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Wiener criterion for Cheeger p-harmonic functions 
on metric spaces 

Jana Bjorn 

Abstract. 

We show that for Cheeger p-harmonic functions on doubling met­
ric measure spaces supporting a Poincare inequality, the Wiener cri­
terion is necessary and sufficient for regularity of boundary points. 

§1. Introduction 

The well-known Wiener criterion in Rn states that a boundary point 
X E 80 is regular for p-harmonic functions (i.e. every solution of the 
Dirichlet problem with continuous boundary data is continuous at x) if 
and only if 

[ 1 ( Capp(B(x, t) \ 0, B(x, 2t))) 1/(p- 1) dt = 00 
Jo tn-p t ' 

where CapP is the p-capacity on Rn. For p = 2, this was proved by 
Wiener [30]. For 1 < p < oo, the sufficiency part of the Wiener criterion 
is due to Maz'ya [25] and has been extended to more general equations in 
Gariepy-Ziemer [10], Heinonen-Kilpelainen-Martio [12] and Danielli [8]. 
The necessity part for 1 < p < oo was proved by Kilpelainen-Maly [19] 
and extended to weighted equations by Mikkonen [26]. For subelliptic 
operators, the Wiener criterion was proved in Trudinger-Wang [29]. 

In the last decade, there has been a lot of development in the theory 
of p-harmonic functions on doubling metric measure spaces support­
ing a Poincare inequality. The Dirichlet problem for such p-harmonic 
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functions has been solved for rather general boundary data (includ­
ing Sobolev and continuous functions) in e.g. Cheeger [7], Shanmu­
galingam [27] and [28], Kinnunen-Martio [22] and Bjorn-Bjorn-Shan­
mugalingam [2] and [3]. 

In Bjorn-MacManus-Shanmugalingam [6], the sufficiency part of 
the Wiener criterion was proved in linearly locally connected spaces. 
The proof in [6] applies both to Cheeger p-harmonic functions and to 
p-harmonic functions defined using the upper gradient. In this note, we 
show that for Cheeger p-harmonic functions the assumption of linear 
local connectedness can be omitted. Moreover, for Cheeger p-harmonic 
functions, the Wiener condition is also necessary, i.e. we have the fol­
lowing result. 

Theorem 1.1. Let X be a complete metric measure space with a 
doubling measure J-l supporting a p-Poincare inequality. Let n c X be 
open and bounded. Then the point X E an is Cheeger p-regular if and 
only if for some 8 > 0, 

(1.1) 
{'5 (Capp(B(x, t) \ n, B(x, 2t))) 1/(p- 1) dt = oo. 

} 0 t-Pp(B(x, t)) t 

Much of the theory of p-harmonic functions on metric spaces has 
been done for p-harmonic functions defined using the upper gradient. 
All those proofs go through for Cheeger p-harmonic functions as well 
(just replacing 9u by IDul throughout). On the other hand, certain 
results and methods which apply to Cheeger p-harmonic functions can­
not be used for p-harmonic functions defined using the upper gradients. 
The proof of Theorem 1.1 is one such example: it uses Wolff potential 
estimates for supersolutions, as in Kilpeliiinen-Maly [19]. For other ex­
amples, see e.g. Bjorn-MacManus-Shanmugalingam [6] or Bjorn-Bjorn­
Shanmugalingam [2]. 

Acknowledgement. The author is supported by the Swedish Research 
Council and Gustaf Sigurd Magnuson's fund of the Royal Swedish Acad­
emy of Sciences. 

§2. Preliminaries 

We assume throughout the paper that X = (X, d, p) is a complete 
metric space endowed with a metric d and a positive complete Borel 
measure J-l such that 0 < p(B) < oo for all balls B c X (we make the 
convention that balls are nonempty and open). We also assume that the 
measure J-l is doubling, i.e. that there exists a constant C > 0 such that 
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for all balls B = B(x,r) := {y EX: d(x,y) < r} in X, 

p,(2B) ~ Cp,(B), 

where >.B = B(x, >.r). Note that some authors assume that X is proper 
(i.e. that closed bounded sets are compact) rather than complete, but, 
since J.L is doubling, X is complete if and only if X is proper. 

Throughout the paper, 1 < p < oo is fixed. In [13], Heinonen and 
Koskela introduced upper gradients as a substitute for the modulus of 
the usual gradient. The advantage of this new notion is that it can easily 
be used in metric spaces. 

Definition 2.1. A nonnegative Borel function g on X is an upper 
gradient of an extended real-valued function f on X if for all nonconstant 
rectifiable curves 'Y: [0, l-y] -->X, parameterized by arc length ds, 

(2.1) lf('Y(O))- f('Y(l-y))l ~ l gds 

whenever both f('Y(O)) and f('Y(l-y)) are finite, and J"Ygds = oo other­
wise. If g is a nonnegative measurable function on X such that (2.1) 
holds for p-almost every curve, (i.e. it fails only for a curve family with 
zero p~modulus, see Definition 2.1 in Shanmugalingam [27]), then g is a 
p-weak upper gradient off. 

We further assume that X supports a weak p-Poincare inequality, 
i.e. there exist constants C > 0 and >. ~ 1 such that for all balls B C X, 
all measurable functions f on X and all upper gradients g of f, 

(2.2) i If- fBI dp, ~ C(diamB) (iB gP dp,) 
11

P, 

where fB := fB f dp, = p,(B)-1 JB f dp,. 
By Keith-Zhang [17] it follows that X supports a weak q-Poincare 

inequality for some q E [1,p), which was earlier a standard assump­
tion. As X is complete, it suffices to require that (2.2) holds for all 
compactly supported Lipschitz functions, see Heinonen-Koskela [14] or 
Keith [15], Theorem 2. There are many spaces satisfying these assump­
tions, such as Riemannian manifolds with nonnegative Ricci curvature 
and the Heisenberg groups. For a list of examples see e.g. Bjorn [5], and 
for more detailed descriptions see Heinonen-Koskela [13] or the mono­
graph Hajlasz-Koskela [11]. The following Sobolev type spaces were 
introduced in Shanmugalingam [27]. 
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Definition 2.2. For u E £P(X), let 

JJuJJNl·P(X) = (L JuJP dJ.L + i~f L gP dJ.L) l/p' 

where the infimum is taken over all upper gradients of u. The Newtonian 
space on X is the quotient space 

where u rv v if and only if JJu- vJJNl·P(X) = 0. 

Every u E N 1·P(X) has a unique minimal p-weak upper gradient 
gu E LP(X) in the sense that for every p-weak upper gradient g of u, 
gu :::; g J.L-a.e., see Corollary 3.7 in Shanmugalingam [28]. Theorem 6.1 
in Cheeger [7] shows that for Lipschitz f, 

gJ(x) = limsup Jf(y)- f(x)J_ 
y-+x d(x,y) 

Cheeger [7] uses a different definition of Sobolev spaces which leads to 
the same space, see Theorem 4.10 in [27]. Cheeger's definition yields the 
notion of partial derivatives in the following theorem, see Theorem 4.38 
in [7]. 

Theorem 2.3. Let X be a metric measure space equipped with a 
doubling Borel regular measure J.l· Assume that X admits a weak p­
Poincare inequality for some 1 < p < oo. 

Then there exists N E N and a countable collection (U a, xa) of 
measurable sets U a and Lipschitz "coordinate" functions xa : X ---+ 

Rk(a), 1 :::; k(a) :::; N, such that J.L(X \ UaUa) = 0 and for every 
Lipschitz f : X ---+ R there exist unique bounded vector-valued functions 
da f: Ua ---+ Rk(a) such that for J.L-a.e. x E Ua, 

lf(y)- f(x)- (da f(x), xa(y)- xa(x)/1 lim sup -"-"'-'--::........:...-'----'-::........:...-'---.:.::..:.._ __ :._:_:..:. = 0, 
r-+O+ yEB(x,r) r 

where ( · , ·/ denotes the usual inner product in R k(a). 

Cheeger shows that for J.L-a.e. x E Ua, there is an inner product 
norm J ·Jx on Rk(a) such that for all Lipschitz f, 

(2.3) 

where C is independent off and x, see p. 460 in [7]. We can assume that 
the sets U a are pairwise disjoint and let D f ( x) = da f ( x) for x E U a. 
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We shall in the following omit the subscript x in the norms l·lx and use 
the notation 

(2.4) IDJI = IDJ(x)i := ldaf(x)lx· 

Thus, (2.3) can be written as 

(2.5) 9! /C :::; ID !I :::; Cgf J..t-a.e. in X. 

The differential mapping D : f f-+ D f is linear and satisfies the Leibniz 
and chain rules. Also, D f = 0 J..t-a.e. on every set where f is constant. 
See Cheeger [7] for these properties. 

By Theorem 4.47 in [7] and Theorem 4.10 in Shanmugalingarm [27], 
Lipschitz functions are dense in N 1•P(X). Using Theorem 10 in Franchi­
Hajlasz-Koskela [9] or Keith [16], the "gradient" Du extends uniquely 
to the whole N 1·P(X) and it satisfies (2.5) for every u E N 1•P(X). 

Definition 2.4. The p-capacity of a set E C X is the number 

Cp(E) := inf llull~n,p, 
u 

where the infimum is taken over all u E N 1·P(X) such that u ~ 1 on E. 

For various properties as well as equivalent definitions of the p­
capacity we refer to Kilpelainen-Kinnunen-Martio [18] and Kinnunen­
Martio [20], [21]. The p-capacity is the correct gauge for distinguishing 
between two Newtonian functions. If u E N 1·P(X), then u ,...., v if and 
only if u = v outside a set of p-capacity zero. Moreover, Corollary 3.3 
in Shanmugalingam [27] shows that if u,v E N 1·P(X) and u = v J..t-a.e., 
then u,...., v. 

To be able to compare the boundary values of Newtonian functions 
we need a Newtonian space with zero boundary values. Let 

N~·P(O) = {fjn : f E N 1·P(X) and f = 0 in X\ !1}. 

Throughout the paper, n c X will be a nonempty bounded open set 
in X such that Cp(X \ !1) > 0. (If X is unbounded then the condition 
Cv(X \ !1) > 0 is of course immediately fulfilled.) 

§3. p-harmonic functions and regularity 

There are two ways of generalizing p-harmonic functions to metric 
spaces, one based on the scalar-valued upper gradient 9u and the other 
using the vector-valued Cheeger gradient Du. In this paper, we are 
concerned with Cheeger p-harmonic functions given by the following 
definition. 
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Definition 3.1. A function u E N1~·~(fl) is Cheeger p-harmonic 
in fl if it is continuous and for all Lipschitz functions i.p with compact 
support in fl, 

(3.1) 

or equivalently, 

fn1Dulv- 2 Du · D~.p dJ.L = 0, 

where · denotes the inner product giving rise to the norm I · I from (2.4) 
(note that it depends on x). 

As mentioned in the introduction, all properties which have been 
proved for p-harmonic functions defined using the upper gradient, also 
hold for Cheeger p-harmonic functions and will be used here without fur­
ther notice. By Kinnunen-Shanmugalingam [24], every function satisfy­
ing (3.1) has a locally Holder continuous representative which satisfies 
the Harnack inequality and the maximum principle. It is this represen­
tative that we call Cheeger p-harmonic. 

The Dirichlet problem for Cheeger p-harmonic functions and rather 
general boundary data was solved using the Perron method in Bjorn­
Bjorn-Shanmugalingam [3]. The construction is based on Cheeger p­
superharmonic functions. The upper Perron solution for f : an ---+ R 
is 

J5 f(x) := inf u(x), X E fl, 
u 

where the infimum is taken over all Cheeger p-superharmonic functions 
u on fl bounded below such that 

liminf u(y) 2: f(x) for all X E afl. 
fl3y--->x 

The lower Perron solution is defined by P f = - P(- f), and if both 
solutions coincide, we let P f := J5 f = P f and f is called resolutive. 
Note that we always have Pf ~ Pf, by Theorem 7.2 in Kinnunen­
Martio [22]. The following comparison principle holds: If h ~ h on 
an, then Ph~ Ph in fl. 

The following theorem is proved in [3], Theorems 5.1 and 6.1. 

Theorem 3.2. Let f E C(afl) or f E N 1·P(X). Then f is resolu­
tive. Moreover, iff E N 1·P(X), then Pf- f E N6'P(fl). 

By Theorem 7.7 in Kinnunen-Martio [22], every Cheeger p-super­
harmonic function is a pointwise limit of an increasing sequence of p­

supersolutions. A function u E N1~·~(fl) is a p-supersolution in fl if for 
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all nonnegative Lipschitz functions cp with compact support in n, 

We also have the following simple lemma. 

Lemma 3.3. Assume that f : an ---+ R is resolutive. Let n' c n be 
open and define h : an' ---+ R by 

h(x) = {f(x), 
Pf(x), 

if x E an n an', 
ifx En nan'. 

Then h is resolutive with respect to n' and the Perron solution for h in 
n' is Pn,h = Pfln'· 

Proof. Let u be a Cheeger p-superharmonic function admissible in 
the definition of J5 f = P f. Then it is easily verified (using the lower 
semicontinuity of u) that limw'>y--->x u(y) ~ h(x) for all x E an'. Hence 
u is admissible in the definition of the upper Perron solution Pn'h for h 
in n' and taking infimum over all such u shows that J5n,h -::; P finn'. 
Applying the same argument to - f, we obtain 

0 

Definition 3.4. A point X E an is Cheeger p-regular if 

lim Pf(y) = f(x) for all f E C(an). 
!l.3y--->x 

In Bjorn-Bjorn [1], regular boundary points have been character­
ized by means of barriers. Theorems 4.2 and 6.1 in [1] also give other 
equivalent characterizations of regularity. In particular, Theorem 6.1(f) 
in [1] shows that regularity is a local property: 

Theorem 3.5. Let X E an and J > 0. Then X is Cheeger p-regular 
with respect to n if and only if it is Cheeger p -regular with respect to 
n n B(x,J). 

§4. Proof of Theorem 1.1: sufficiency 

We start by defining the relative capacity which appears in the 
Wiener criterion. 
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Definition 4.1. Let B C X be a ball and E C B. The relative 
capacity of E with respect to B is 

where the infimum is taken over all u E N"/i'P(B) such that u 2: 1 on E. 

Lemma 3.3 in Bjorn [4] (combined with (2.5)) shows that the capac­
ities CapP and Cp are in many situations equivalent and have the same 
zero sets. Moreover, Capp(B, 2B) is comparable to r-PJ.L(B). 

Unless otherwise stated, the letter C denotes various positive con­
stants whose exact values are unimportant and may vary with each 
usage. The constant C is allowed to depend on the fixed parameters 
associated with the geometry of the space X. 

Definition 4.2. Let B be a ball and K C B be compact. The 
Cheeger p-potential forK with respect to B is the Cheeger p-harmonic 
function in B\K with boundary data 1 on 8K and 0 on 8B. We extend 
the Cheeger p-potential u by 1 on K to have u E N"/i'P(B). 

Lemma 3.2 in Bjorn-MacManus-Shanmugalingam [6] shows that 
the Cheeger p-potential u is a p-supersolution in B. Hence, by Propo­
sition 3.5 in [6], there is a unique regular Radon measure v E N"/i'P(B)* 
such that 

(4.1) L1DuiP-2 Du · D<pdJ.L = l <pdv for all <p E N"/i'P(B). 

The sufficiency part of Theorem 1.1 will follow from the following 
lemma. It was proved in [6], Lemma 5.7, for p-harmonic functions de­
fined using the upper gradient under the additional assumption that X 
is linearly locally connected. Here we show it without this assumption, 
but only for Cheeger p-harmonic functions. Estimates of this type ap­
peared first in Maz'ya [25], where they were used to prove the sufficiency 
part of the Wiener criterion for nonlinear elliptic equations. 

Lemma 4.3. Let B = B(x, r) and K C If be compact. Let u be the 
Cheeger p-potential for K with respect to 4B. Then for 0 < p ~ r and 
y E B(x, p), 

< ( 1r (Capp(B(x, t) n K, B(x, 2t))) 1/(p- 1) dt) 
1- u(y) _ exp -C -p ( ( )) - . 

P t J.L B x, t t 

Lemma 4.3 follows from the following lemma by iteration and the 
comparison principle in the same way as Lemma 5.7 in [6]. 
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Lemma 4.4. Let B, K and u be as in Lemma 4.3. Then 

. ( Capp(K, 4B)) 1/(p-1) 
mfu;::: 0 (B) . B r-Pp, 

Proof Let v be the Radon measure given by (4.1). By Lemma 3.10 
in [6], we have suppv C K and v(K) = Capp(K,4B). Lemma 4.8 in [6] 
then yields 

. . ( v(B) ) 1/(p- 1) ( Capp(K, 4B)) 1/(p- 1) 
mf u ;::: mf u + 0 (B) 2 0 (B) · B 2B r-Pp, r-Pp, 

0 

The following corollary is proved in a similar way as Theorem 6.18 
in Heinonen-Kilpeliiinen-Martio [12]. See also Maz'ya [25]. 

Corollary 4.5. Let f : an ---+ R be bounded and resolutive, and 
x E an. Then for all sufficiently small 0 < p ::; r, 

sup (Pf-f(x))::; sup (f-f(x)) 
nnB(x,p) annB(x,4r) 

( ( ( Capp(B(x, t) \ n, B(x, 2t))) 1/(p- 1) dt) 
+ s~(f- f(x)) exp -0 JP t-Pp,(B(x, t)) t . 

Proof. Let B = B(x, r), m = sup80n 4B f and M = sup80 f. Note 
that by the maximum principle, P f ::; M in n. We can assume that 
f(x) = 0. Let u be the Cheeger p-potential forK= B \ n in 4B. Let 
h be as in Lemma 3.3 with n' := n n 4B. Then it is easily verified that 
h ::; m + M(1 - u) on an'. Lemma 3.3 and the comparison principle 
show that 

Pf = Pn'h::; Pn,(m + M(1- u)) = m + M(1- u) on n' 

and Lemma 4.3 finishes the proof. 0 

To conclude the proof of the sufficiency part of Theorem 1.1, let 
f E O(an) and c > 0 be arbitrary. There exists r > 0 such that 
SUPannB(x,4r) If- f(x)l ::; c. Condition (1.1) and Corollary 4.5 then 
imply that for sufficiently small p we have 

sup IPf- f(x)l::; 2c. 
nnB(x,p) 

Thus, P f is continuous at x and as f E O(an) was arbitrary, x is 
Cheeger p-regular. 
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§5. Proof of Theorem 1.1: necessity 

To obtain the necessity part of Theorem 1.1, we first formulate an 
estimate for p-supersolutions by means of Wolff potentials. It is similar 
to Theorem 1.6 in Kilpelainen-Maly [19] and Corollary 4.11 in [6]. 

Lemma 5.1. Let u be a nonnegative p-supersolution in 5B, where 
B = B(x, r). Let v be the Radon measure given by (4.1). Then 

limessinfu::; c(essinfu+ r( v(~~(t))))) 1/(p- 1)dt)· 
p--+0 B(x,p) 3B } 0 t-Pp, X, t t 

Proof It can be shown as in the proof of Theorem 3.13 in Mikko­
nen [26] that the above estimate holds with ess inf3B u replaced by 

( f ~ 8 u7 dp,) 1h for all 'Y > p- 1 (and C depending on 'Y). Theorem 4.3 

in Kinnunen-Martio [23] shows that for 'Y close top- 1, 

( 1 u7 dp,) 
1
h ::; Cess inf u, 

hB 3B 

which concludes the proof. 0 

Corollary 5.2. Let u E N5'P(5B) be the Cheeger p-potential for a 
compact K C Bin 5B, where B = B(x,r). Then 

. . < 12r (Capp(B(x, t) n K, B(x, 2t))) 1/(P- 1) dt 
limmfu(y) _ C _ (B( )) -. 

y-+x 0 t Pp, x,t t 

Proof. Let v be the Radon measure given by (4.1). For 0 < t::; r, 
let Vt be the restriction of v to B(x, t) and Ut E N5·P(5B) be the p­
supersolution in 5B associated with Vt as in (4.1), see Proposition 3.9 in 
Bji:irn-MacManus-Shanmugalingam [6]. It satisfies 

(5.1) 11DutiP-2Dut · Dr.pdp, = 1 r.pdvt for all r.p E N5'P(5B). 
5B 5B 

Inserting r.p = (ut-u)+ as a test function in both (4.1) and (5.1), a simple 
comparison yields D(ut - u)+ = 0 p,-a.e. in 5B (see e.g. Lemma 2.8 
in [26]). Hence Ut ::; u::; 1 in 5B and Lemma 3.10 in [6] implies 
(5.2) 

Vt(B(x, t)) ::; Capp(K n B(x, t), 5B) ::; Capp(K n B(x, 2t), B(x, 4t)). 

Let a = inf3B u. Then a > 0 by the maximum principle, and Lemma 5.4 
in [6] shows that 

Capp(3B,5B)::; Capp({x: u ~ a},5B)::; Ca1-PCapp(K,5B). 
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It follows that 

a< c(Capp(K,5B)) 1/(v- 1) 

- r-PJ-t(B) 

(5.3) 
< C 12r ( Capv(K n B(x, t), B(x, 2t))) 1/(v- 1) dt. 
- r t-PJ-t(B(x, t)) t 

Inserting (5.2) and (5.3) into Lemma 5.1 finishes the proof of the corol­
~ 0 

To conclude the proof of the necessity part of Theorem 1.1, we apply 
Corollary 5.2 to K = B(x, r) \ !1. Let Ur be the corresponding Cheeger 
p-potential with respect to B(x, 5r). If the integral in Theorem 1.1 
converges, we can use Corollary 5.2 to find r > 0 sufficiently small so 
that 

liminfur(Y) < 1. 
y--+x 

As Ur is the solution of the Dirichlet problem in B(x, 5r) \ K with the 
continuous boundary data 1 on K and 0 on oB(x, 5r), we see that X is 
not Cheeger p-regular for the open set B(x, 5r) \ K. Theorem 3.5 then 
shows that X is not Cheeger p-regular for n either. 
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