times (t_1, t_2))} \le C(t_2 - t_1)^{\frac{1}{q}} t_1^{-\frac{n(1 - 1/q) + |\beta|}{2\alpha} - k}.$$

Proof. The assertions (2.1) and (2.2) are remarked in section 3 in [3]. Then we have

$$\begin{split} \int_{t_1}^{t_2} &\int_{\mathbf{R}^n} |\partial_x^\beta \partial_t^k W^{(\alpha)}(x,t)|^q dx dt \\ &= \int_{t_1}^{t_2} \int_{\mathbf{R}^n} \left(t^{-\frac{n+|\beta|}{2\alpha}-k} \right)^q |\partial_x^\beta \partial_t^k W^{(\alpha)}(t^{-\frac{1}{2\alpha}}x,1)|^q dx dt \\ &= \int_{t_1}^{t_2} \left(t^{-\frac{n+|\beta|}{2\alpha}-k} \right)^q \int_{\mathbf{R}^n} |\partial_x^\beta \partial_t^k W^{(\alpha)}(y,1)|^q t^{\frac{n}{2\alpha}} dy dt \\ &\leq (t_2-t_1) \left(t_1^{-\frac{n(1-1/q)+|\beta|}{2\alpha}-k} \right)^q ||\partial_x^\beta \partial_t^k W^{(\alpha)}(\cdot,1)||_{L^q(\mathbf{R}^n)}^q, \end{split}$$

which shows (2.3) when $1 \leq q < \infty$. In the case of $q = \infty$, (2.3) follows from (2.1) immediately, because $\partial_x^\beta \partial_t^k W^{(\alpha)}(y,1)$ is bounded on \mathbf{R}^n . \Box

§3. Huygens property

In our previous paper [3], we proved the Huygens property under the condition $n \ge 2$. The condition $n \ge 2$ was not able to drop because the proof of the key lemma [3, Lemma 4.3] relied on α -harmonic function theory ([1]). In this section, we shall give another proof of the Huygens property, which is valid for all $n \geq 1$. Here we shall use the α -parabolic dilation to estimate $L^{(\alpha)}$ -harmonic measures. In [2] and [4], the notion of the $L^{(\alpha)}$ -harmonic measure is introduced and discussed by using the fundamental solutions $W^{(\alpha)}$ and $\tilde{W}^{(\alpha)}$ of $L^{(\alpha)}$ and $\tilde{L}^{(\alpha)}$, respectively. We handle infinite cylinders and use the following notation.

- C_r := { $(x, t) | t \in \mathbf{R}, |x| < r$ } : infinite cylinder.
- ε : the Dirac measure at the origin (0,0).
- ν_r^{α} : the $L^{(\alpha)}$ -harmonic measure at the origin of C_r .
- $$\begin{split} \omega_r^{\alpha} &: \text{the projection of } \nu_r^{\alpha} \text{ to the } x\text{-space } \mathbf{R}^n.\\ \tilde{\omega}_r^{\alpha} &:= \int_1^2 \omega_{\lambda r}^{\alpha} d\lambda, \text{ a modified measure of } \omega_r^{\alpha}.\\ \tilde{W}_r^{(\alpha)} &:= \tilde{W}^{(\alpha)} * (\varepsilon \nu_r^{\alpha}). \end{split}$$

We list the properties of ν_r^{α} in the following proposition.

Proposition 3.1. (1) $0 \leq \tilde{W}_r^{(\alpha)} \leq \tilde{W}^{(\alpha)}$ and the support of $\tilde{W}_r^{(\alpha)}$ is in the closure of the cylinder C_r .

- (2) ν_r^{α} is rotationally invariant with respect to the space variable.
- (3) $\int d\nu_r^{\alpha} \leq 1.$
- (4) If $0 < \alpha < 1$, ν_r^{α} is supported by $\{(x,t) | t \leq 0, |x| \geq r\}$ and absolutely continuous with respect to the (n+1)-dimensional Lebesgue measure on the exterior of C_r . The density of ν_r^{α} is given by

$$c_{n,\alpha}\int_{|y|\leq r} \tilde{W}_r^{(\alpha)}(y,t)|x-y|^{-n-2lpha}dy.$$

(5) If $\alpha = 1$, $\operatorname{supp}(\nu_r^1) \subset \{(x,t) | t \le 0, |x| = r\}.$

Next lemma was the key in the proof of the Huygens property ([3, Lemma 4.3]). Now we give a new proof which is valid for all $n \ge 1$.

Lemma 3.1. The modified measure $\tilde{\omega}_r^{\alpha}$ is absolutely continuous with respect to the n-dimensional Lebesgue measure, whose density \tilde{w}_r^{α} satisfies

$$ilde w^lpha_r(x) \leq Cr^{2lpha} |x|^{-n-2lpha}$$
 and $\| ilde w^lpha_r\|_{L^q(\mathbf{R}^n)} \leq Cr^{-n(1-1/q)}.$

where the constant C is independent of r > 0 and $1 \le q \le \infty$.

Proof. By Proposition 3.1, we can express ω_r^{α} as

(3.1)
$$\omega_r^{\alpha} = w_r^{\alpha}(x)dx + C(r)\sigma_r,$$

where σ_r is the surface measure of the sphere $\{|x| = r\}, C(r)$ is a non-negative function of r > 0 and

$$w_r^{\alpha}(x) = \begin{cases} \int_{-\infty}^0 \left[c_{n,\alpha} \int_{|y| \le r} \tilde{W}_r^{(\alpha)}(y,t) |x-y|^{-n-2\alpha} dy \right] dt, & 0 < \alpha < 1, \\ 0, & \alpha = 1. \end{cases}$$

Then $\tilde{\omega}_r^{\alpha}$ is absolutely continuous and its density is given by

$$\tilde{w}_r^{\alpha}(x) = \int_1^2 w_{\lambda r}^{\alpha}(x) d\lambda + \frac{C(|x|)}{r} \mathbb{1}_{\{r \le |x| \le 2r\}}(x),$$

where $1_{\{r \leq |x| \leq 2r\}}$ denotes the characteristic function. Considering α -parabolic dilations $\tau_r^{\alpha} : (x, t) \mapsto (rx, r^{2\alpha}t)$, we have

$$W^{(\alpha)}(x,t) = r^n W^{(\alpha)}(\tau_r^{\alpha}(x,t)),$$

which shows that ν_r^{α} is the image measure of ν_1^{α} by τ_r^{α} . Thus we obtain $w_r^{\alpha}(x) = r^{-n} w_1^{\alpha}(x/r), C(r) \int d\sigma_r = C(1) \int d\sigma_1$ and

$$\tilde{w}_r^{\alpha}(x) = r^{-n} \tilde{w}_1^{\alpha}(x/r).$$

In this way, we have only to estimate \tilde{w}_1^{α} . First, we shall show the boundedness. For every $s \ge 1$,

$$\int \tilde{w}_{1}^{\alpha}(x)d\sigma_{s}(x) \leq \int \int_{1}^{2} w_{\lambda}^{\alpha}(x)d\lambda d\sigma_{s}(x) + C(s) \int d\sigma_{s}$$
$$= \int \int_{1}^{2} \lambda^{-n} w_{1}^{\alpha}(x/\lambda)d\lambda d\sigma_{s}(x) + C(1) \int d\sigma_{1}$$
$$\leq \frac{2}{s} \int_{s/2}^{s} \int w_{1}^{\alpha}(x)d\sigma_{\lambda}(x)d\lambda + C(1) \int d\sigma_{1}$$
$$\leq 2 \int d\omega_{1}^{\alpha} \leq 2.$$

Since \tilde{w}_1^{α} is rotationally invariant, we have the boundedness of \tilde{w}_1^{α} . Next, we remark that $\tilde{w}_1^{\alpha}(x) \leq C|x|^{-n-2\alpha}$. In fact, from (3) and (4) of Proposition 3.1, follows

$$1 \ge \int d\nu_1^{\alpha} \ge \int_{|x|>1} \int_{-\infty}^0 c_{n,\alpha} \int_{|y|\le 1} \tilde{W}_1^{(\alpha)}(y,t) |x-y|^{-n-2\alpha} dy dt dx$$

$$\ge c_{n,\alpha} \int_{-\infty}^0 \int_{|y|\le 1} \tilde{W}_1^{(\alpha)}(y,t) \int_{|x-y|>2} |x-y|^{-n-2\alpha} dx dy dt$$

$$\ge c_{n,\alpha} \left(\int_{|x|>2} |x|^{-n-2\alpha} dx \right) \iint \tilde{W}_1^{(\alpha)}(y,t) dy dt,$$

which shows that $\tilde{W}_1^{(\alpha)}$ is integrable. Then taking x with $|x| \ge 2$, we have $|x| \le |x-y| + |y| \le 2|x-y|$ and

$$w_1^{\alpha}(x) = c_{n,\alpha} \int_{-\infty}^0 \int_{|y| \le 1} \tilde{W}_1^{(\alpha)}(y,t) |x-y|^{-n-2\alpha} dy dt$$

$$\le 2^{n+2\alpha} c_{n,\alpha} \|\tilde{W}_1^{(\alpha)}\|_{L^1(\mathbf{R}^{n+1})} |x|^{-n-2\alpha}.$$

Thus taking x with $|x| \ge 4$, we have

$$\begin{split} \tilde{w}_1^{\alpha}(x) &= \int_1^2 w_{\lambda}^{\alpha}(x) d\lambda = \int_1^2 \lambda^{-n} w_1^{\alpha}(x/\lambda) d\lambda \\ &\leq 2^{n+2\alpha} c_{n,\alpha} \|\tilde{W}_1^{(\alpha)}\|_{L^1(\mathbf{R}^{n+1})} \Big(\int_1^2 \lambda^{2\alpha} d\lambda\Big) |x|^{-n-2\alpha}. \end{split}$$

Since $\tilde{w}_1^{\alpha}(x)$ is bounded, we obtain

$$\tilde{w}_1^{\alpha}(x) \le C|x|^{-n-2c}$$

for all $x \in \mathbf{R}^n$. Therefore

$$\tilde{w}_r^{\alpha}(x) = r^{-n}\tilde{w}_1^{\alpha}(x/r) \le Cr^{2\alpha}|x|^{-n-2\alpha},$$

which also shows the norm inequality

$$\|\tilde{w}_r^{\alpha}\|_{L^q(\mathbf{R}^n)} \leq Cr^{-n(1-1/q)},$$

because

$$\int_{|x|\ge r} \left(|x|^{-n-2\alpha}\right)^q dx = \frac{r^{-(q-1)n-2\alpha q}}{(q-1)n+2\alpha q} \int d\sigma_1.$$

Using the above lemma, in the quite same manner as in the proof of Theorem 4.1 in [3], we obtain the following Huygens property. For the completeness, we give an outline of the proof.

Theorem 3.1. If an $L^{(\alpha)}$ -harmonic function u on H_T belongs to $L^p(H_T)$, then u satisfies the Huygens property:

(3.2)
$$u(x,t) = \int_{\mathbf{R}^n} u(y,s) W^{(\alpha)}(x-y,t-s) dy$$
 for $0 < s < t < T$.

Proof. Let $u \in L^p(H_T)$ be an arbitrary $L^{(\alpha)}$ -harmonic function with $1 \leq p \leq \infty$. Take $\delta > 0$ such that $u(\cdot, \delta) \in L^p(\mathbf{R}^n)$, and put

$$v(x,t) = u(x,t+\delta) - \int_{\mathbf{R}^n} W^{(\alpha)}(x-y,t)u(y,\delta)dy$$

and $V(x,t) = \int_0^t v(x,\tau) d\tau$. Here we remark that $\|v\|_{L^p(H_{T-\delta})} \leq \|u\|_{L^p(H_T)}$ and that V is $L^{(\alpha)}$ -harmonic (see [3, Lemma 2.3]). For any fixed $(x,t) \in H_{T-\delta}$, taking a cylinder $\{(\xi,\tau)|0 < \tau < t, |\xi - x| < r\}$ with r > 0 and using the mean value property (cf. [4]), we have

$$\begin{aligned} |V(x,t)| &= \left| \int_{|\xi| \ge r, -t \le \tau \le 0} V(\xi + x, \tau + t) d\nu_r^{\alpha}(\xi, \tau) \right| \\ &\leq \int_{|\xi| \ge r, -t \le \tau \le 0} \int_0^{\tau+t} |v(\xi + x, s)| ds d\nu_r^{\alpha}(\xi, \tau) \\ &= \int_0^t \int_{|\xi| \ge r, s-t \le \tau \le 0} |v(\xi + x, s)| d\nu_r^{\alpha}(\xi, \tau) ds \\ &\leq \int_0^{T-\delta} \int |v(\xi + x, s)| d\omega_r^{\alpha}(\xi) ds. \end{aligned}$$

Thus we obtain

$$|V(x,t)| \leq \int_0^{T-\delta} \int |v(\xi+x,s)|\tilde{w}_r^{\alpha}(\xi)d\xi ds$$

$$\leq T^{1/q} ||v||_{L^p(H_{T-\delta})} ||\tilde{w}_r^{\alpha}||_{L^q(\mathbf{R}^n)}$$

$$\leq CT^{1/q} r^{-n/p} ||u||_{L^p(H_T)},$$

which shows V(x,t) = 0 for $1 \le p < \infty$, because r > 0 is arbitrary. In this way, for $\delta < s < t < T$ and $x \in \mathbf{R}^n$, we have

$$\begin{split} u(x,t) &= \int_{\mathbf{R}^n} W^{(\alpha)}(x-y,t-\delta) u(y,\delta) dy \\ &= \int_{\mathbf{R}^n} \int_{\mathbf{R}^n} W^{(\alpha)}(x-z,t-s) W^{(\alpha)}(z-y,s-\delta) dz \, u(y,\delta) dy \\ &= \int_{\mathbf{R}^n} W^{(\alpha)}(x-z,t-s) u(z,s) dz. \end{split}$$

Since $\delta > 0$ is arbitrary, we have (3.2) in the case of $1 \le p < \infty$. When $p = \infty$, (3.2) follows from [4, Proposition 11] immediately.

§4. Some basic properties of α -parabolic Bergman functions

In this section, for $0 < T < \infty$, we define an α -parabolic Bergman space on H_T .

Definition 4.1. Let $1 \le p \le \infty$. We put

$$\boldsymbol{b}_{\alpha}^{p}(H_{T}) := \{ u \in L^{p}(H_{T}) | L^{(\alpha)} \text{-harmonic on } H_{T} \},\$$

which is a closed subspace of $L^p(H_T)$ (by (4.1) below) and called the α -parabolic Bergman space on the strip domain.

Remark 4.1. For any $u \in \boldsymbol{b}^p_{\alpha}(H_T)$, the estimate

(4.1)
$$|u(x,t)| \le C ||u||_{L^p(H_T)} t^{-(\frac{n}{2\alpha}+1)\frac{1}{p}}$$

holds for $(x,t) \in H_T$ in the similar way to [3, Proposition 5.2]. Therefore u can be extended to an $L^{(\alpha)}$ -harmonic function on the upper half space H by using the Huygens property. In this paper, every $u \in \boldsymbol{b}^p_{\alpha}(H_T)$ is considered to be extended to the upper half space as

(4.2)
$$u(x,t+jT) := \int_{\mathbf{R}^n} u(y,t) W^{(\alpha)}(x-y,jT) dy$$

for $(x,t) \in H_T$ and $j \in \mathbb{N}$. We remark that the extension u also satisfies the Huygens property on the whole upper half space H.

Remark 4.2. For each fixed p, $\boldsymbol{b}_{\alpha}^{p}(H_{T})$ are the same and the $L^{p}(H_{T})$ norm is equivalent to one another for all $0 < T < \infty$. In fact, by the Minkowski inequality, for $0 < s < t < \infty$,

$$||u(\cdot,t)||_{L^{p}(\mathbf{R}^{n})} \leq ||u(\cdot,s)||_{L^{p}(\mathbf{R}^{n})},$$

which shows the equivalence of the norms.

The Huygens property also yields the following estimate.

Proposition 4.1. Let $1 \le p \le \infty$ and (β, k) be a multi-index. Then there exists a constant C > 0 such that

$$|\partial_x^{\beta} \partial_t^k u(x,t)| \le \begin{cases} C \|u\|_{L^p(H_T)} t^{-\left(\frac{|\beta|}{2\alpha}+k\right) - \left(\frac{n}{2\alpha}+1\right)\frac{1}{p}}, & t < T, \\ CT^{-1/p} \|u\|_{L^p(H_T)} t^{-\left(\frac{|\beta|}{2\alpha}+k\right) - \frac{n}{2\alpha}\frac{1}{p}}, & t \ge T, \end{cases}$$

for any $u \in b^p_{\alpha}(H_T)$ and $(x,t) \in H$. In particular, if $1 \leq p < \infty$, $t^{\frac{|\beta|}{2\alpha}+k}\partial^{\beta}_{x}\partial^{k}_{t}u(\cdot,t)$ converges uniformly to 0 as $t \to \infty$.

Proof. If 0 < t < 2T, we can show

$$|\partial_x^\beta \partial_t^k u(x,t)| \le C \|u\|_{L^p(H_T)} t^{-\left(\frac{|\beta|}{2\alpha}+k\right) - \left(\frac{n}{2\alpha}+1\right)\frac{1}{p}}$$

in the quite same manner as in [3, Proposition 5.4]. Next we assume $t \ge 2T$. By the Huygens property, we have

$$u(x,t) = rac{1}{T} \iint_{H_T} u(y,s) W^{(lpha)}(x-y,t-s) dy ds$$

and hence

$$\partial_x^{\beta}\partial_t^k u(x,t) = rac{1}{T} \iint_{H_T} u(y,s) \partial_x^{\beta}\partial_t^k W^{(lpha)}(x-y,t-s) dy ds.$$

Then by (2.3) in Lemma 2.2 and the Hölder inequality, we have

$$\begin{aligned} |\partial_x^\beta \partial_t^k u(x,t)| &= \frac{1}{T} \|u\|_{L^p(H_T)} \|\partial_x^\beta \partial_t^k W^{(\alpha)}\|_{L^q(\mathbf{R}^n \times (t-T,t))} \\ &\leq CT^{-1/p} \|u\|_{L^p(H_T)} t^{-\left(\frac{|\beta|}{2\alpha} + k\right) - \frac{n}{2\alpha} \frac{1}{p}}. \end{aligned}$$

In the same manner as in [3, Proposition 5.5], we have the following norm inequality.

Proposition 4.2. Let $1 \le p \le \infty$ and (β, k) be a multi-index. Then there exists a constant C > 0 such that for every $u \in b^p_{\alpha}(H_T)$,

$$\|t^{\frac{|\beta|}{2\alpha}+k}\partial_x^{\beta}\partial_t^k u\|_{L^p(H_T)} \le C\|u\|_{L^p(H_T)}.$$

§5. Reproducing property of the Bergman kernel

In [3, Theorem 6.3], we have shown that the α -parabolic Bergman kernel

$$R_{\alpha}(x,t;y,s) := -2\partial_t W^{(\alpha)}(x-y,t+s)$$

has a reproducing property for $\boldsymbol{b}_{\alpha}^{p}$ with $1 \leq p < \infty$.

In the case of the strip domain H_T $(0 < T < \infty)$, we consider the following kernel: for $(x, t), (y, s) \in H_T$,

$$\begin{aligned} R_{\alpha,T}(x,t;y,s) &:= \sum_{j=0}^{\infty} R_{\alpha}(x,t+jT;y,s+jT) \\ &= -2\sum_{j=0}^{\infty} \partial_t W^{(\alpha)}(x-y,s+t+2jT) \end{aligned}$$

which turns out to be the α -parabolic Bergman kernel on H_T .

Lemma 5.1. Let $(x,t) \in H_T$ be fixed. Then $R_{\alpha,T}(x,t;\cdot,\cdot) \in L^q(H_T)$ for $1 < q \leq \infty$.

Proof. Let $j \ge 1$. Then by (2.3) in Lemma 2.2, we have

$$\begin{aligned} \|R_{\alpha}(x,t+jT;\cdot,\cdot)\|_{L^{q}(\mathbf{R}^{n}\times(jT,jT+T))} &= 2\|\partial_{t}W^{(\alpha)}\|_{L^{q}(\mathbf{R}^{n}\times(t+2jT,t+2jT+T))} \\ &\leq CT^{1/q}(jT)^{-\frac{n(1-1/q)}{2\alpha}-1}. \end{aligned}$$

Thus, by [3, Lemma 6.1],

 $\|R_{lpha,T}(x,t;\cdot,\cdot)\|_{L^q(H_T)}$

$$\leq \|R_{\alpha}(x,t;\cdot,\cdot)\|_{L^{q}(H)} + CT^{1/q} \sum_{j=1}^{\infty} (jT)^{-\frac{n(1-1/q)}{2\alpha}-1} < \infty.$$

Thus we can define the integral operator

$$R_{lpha,T}u(x,t):=\iint_{H_T}R_{lpha,T}(x,t;y,s)u(y,s)dyds$$

for every $u \in L^p(H_T)$ with $1 \leq p < \infty$. Next proposition shows that the kernel $R_{\alpha,T}$ has a reproducing property for $\boldsymbol{b}^p_{\alpha}(H_T)$.

Proposition 5.1. Let $1 \le p < \infty$. Then we have

(5.1)
$$R_{\alpha,T}u(x,t) = u(x,t)$$

for every $u \in \boldsymbol{b}^p_{\alpha}(H_T)$ and $(x,t) \in H_T$.

Proof. Let $u \in \boldsymbol{b}_{\alpha}^{p}(H_{T})$ be considered to be extended to H as in (4.2). For $\delta > 0$, we put $u_{\delta}(x,t) := u(x,t+\delta)$. Then using the Huygens property, we have

$$\begin{split} &\iint_{H_T} u_{\delta}(y,s)(-2)\partial_t W^{(\alpha)}(x-y,t+s+2jT)dyds \\ &= \int_{\mathbf{R}^n} \left\{ \begin{bmatrix} u_{\delta}(y,s)(-2)W^{(\alpha)}(x-y,t+s+2jT) \end{bmatrix}_{s=0}^T \\ &\quad -\int_0^T \partial_t u_{\delta}(y,s)(-2)W^{(\alpha)}(x-y,t+s+2jT)ds \right\} dy \\ &= 2u_{\delta}(x,t+2jT) - 2u_{\delta}(x,t+2(j+1)T) \\ &\quad +\int_0^T \frac{\partial}{\partial s} \Big\{ u_{\delta}(x,t+2s+2jT) \Big\} ds \\ &= u_{\delta}(x,t+2jT) - u_{\delta}(x,t+2(j+1)T). \end{split}$$

Hence, by Proposition 4.1, we obtain

$$\iint_{H_T} R_{\alpha,T}(x,t;y,s)u_{\delta}(y,s)dyds$$
$$= \sum_{j=0}^{\infty} \left[u_{\delta}(x,t+2jT) - u_{\delta}(x,t+2(j+1)T) \right] = u_{\delta}(x,t).$$

Letting $\delta \to 0$, we have (5.1).

Since the kernel $R_{\alpha,T}$ is symmetric and real-valued, the integral operator $R_{\alpha,T}$ is the orthogonal projection on $L^2(H_T)$ to $b_{\alpha}^2(H_T)$. Therefore in particular, the operator $R_{\alpha,T}$ is bounded on $L^2(H_T)$. We call $R_{\alpha,T}$ the Bergman projection. In the next section, we discuss the boundedness for other exponents 1 .

§6. L^p -boundedness of the Bergman projection

In this last section, we shall prove the boundedness of the integral operator $R_{\alpha,T}$ on $L^p(H_T)$.

Theorem 6.1. Let $1 . Then <math>R_{\alpha,T}$ is a bounded operator from $L^p(H_T)$ onto $\boldsymbol{b}_{\alpha}^p(H_T)$.

To prove the theorem, we introduce the following theorem from the interpolation theory. We quote the theorem from [5].

Theorem 6.2. [5, p.29, Theorem 1]. Let $K \in L^2(\mathbb{R}^n)$ such that

 $(a) \quad \|\hat{K}\|_{L^{\infty}(\mathbf{R}^n)} \le B,$

(b) $K \in C^{1}(\mathbf{R}^{n} \setminus \{0\}) \text{ and } |\nabla K(x)| \leq B|x|^{-n-1}$

for some B > 0, where \hat{K} denotes the Fourier transform of K. Then for $1 , there exists a constant <math>A_p$, depending only on p, B and n, such that

(6.1)
$$||K * f||_{L^{p}(\mathbf{R}^{n})} \leq A_{p} ||f||_{L^{p}(\mathbf{R}^{n})}$$

for every $f \in L^p(\mathbf{R}^n) \cap L^1(\mathbf{R}^n)$.

Remark 6.1. In the above theorem, if in addition $K \in L^q(\mathbf{R}^n)$, the inequality (6.1) holds for every $f \in L^p(\mathbf{R}^n)$.

Now we return to the proof. For t > 0, we put

$$K_{T,t}(x) := -2\sum_{j=1}^{\infty} \partial_t W^{(\alpha)}(x, t+2jT).$$

Lemma 6.1. The kernel $K_{T,t}$ satisfies the condition in Theorem 6.2 with a constant B independent of t > 0.

Proof. By the definition of $W^{(\alpha)}$, the Fourier transform of $W^{(\alpha)}$ satisfies

$$\hat{W}^{(\alpha)}(\xi,t) = (2\pi)^{-n/2} e^{-t|\xi|^{2\alpha}}, \quad \partial_t \hat{W}^{(\alpha)}(\xi,t) = -(2\pi)^{-n/2} |\xi|^{2\alpha} e^{-t|\xi|^{2\alpha}}.$$

Hence

$$\hat{K}_{T,t}(\xi) = 2(2\pi)^{-n/2} |\xi|^{2\alpha} e^{-t|\xi|^{2\alpha}} \sum_{j=1}^{\infty} e^{-2jT|\xi|^{2\alpha}}$$
$$= 2(2\pi)^{-n/2} e^{-t|\xi|^{2\alpha}} \frac{|\xi|^{2\alpha} e^{-2T|\xi|^{2\alpha}}}{1 - e^{-2T|\xi|^{2\alpha}}}.$$

This implies that $\hat{K}_{T,t} \in L^2(\mathbf{R}^n)$, i.e., $K_{T,t} \in L^2(\mathbf{R}^n)$, and

$$|\hat{K}_{T,t}(\xi)| \le \frac{(2\pi)^{-n/2}}{T} \sup_{s>0} \frac{se^{-s}}{1-e^{-s}} =: B < \infty.$$

Clearly, $K_{T,t}$ is of class C^1 and by (2.2) in Lemma 2.2,

$$\begin{aligned} |\nabla K_{T,t}(x)| &\leq C \sum_{j=1}^{\infty} \left((t+2jT) + |x|^{2\alpha} \right)^{-\frac{n+1}{2\alpha}-1} \\ &\leq \frac{C}{2T} \int_{0}^{\infty} \left((t+s) + |x|^{2\alpha} \right)^{-\frac{n+1}{2\alpha}-1} ds \\ &\leq \frac{C\alpha}{T(n+1)} (t+|x|^{2\alpha})^{-\frac{n+1}{2\alpha}} \leq \frac{C\alpha}{T(n+1)} |x|^{-n-1}. \end{aligned}$$

Proof of Theorem 6.1. We decompose $R_{\alpha,T}$ as

$$R_{\alpha,T}(x,t;y,s) = R_{\alpha}(x,t;y,s) + K_{T,t+s}(x-y)$$

For $f \in L^p(H_T) \cap L^1(H_T)$, we put $f_s(y) := f(y, s)$ and

$$ilde{f}(y,s) := egin{cases} f(y,s), & 0 < s < T, \ 0, & s \ge T. \end{cases}$$

In our previous paper [3], we have shown that the integral operator R_{α} is bounded on $L^{p}(H)$. Then

$$||R_{\alpha}\tilde{f}||_{L^{p}(H_{T})} \leq ||R_{\alpha}|| \cdot ||f||_{L^{p}(H_{T})}.$$

Since

$$R_{\alpha,T}f(x,t) = R_{\alpha}\tilde{f}(x,t) + \int_0^T K_{T,t+s} * f_s(x)ds,$$

the Minkowski inequality implies

$$\|R_{\alpha,T}f(\cdot,t)\|_{L^{p}(\mathbf{R}^{n})} \leq \|R_{\alpha}\tilde{f}(\cdot,t)\|_{L^{p}(\mathbf{R}^{n})} + \int_{0}^{T} \|K_{T,t+s}*f_{s}\|_{L^{p}(\mathbf{R}^{n})} ds.$$

Here by Theorem 6.2, we have

$$\begin{split} \int_0^T \|K_{T,t+s} * f_s\|_{L^p(\mathbf{R}^n)} ds &\leq A_p \int_0^T \|f_s\|_{L^p(\mathbf{R}^n)} ds \\ &\leq A_p \Big(\int_0^T \|f_s\|_{L^p(\mathbf{R}^n)}^p ds\Big)^{1/p} \Big(\int_0^T ds\Big)^{1/q} \\ &\leq A_p \|f\|_{L^p(H_T)} T^{1/q}. \end{split}$$

Taking the $L^{p}(0,T)$ -norm, again by the Minkowski inequality, we obtain

$$\begin{aligned} \|R_{\alpha,T}f\|_{L^{p}(H_{T})} &\leq \|R_{\alpha}\tilde{f}\|_{L^{p}(H_{T})} + TA_{p}\|f\|_{L^{p}(H_{T})} \\ &\leq (\|R_{\alpha}\| + TA_{p})\|f\|_{L^{p}(H_{T})}. \end{aligned}$$

This completes the proof.

As an application, we have the following duality (cf. [3, Theorem 8.1]).

Corollary 6.1. For 1 , the following duality holds;

$$\boldsymbol{b}^p_{\alpha}(H_T)' \simeq \boldsymbol{b}^q_{\alpha}(H_T),$$

where the pairing is given by

$$\langle f,g
angle = \iint_{H_T} f(x,t)g(x,t)dxdt$$

for $f \in \boldsymbol{b}^p_{\alpha}(H_T)$ and $g \in \boldsymbol{b}^q_{\alpha}(H_T)$.

References

- [1] Masayuki Itô, On α -harmonic functions, Nagoya Math. J., **26** (1966), 205–221.
- [2] Masayuki Itô and Masaharu Nishio, Poincaré type conditions of the regularity for the parabolic operator of order α , Nagoya Math. J., **115** (1989), 1–22.
- [3] Masaharu Nishio, Katsunori Shimomura and Noriaki Suzuki, α -parabolic Bergman spaces, Osaka J. Math., **42** (2005), 133–162.
- [4] Masaharu Nishio and Noriaki Suzuki, A characterization of strip domains by a mean value property for the parabolic operator of order α , New Zealand J. Math., **29** (2000), 47–54.
- [5] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970.

M. Nishio, K. Shimomura, and N. Suzuki

Masaharu Nishio Department of Mathematics Graduate School of Science Osaka City University Osaka 558-8585, Japan E-mail address: nishio@sci.osaka-cu.ac.jp

Katsunori Shimomura Department of Mathematical Sciences Faculty of Science Ibaraki University Mito 310-8512, Japan E-mail address: shimomur@mx.ibaraki.ac.jp

Noriaki Suzuki Graduate School of Mathematics Nagoya University Nagoya 464-8602, Japan E-mail address: nsuzuki@math.nagoya-u.ac.jp