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Wiener criterion for Cheeger p-harmonic functions
on metric spaces

Jana Bjorn

Abstract.

We show that for Cheeger p-harmonic functions on doubling met-
ric measure spaces supporting a Poincaré inequality, the Wiener cri-
terion is necessary and sufficient for regularity of boundary points.

§1. Introduction

The well-known Wiener criterion in R states that a boundary point
z € 00 is regular for p-harmonic functions (i.e. every solution of the
Dirichlet problem with continuous boundary data is continuous at x) if
and only if

/01 (Capp<B<as, 0\ Q, B, 2t>>>”“"” dt _

tn—p r 0
where Cap,, is the p-capacity on R". For p = 2, this was proved by
Wiener [30]. For 1 < p < oo, the sufficiency part of the Wiener criterion
is due to Magz'ya [25] and has been extended to more general equations in
Gariepy—Ziemer [10], Heinonen—Kilpeldinen—Martio [12] and Danielli [8].
The necessity part for 1 < p < oo was proved by Kilpeldinen-Maly [19]
and extended to weighted equations by Mikkonen [26]. For subelliptic
operators, the Wiener criterion was proved in Trudinger—Wang [29].

In the last decade, there has been a lot of development in the theory
of p-harmonic functions on doubling metric measure spaces support-
ing a Poincaré inequality. The Dirichlet problem for such p-harmonic
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functions has been solved for rather general boundary data (includ-
ing Sobolev and continuous functions) in e.g. Cheeger [7], Shanmu-
galingam [27] and [28], Kinnunen-Martio [22] and Bjorn-Bjoérn-Shan-
mugalingam [2] and [3].

In Bjérn-MacManus-Shanmugalingam [6], the sufficiency part of
the Wiener criterion was proved in linearly locally connected spaces.
The proof in [6] applies both to Cheeger p-harmonic functions and to
p-harmonic functions defined using the upper gradient. In this note, we
show that for Cheeger p-harmonic functions the assumption of linear
local connectedness can be omitted. Moreover, for Cheeger p-harmonic
functions, the Wiener condition is also necessary, i.e. we have the fol-
lowing result.

Theorem 1.1. Let X be a complete metric measure space with a
doubling measure p supporting a p-Poincaré inequality. Let Q C X be
open and bounded. Then the point x € 0N is Cheeger p-regular if and
only if for some 6 > 0,

/6 <Capp(B(x, )\ @, B(z, 2t)))1/(”_1) dt .
t=Pu(B(z,t)) t

Much of the theory of p-harmonic functions on metric spaces has
been done for p-harmonic functions defined using the upper gradient.
All those proofs go through for Cheeger p-harmonic functions as well
(just replacing g, by |Du| throughout). On the other hand, certain
results and methods which apply to Cheeger p-harmonic functions can-
not be used for p-harmonic functions defined using the upper gradients.
The proof of Theorem 1.1 is one such example: it uses Wolff potential
estimates for supersolutions, as in Kilpeldinen-Maly [19]. For other ex-
amples, see e.g. Bjérn—-MacManus-Shanmugalingam [6] or Bjérn—-Bjérn—
Shanmugalingam [2].

(1.1)
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§2. Preliminaries

We assume throughout the paper that X = (X, d, u) is a complete
metric space endowed with a metric d and a positive complete Borel
measure u such that 0 < u(B) < oo for all balls B C X (we make the
convention that balls are nonempty and open). We also assume that the
measure p is doubling, i.e. that there exists a constant C > 0 such that
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for all balls B = B(z,r) :={y€ X :d(z,y) <r} in X,

n(2B) < Cu(B),

where A\B = B(xz, Ar). Note that some authors assume that X is proper
(i.e. that closed bounded sets are compact) rather than complete, but,
since u is doubling, X is complete if and only if X is proper.

Throughout the paper, 1 < p < oo is fixed. In [13], Heinonen and
Koskela introduced upper gradients as a substitute for the modulus of
the usual gradient. The advantage of this new notion is that it can easily
be used in metric spaces.

Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real-valued function f on X if for all nonconstant
rectifiable curves 7y : [0,1,] — X, parameterized by arc length ds,

1) 1£(1(0)) - F(r(t))] < / gds

~

whenever both f(y(0)) and f(y(ly)) are finite, and f,ygds = oo other-
wise. If g is a nonnegative measurable function on X such that (2.1)
holds for p-almost every curve, (i.e. it fails only for a curve family with
zero p-modulus, see Definition 2.1 in Shanmugalingam [27)), then g is a
p-weak upper gradient of f.

We further assume that X supports a weak p-Poincaré inequality,
i.e. there exist constants C > 0 and A > 1 such that for all balls B C X,
all measurable functions f on X and all upper gradients g of f,

1/p
(2.2) £ 15 - toldn < claimB)(§_grau)

where fp = fp fdu=p(B)™! [5 fdpu.

By Keith-Zhong [17] it follows that X supports a weak g-Poincaré
inequality for some ¢ € [1,p), which was earlier a standard assump-
tion. As X is complete, it suffices to require that (2.2) holds for all
compactly supported Lipschitz functions, see Heinonen-Koskela [14] or
Keith [15], Theorem 2. There are many spaces satisfying these assump-
tions, such as Riemannian manifolds with nonnegative Ricci curvature
and the Heisenberg groups. For a list of examples see e.g. Bjorn [5], and
for more detailed descriptions see Heinonen—Koskela [13] or the mono-
graph Hajlasz—Koskela [11]. The following Sobolev type spaces were
introduced in Shanmugalingam [27].
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Definition 2.2. For u € LP(X), let

i/p
fullvsov = ([t dusint [ oran)
X 9 Jx

where the infimum is taken over all upper gradients of u. The Newtonian
space on X is the quotient space

NYP(X) = {u s ullwnrc) < 00}/
where u ~ v if and only if ||u — v||N1e(x) = 0.

Every u € N'P(X) has a unique minimal p-weak upper gradient
gu € LP(X) in the sense that for every p-weak upper gradient g of u,
gu < g p-a.e., see Corollary 3.7 in Shanmugalingam [28]. Theorem 6.1
in Cheeger [7] shows that for Lipschitz f,

Cheeger [7] uses a different definition of Sobolev spaces which leads to
the same space, see Theorem 4.10 in [27]. Cheeger’s definition yields the
notion of partial derivatives in the following theorem, see Theorem 4.38
in [7].

Theorem 2.3. Let X be a metric measure space equipped with a
doubling Borel regular measure p. Assume that X admits a weak p-
Poincaré inequality for some 1 < p < oco.

Then there exists N € N and a countable collection (U,, X®) of
measurable sets U, and Lipschitz “coordinate” functions X* : X —
RF® 1 < k(@) < N, such that u(X \ U, Ua) = 0 and for every
Lipschitz f : X — R there exist unique bounded vector-valued functions
dof : Uy — R¥) such that for p-a.e. x € Uy,

lim  sup W ZF@) — (@df(@), X2(y) = XU _
r—0+ yEB(x,r) T

where (-, -) denotes the usual inner product in R¥(),

Cheeger shows that for p-a.e. x € U,, there is an inner product
norm | - |, on R¥®) such that for all Lipschitz f,

(2.3) 95(2)/C < |d* f(2)|z < Cygy(x),

where C'is independent of f and z, see p. 460 in [7]. We can assume that
the sets U, are pairwise disjoint and let Df(z) = d*f(x) for x € U,.
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We shall in the following omit the subscript z in the norms |- |, and use
the notation

(2.4) IDf| = Df(z)| := [d*f ()]
Thus, (2.3) can be written as
(2.5) 97/C <|Df| <Cg; p-ae. in X.

The differential mapping D : f — D f is linear and satisfies the Leibniz
and chain rules. Also, Df = 0 p-a.e. on every set where f is constant.
See Cheeger (7] for these properties.

By Theorem 4.47 in (7] and Theorem 4.10 in Shanmugalingarm [27],
Lipschitz functions are dense in N1'(X). Using Theorem 10 in Franchi—
Hajlasz—Koskela [9] or Keith [16], the “gradient” Du extends uniquely
to the whole N1P(X) and it satisfies (2.5) for every u € N1P(X).

Definition 2.4. The p-capacity of a set E C X is the number
Cp(E) = int [ul/%s,.

where the infimum is taken over all u € NLP(X) such that u>1 on E.

For various properties as well as equivalent definitions of the p-
capacity we refer to Kilpeldinen-Kinnunen-Martio [18] and Kinnunen—
Martio [20], [21]. The p-capacity is the correct gauge for distinguishing
between two Newtonian functions. If u € N'P(X), then u ~ v if and
only if u = v outside a set of p-capacity zero. Moreover, Corollary 3.3
in Shanmugalingam [27] shows that if u,v € N1P(X) and u = v p-a.e.,
then u ~ v.

To be able to compare the boundary values of Newtonian functions
we need a Newtonian space with zero boundary values. Let

No(Q) = {fla: f € N*?(X) and f = 0in X \ Q}.

Throughout the paper, @ C X will be a nonempty bounded open set
in X such that Cp(X \ @) > 0. (If X is unbounded then the condition
Cp{X \ Q) > 0 is of course immediately fulfilled.)

§3. p-harmonic functions and regularity

There are two ways of generalizing p-harmonic functions to metric
spaces, one based on the scalar-valued upper gradient g, and the other
using the vector-valued Cheeger gradient Du. In this paper, we are
concerned with Cheeger p-harmonic functions given by the following
definition.
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Definition 3.1. A function u € NLP(Q) is Cheeger p-harmonic
in Q if it is continuous and for all Lipschitz functions ¢ with compact

support in §Q,
(3.1) | / \DulP dy < / \Du + Dl? d,
Q Q

or equivalently,
/ |Du|P~2Du - Dy dy = 0,
Q

where - denotes the inner product giving rise to the norm | -| from (2.4)
(note that it depends on x).

As mentioned in the introduction, all properties which have been
proved for p-harmonic functions defined using the upper gradient, also
hold for Cheeger p-harmonic functions and will be used here without fur-
ther notice. By Kinnunen—Shanmugalingam [24], every function satisfy-
ing (3.1) has a locally Holder continuous representative which satisfies
the Harnack inequality and the maximum principle. It is this represen-
tative that we call Cheeger p-harmonic.

The Dirichlet problem for Cheeger p-harmonic functions and rather
general boundary data was solved using the Perron method in Bjorn-
Bjorn-Shanmugalingam [3]. The construction is based on Cheeger p-
superharmonic functions. The upper Perron solution for f : 02 — R

is
Pf(z) :=infu(z), z€Q,

where the infimum is taken over all Cheeger p-superharmonic functions
u on {2 bounded below such that

liminf u(y) > f(z) for all z € 99.
Q3y—z

The lower Perron solution is defined by Pf = —P(—f), and if both
solutions coincide, we let Pf := Pf = Pf and f is called resolutive.
Note that we always have Pf < Pf, by Theorem 7.2 in Kinnunen-
Martio [22]. The following comparison principle holds: If f; < fo on
09, then Pf; < Pfs in Q.

The following theorem is proved in [3], Theorems 5.1 and 6.1.

Theorem 3.2. Let f € C(0Q) or f € NYP(X). Then f is resolu-
tive. Moreover, if f € NVP(X), then Pf — f € Ny 2(Q).
By Theorem 7.7 in Kinnunen-Martio [22], every Cheeger p-super-

harmonic function is a pointwise limit of an increasing sequence of p-
supersolutions. A function u € Nltf (Q) is a p-supersolution in Q if for
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all nonnegative Lipschitz functions ¢ with compact support in 2,
/ |DulP~2Du - Dody > 0.
Q

We also have the following simple lemma.

Lemma 3.3. Assume that f: 00 — R is resolutive. Let Q' C Q be
open and define h: 9 — R by

h(z) = f(z), if x € 00N Y,
YT\ Pr@), ifzennow.

Then h is resolutive with respect to Q' and the Perron solution for h in
Q' is Porh = Pflo.

Proof. Let u be a Cheeger p-superharmonic function admissible in
the definition of Pf = Pf. Then it is easily verified (using the lower
semicontinuity of u) that limgsy—y u(y) > h(z) for all z € Q. Hence
u is admissible in the definition of the upper Perron solution P h for h
in Q' and taking infimum over all such u shows that Po/h < Pf in Q.
Applying the same argument to — f, we obtain

Poh=—Pqo/(—h) > —P(—f)=Pf > Pqoh > Pgh.

Definition 3.4. A point x € 9Q is Cheeger p-regular if

lim Pf(y)= f(z) forall f e C(ON).
Qdy—z
In Bjoérn-Bjorn [1], regular boundary points have been character-
ized by means of barriers. Theorems 4.2 and 6.1 in [1] also give other
equivalent characterizations of regularity. In particular, Theorem 6.1(f)
in [1] shows that regularity is a local property:

Theorem 3.5. Let x € O and 6 > 0. Then x is Cheeger p-regular
with respect to Q if and only if it is Cheeger p-reqular with respect to
QN B(x,d).

§4. Proof of Theorem 1.1: sufficiency

We start by defining the relative capacity which appears in the
Wiener criterion.
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Definition 4.1. Let B C X be a ball and E C B. The relative
capacity of E with respect to B is

Cap,(E, B) :inf/ |DulP du,
“ JB

where the infimum is taken over all u € Ny'*(B) such that u>1 on E.

Lemma 3.3 in Bjorn [4] (combined with (2.5)) shows that the capac-
ities Cap,, and C, are in many situations equivalent and have the same
zero sets. Moreover, Cap,(B,2B) is comparable to r~?u(B).

Unless otherwise stated, the letter C' denotes various positive con-
stants whose exact values are unimportant and may vary with each .
usage. The constant C is allowed to depend on the fixed parameters
associated with the geometry of the space X.

Definition 4.2. Let B be a ball and K C B be compact. The
Cheeger p-potential for K with respect to B is the Cheeger p-harmonic
function in B\ K with boundary data 1 on OK and 0 on 0B. We extend
the Cheeger p-potential u by 1 on K to have u € N&"p(B).

Lemma 3.2 in Bjorn-MacManus—Shanmugalingam [6] shows that
the Cheeger p-potential u is a p-supersolution in B. Hence, by Propo-
sition 3.5 in [6], there is a unique regular Radon measure v € N, *(B)*
such that

(4.1) / |Du|P~2Du - Dpdy = / odv for all ¢ € NJP(B).
B B

The sufficiency part of Theorem 1.1 will follow from the following
lemma. It was proved in [6], Lemma 5.7, for p-harmonic functions de-
fined using the upper gradient under the additional assumption that X
is linearly locally connected. Here we show it without this assumption,
but only for Cheeger p-harmonic functions. Estimates of this type ap-
peared first in Maz'ya [25], where they were used to prove the sufficiency
part of the Wiener criterion for nonlinear elliptic equations.

Lemma 4.3. Let B = B(z,7) and K C B be compact. Let u be the
Cheeger p-potential for K with respect to 4B. Then for 0 < p < r and

y € B(z,p),

1 - u(y) <exp (—C/pr<capp(€$’:()g(f£(% 2t)))1/(’"”%§)_

Lemma 4.3 follows from the following lemma by iteration and the
comparison principle in the same way as Lemma 5.7 in [6].
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Lemma 4.4. Let B, K and u be as in Lemma 4.3. Then

Cap,(K,4B)\ /=1
B r~Pu(B)

Proof. Let v be the Radon measure given by (4.1). By Lemma 3.10
in [6], we have suppv C K and v(K) = Cap,(K,4B). Lemma 4.8 in [6]
then yields

‘ . v(B) 1/(p—1) Cap,(K,4B)\/(»~1)
fu> R it > — PN
ezt C(r‘pu(B)) ¢ r~Pu(B) )

O

The following corollary is proved in a similar way as Theorem 6.18
in Heinonen-Kilpeldinen—-Martio [12]. See also Maz'ya [25].

Corollary 4.5. Let f : 9Q — R be bounded and resolutive, and
x € 00. Then for all sufficiently small 0 < p <,

sup (Pf—f(z)< sup (f— fl(z))
QNB(z,p) QN B(z,4r)

v (Cap,(B(z,t) \ Q, B(z,2t))\ V/®V gt
T sup(f ~ (@) exp(”c/,,( T Pa(B@.D) ) ?)'

Proof. Let B = B(z,r), m = supygqrap f and M = supyq f. Note
that by the maximum principle, Pf < M in Q. We can assume that
f(z) = 0. Let u be the Cheeger p-potential for K = B\ Q in 4B. Let
h be as in Lemma 3.3 with ' := QN 4B. Then it is easily verified that
h<m+ M1 - u) on 9. Lemma 3.3 and the comparison principle
show that '

Pf=Pyh<Poy(m+M1—-u)=m+M(1—-u) on¢
and Lemma 4.3 finishes the proof. Ol

To conclude the proof of the sufficiency part of Theorem 1.1, let
f € C(0Q) and € > 0 be arbitrary. There exists r > 0 such that
SUPganB(z,4r) |f — f(z)| < €. Condition (1.1) and Corollary 4.5 then
imply that for sufficiently small p we have

sup |Pf— f(z)| < 2.
QNB(z,p)

Thus, Pf is continuous at = and as f € C(0Q) was arbitrary, z is
Cheeger p-regular.
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§5. Proof of Theorem 1.1: necessity

To obtain the necessity part of Theorem 1.1, we first formulate an
" estimate for p-supersolutions by means of Wolff potentials. It is similar
to Theorem 1.6 in Kilpeldinen-Maly [19] and Corollary 4.11 in [6].

Lemma 5.1. Let u be a nonnegative p-supersolution in 5B, where
B = B(x,r). Let v be the Radon measure given by (4.1). Then

o . T w(B(,t) VPVt
< —_— — }.
tmgping < 0 (egpre+ [/ (50 t

Proof. It can be shown as in the proof of Theorem 3.13 in Mikko-
nen [26] that the above estimate holds with essinfspu replaced by

1/
(le u? d,u) ! for all ¥ > p—1 (and C depending on 7). Theorem 4.3
2

in Kinnunen-Martio [23] shows that for 7 close to p — 1,

1/v
(]l u” d,u) < Cessinfu,
lB 3B

2

which concludes the proof. O

Corollary 5.2. Let u € N& P(5B) be the Cheeger p-potential for a
compact K C B in 5B, where B = B(z,r). Then

2r (Cap,(B(z,t) N K, B(z,2t))\ /®~Y gt
() <C /0 ( ) D ) “

Proof. Let v be the Radon measure given by (4.1). For 0 <t < r,
let v, be the restriction of v to B(z,t) and u; € N&’p(SB) be the p-
supersolution in 5B associated with v as in (4.1), see Proposition 3.9 in
Bjérn-MacManus—-Shanmugalingam [6]. It satisfies

liminf u
Yy—x

(6.1) / | Dus|P~2Duy - Dpdu = / @dv; for all p € NyP(5B).
5B 5B

Inserting ¢ = (us—u)4+ as a test function in both (4.1) and (5.1), a simple
comparison yields D(u; — u)+ = 0 p-a.e. in 5B (see e.g. Lemma 2.8
in [26]). Hence u; < v < 1in 5B and Lemma 3.10 in [6] implies
(5.2)

vi(B(z,t)) < Cap,(K N B(z,t),5B) < Cap,(K N B(z,2t), B(z, 4t)).

Let a = infsp u. Then a > 0 by the maximum principle, and Lemma 5.4
in [6] shows that

Cap,(3B,5B) < Cap,({r:u >a},5B) < Cal_pCapp(K, 5B).



Wiener criterion for Cheeger p-harmonic functions on metric spaces 113

It follows that
1/(p-1)
o < of CoplK 5B)
rPu(B)
< C/2T Cap,(K N B(z,t), B(x, 2t)) 1/(”_1)@
- t=Pu(B(z,t)) t

Inserting (5.2) and (5.3) into Lemma 5.1 finishes the proof of the corol-
lary. O

(5.3)

To conclude the proof of the necessity part of Theorem 1.1, we apply
Corollary 5.2 to K = B(z,r) \ Q. Let u, be the corresponding Cheeger
p-potential with respect to B(z,57). If the integral in Theorem 1.1
converges, we can use Corollary 5.2 to find r > 0 sufficiently small so
that

liminf ur(y) < 1.
y—x
As u, is the solution of the Dirichlet problem in B(z,5r) \ K with the
continuous boundary data 1 on K and 0 on 0B(z, 51), we see that z is
not Cheeger p-regular for the open set B(z,5r) \ K. Theorem 3.5 then
shows that x is not Cheeger p-regular for €2 either.
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