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Neumann eigenfunctions and Brownian couplings 

Krzysztof Burdzy 

Abstract. 

This is a review of research on geometric properties of Neumann 
eigenfunctions related to the "hot spots" conjecture of Jeff Rauch. 
The paper also presents, in an informal way, some probabilistic tech­
niques used in the proofs. 

§1. Introduction 

In 1974 Jeff Rauch stated a problem at a conference, since then re­
ferred to as the "hot spots conjecture" (the conjecture was not published 
in print until 1985, in a book by Kawohl [K]). Informally speaking, the 
conjecture says that the second Neumann eigenfunction for the Lapla­
cian in a Euclidean domain attains its maximum and minimum on the 
boundary. There was hardly any progress on the conjecture for 25 years 
but a number of papers have been published in recent years, on the con­
jecture itself and on problems related to or inspired by the conjecture. 
This article will review some of this body of research and techniques used 
in it, with focus on author's own research and probabilistic methods used 
in proofs of analytic results. 

The paper is organized as follows. First, we will state and explain 
the conjecture. Then we will review the main results on the conjecture 
and related problems. Finally, we will review some techniques used in 
the proofs. 

In order to explain the intuitive contents of the hot spots conjec­
ture we will start with the heat equation. Suppose that D is an open 
connected bounded subset of JR.d, d ;:::: 1. Let u(t, x), t ;:::: 0, x E D, be 
the solution of the heat equation 8uj8t =!).xu in D with the Neumann 
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boundary conditions and the initial condition u(O, x) = u0 (x). That is, 
u(t, x) is a solution to the following initial-boundary value problem, 

(1.1) l ~~(t,x) = ~xu(t,x), xED, t > 0, 

au 
an (t, x) = 0, x E aD, t > 0, 

u(O, x) = uo(x), xED, 

where n(x) denotes the inward normal vector at X E aD. The long 
time behavior of a "generic" solution (i.e., the solution corresponding 
to a "typical" initial condition) can be derived from the properties of 
the second eigenfunction using the following eigenfunction expansion. 
Under suitable conditions on the domain, such as convexity or Lipschitz 
boundary, and for a "typical" initial condition u0 (x), we have 

(1.2) 

where c1 E lR and c2 -:/= 0 are constants depending on the initial condition, 
J-L2 > 0 is the second eigenvalue for the Neumann problem in D, cp 2 (x) is 
a corresponding eigenfunction, and R(t,x) goes to 0 faster than e-~"2 t, 
as t ----> oo. Note that the first eigenvalue is equal to 0 and the first 
eigenfunction is constant. Suppose that cp 2 (x) attains its maximum at 
the boundary of D. Under this assumption, for "most" initial conditions 
u0 (x), if Zt is a point at which the function x ----> u(t, x) attains its 
maximum, then the distance from · Zt to the boundary of D tends to 
zero as t tends to oo. In other words, the "hot spots" move towards the 
boundary. 

Hot Spots Conjecture (Rauch (1974)). The second eigenfunction for 
the Laplacian with Neumann boundary conditions in a bounded Eu­
clidean domain attains its maximum at the boundary. 

The above version of the hot spots conjecture is somewhat ambigu­
ous as it does not specify whether the maximum has to be strict, i.e., 
whether the eigenfunction can attain the same maximal value somewhere 
in the interior of the domain; it does not address the question of what 
might happen when the second eigenvalue is not simple, i.e., whether 
all eigenfunctions corresponding to the second eigenvalue have to sat­
isfy the conjecture (in some domains, for example, the square, there are 
infinitely many eigenfunctions corresponding to the second eigenvalue). 
As we will see, it turns out that a precise statement of the conjecture 
is not needed because the results do not depend in a subtle way on its 
formulation. 
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The hot spots conjecture can be justified by appealing to our physi­
cal intuition and by examples amenable to explicit analysis. Intuitively, 
the "heat" and "cold" are substances that annihilate each other so it 
is easy to believe that the hottest and coldest spots lie as far as pos­
sible from each other, hence on the boundary of the domain. One can 
find explicit formulas for the eigenfunctions in some simple domains, 
for example, in a rectangle [0, a] x [0, b] with a > b > 0, we have 
cp 2 (x1 ,x2 ) = cos(nxl/a). All such explicit examples support the hot 
spots conjecture, i.e., the second eigenfunction attains the maximum on 
8D in simple domains such as rectangles, discs and balls. 

§2. Main theorems on the "hot spots" problem 

For 25 years, from 1974 to 1999, almost nothing was known about 
the "hot spots" conjecture. A notable exception was a result by Ka­
wohl that appeared in his book [K] in 1985. Kawohl proved that if a set 
D c JR.d is a cylindrical domain, i.e., if d > 1, and D can be represented 
as D = D 1 x [0, 1] for some D 1 C JRd-l, then the hot spots conjecture 
holds for D. This result has a simple proof based on the factorization 
of eigenfunctions in cylindrical domains. Kawohl's most lasting contri­
butions are the realization that one should restrict attention to some 
classes of domains, and the statement of the currently most significant 
open problem in the area-Kawohl suggested that the hot spot con­
jecture might not be true in general but it should be true for convex 
domains. 

The next paper on the hot spots conjecture, [BEl], appeared in 
1999. The paper contained the proof of the hot spots conjecture for two 
classes of planar domains: domains with a line of symmetry and "lip" 
domains, to be described shortly. The results were not complete, in 
the sense that the authors imposed some extra "technical" assumptions 
on domains in each family. Those extra assumptions were removed for 
symmetric domains by Pascu [P] and for "lip" domains in [AB2]. 

Recall that a function f is called Lipschitz with constant c if lf(x)­
f(y)l :::; clx- Yl for all x and y. A "lip" domain is a bounded planar 
domain such that its boundary consists of two graphs of Lipschitz func­
tions with the Lipschitz constant equal to 1. For example, any obtuse 
triangle (i.e., a triangle with an angle greater than n) is a lip domain if 
it is properly oriented. In Fig. 2.1, D 1, D2 and the interior of D1 U D2 
are lip domains. 

Theorem 2.1. The hot spots conjecture holds forD c JR2 if 
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Figure 2.1. 

(i) ([BEl], [P]) Dis convex and has a line of symmetry, or 
(ii) ([BEl], [AB2]) Dis a lip domain. 

The methods and techniques developed in [BEl] to prove the hot 
spots conjecture for some classes of domains turned out to be useful also 
in deriving negative results. The first of such results, [BW], appeared 
in 1999. The authors showed that there exists a planar domain where 
the second eigenvalue is simple and the eigenfunction corresponding to 
the second eigenvalue attains its maximum in the interior of the do­
main. This result was strengthened in [BB2], where it was shown that 
in some other planar domain, the second eigenvalue is simple and the 
second eigenfunction attains both its minimum and maximum in the in­
terior of the domain. The domain constructed in [BB2] had many holes 
and the one constructed in [BW] had 2 holes. The intuitive idea be­
hind the examples constructed in [BW] and [BB2] suggested that every 
counterexample to the hot spots conjecture in the plane must have at 
least two holes, and every counterexample in JRd, d :::: 3, must have at 
least d handles. This turned out not to be true-a new counterexample 
([B2]) shows that there exists a planar domain with one hole and simple 
second eigenvalue, and such that the second eigenfunction attains both 
its maximum and minimum in the interior of the domain. The domain 
is depicted in Fig. 2.2. Its shape is much simpler than that of exam­
ples in [BW] and [BB2]. The maximum and minimum of the second 
eigenfunction are attained at the points marked on the figure. 

Theorem 2.2. ([BW], [BB2], [B2]) The hot spots conjecture fails for 
some domains DC JR2 • 

Before we discuss results related to the hot spots conjecture in var­
ious ways, we will state the most intriguing open problems in this area. 
The first one was proposed by Kawohl in [K], and the second one is 
known among the researchers interested in the subject. 

Open problems. (i) ([K]) Does the hot spots conjecture hold for 
bounded convex domains D c lR d for all d :::: 1 ? 
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Figure 2.2. 

(ii)Does the hot spots conjecture hold for bounded simply connected 
planar domains? 

§3. Results related to the "hot spots" problem 

The hot spots conjecture inspired a number of papers on the prop­
erties of Neumann eigenfunctions. We will review those that seem to be 
the closest in spirit to the original conjecture. For a review of research 
in related areas, see [NT J]. 

First of all, we mention a paper by Hempel, Seco and Simon [HSS], 
which appeared in 1991, long time before the current interest in the hot 
spots conjecture. The authors studied the spectrum of the Neumann 
Laplacian in bounded Euclidean domains with non-smooth boundaries. 
Roughly speaking, their results show that the spectrum does not need 
to be discrete, and in a sense, it can be completely arbitrary. For this 
reason, the hot spots conjecture must be limited to domains where the 
spectrum is discrete, such as domains with Lipschitz boundaries. 

Athreya [A2] showed that some monotonicity properties of Neu­
mann eigenfunctions hold also for solutions of some semi-linear partial 
differential equations related to a class of stochastic processes known as 
"superprocesses." He adapted the probabilistic techniques used in the 
research on the hot spots conjecture to the new setting. 

Jerison [J] found the location (in an asymptotic sense) of the nodal 
line (i.e., the line where the eigenfunction vanishes) of the second Neu­
mann eigenfunction in long and thin domains. Strictly speaking, this 
result is not directly related to the hot spots conjecture. However, the 
information about the location of the nodal line can be effectively used 
in the research on the hot spots conjecture. This was first done in [BB1], 
where the nodal line was identified with the line of symmetry in domains 
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possessing a line of symmetry. The knowledge of the nodal line can be 
used to transform the Neumann problem to a problem with mixed Neu­
mann and Dirichlet conditions-a problem much easier than the original 
one. Jerison and Nadirashvili considered in [JN] convex planar domains 
with two perpendicular lines of symmetry, and showed that under these 
strong assumptions one can provide some accurate information about 
the second eigenfunction. The location of the nodal line for the second 
eigenfunction is treated as a problem of its own interest in [ABl], where 
probabilistic techniques are used to give some results in this direction. 

Atar investigated in [Al] a class of multidimensional domains. Tech­
niques used in other papers on the hot spots problem seem to work only 
in planar domains so [Al] is the only paper (except for an early re­
sult in [K]) that contains results on the multidimensional version of the 
problem. 

It was known for a long time, as a "folk law" among the experts in 
the field, that the hot spots conjecture does not hold for manifolds, see, 
e.g., remarks to this effect in [BBl] or [BB2]. However, the first rigorous 
paper studying the hot spots problem for manifolds was published by 
Freitas [F]. 

Although a paper by Ishige and Mizoguchi [IM] is not devoted to 
the hot spots problem in the sense of this article, it is related because it 
studies geometric properties of the heat equation solutions. 

Two recent papers by Banuelos and Pang, one of them joint with 
Pascu ([BP] and [BPP]) are devoted to variations of the hot spots prob­
lem. The purpose of [BP] is to prove an inequality for the distribution of 
integrals of potentials in the unit disk composed with Brownian motion 
which, with the help of Levy's conformal invariance, gives another proof 
of Pascu's result [P]. The paper [BPP] investigates the "hot spots" prop­
erty for the survival time probability of Brownian motion with killing 
and reflection in planar convex domains whose boundary consists of two 
curves, one of which is an arc of a circle, intersecting at acute angles. 
This leads to the "hot spots" property for the mixed Dirichlet-Neumann 
eigenvalue problem in the domain with Neumann conditions on one of 
the curves and Dirichlet conditions on the other. 

§4. Review of selected probabilistic techniques 

The following review of techniques used in proofs of results related 
to the hot spots conjecture is highly subjective in its choices, dealing 
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mostly with methods used by the author of this article in his own re­
search. The review will mainly focus on "essential probabilistic tech­
niques," i.e., those techniques that involve stochastic processes and can­
not be easily translated into the language of analysis. A good way to 
illustrate this idea is to look at an example of a probabilistic concept 
that is not essential. The hitting distribution of Brownian motion on the 
boundary of a set can be identified with the harmonic measure-the two 
concepts are equivalent but knowing this equivalence does not immedi­
ately lead to any new results. We will focus on a probabilistic technique 
called "couplings." The technique was invented by Doeblin in 1930's 
and one can find a general review of this method in books by Lindvall 
[L] and Mu-Fa Chen [C]. The most frequent application of the coupling 
technique consists of a construction of two processes on the same prob­
ability space, run with the same clock. Often, the processes meet at a 
certain time, called the coupling time. Typically, the processes are not 
independent. One usually tries to find a coupling with as small coupling 
time as possible. A distinguishing feature of applications of couplings 
in the context of the hot spots conjecture is that the properties of the 
coupling time usually do not matter, and in a somewhat perverse way, 
the coupling time is infinite for some of the couplings. Couplings were 
used for the first time to study the hot spots conjecture in [BBl] but 
that paper owes a lot to an earlier project, [BK], devoted to a seemingly 
unrelated problem. 

Many proofs of results on the hot spots conjecture are based on the 
eigenfunction expansion (1.2). First, a geometric property is proved for 
the heat equation and then it is translated into a statement about the 
second eigenfunction using ( 1. 2), as t ----> oo. 

For an introductory presentation of probabilistic concepts used be­
low, such as Brownian motion, and their relationship to analysis, see a 
book by Bass [Bl]. 

Let Xt and yt be reflected Brownian motions in D starting from 
x E D and y E D, resp. Then we can represent the solution u(t, x) of 
the heat equation (1.1) as u(t, x) = Eu0 (Xt), and similarly u(t, y) 
Euo(Yf). We have by (1.2), 

( 4.1) 
cp2(x)- 'P2(Y) = c3e!L2t(u(t, x)- u(t, y)) + R1(t, x, y) 

where R 1 (t,x,y) goes to 0 as t----> oo. Without loss of generality we 
will assume that c3 > 0. Suppose that we can prove for some initial 
condition uo that for all t > 0, 

(4.2) Euo(Xt)- Euo(Yt) ~ 0. 
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This and (4.1) will then show that rp2(x) :::; tp2(y). If the last inequality 
can be proved for an appropriate family of pairs (x, y), the hot spots 
conjecture will follow. We will next present a technique of proving (4.2). 

For x, y E JR.2 , write x :::; y if the angle between y- x and the positive 
horizontal half-line is within [ -1r I 4, 1r I 4]. Suppose that D is a lip domain 
(defined in Section 2) and x, y ED, x:::; y. Suppose that Xt and yt are 
reflected Brownian motions in D, driven by the same Brownian motion, 
and starting from x andy, resp. In other words, 

(4.3) 
Xt =X+ Bt +lot n(Xs)dL;, 

yt = y + Bt +lot n(Ys)dL!', 

where n(z) is the unit inward normal,vector at z E 8D and L; is the 
local time of X on the boundary of D, i.e., LX is a non-decreasing 
process that does not increase when X is inside D. In other words; 

Similar remarks apply to the formula for yt. For domains which are 
piecewise C2-smooth, the existence of processes satisfying ( 4.3) follows 
from results of Lions and Sznitman [LS]. For lip domains, one can use 
a recent result from [BBC]. The existence of a strong unique solution 
to an equation analogous to ( 4.3) but in a multidimensional Lipschitz 
domain remains an open problem at this time. 

We have assumed that the domain D is a lip domain so if the normal 
vector n(z) is well defined at z E 8D (this is the case for almost all 
boundary points), it has to form an angle less than 1r I 4 with the vertical. 
Then easy geometry shows that the "local time push" in (4.3), i.e., the 
term represented by the integral, is such that if x :::; y then 

(4.4) for all t;::: 0. 

Now consider a set A CD, such that both A and D\A have a non-empty 
interior and 8An8(D\A) is a vertical line segment. Suppose that A lies 
to the right of D \A and let the initial condition be u0 (z) = lA(z). If 
(4.4) is satisfied, then for any fixed timet;::: 0, we may have Xt, yt E A, 
or Xt, yt E D \A, or Xt E D \A, yt E A, but we will never have 
Xt E A, yt E D \A. This and the definition of u0 imply (4.2). We 
combine this with (4.1) to conclude that rp2(x) :::; rp2 (y) for x:::; y. Any 
lip domain has the "leftmost" and "rightmost" points in the sense of the 
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partial order "::S:" (see Fig. 2.1) so our argument has shown that the 
maximum and the minimum of the second eigenfunction are attained at 
these two points. Hence, the hot spots conjecture holds in lip domains. 

Planar domains with a line of symmetry have to be approached in 
a different manner. Suppose that D C JR.2 is symmetric with respect to 
a vertical line K and let D 1 be the part of D lying to the right of K. 
Under some extra assumptions, the second eigenfunction cp 2 in D with 
the Neumann boundary conditions is antisymmetric with respect to K 
(this follows from a simple symmetrization argument). Therefore, cp2 

must vanish on K and we see that 'P2 is the first eigenfunction for the 
Laplacian in D1 with the Neumann boundary conditions on 8D1 \ K 
and Dirichlet boundary conditions on K. Such boundary conditions 
correspond to the Brownian motion in D1 that is reflected on 8D1 \ K 
and killed on K. 

We will choose the initial condition uo to be identically equal to 1 
in D 1 . Let Tf be the hitting time of K by X and let T}; have the 
analogous meaning for Y. The strategy now is to construct Brownian 
motions Xt and Yt in D~, reflected on 8D1 \ K, killed on K, starting 
from x andy, and such that (4.2) holds not for a fixed time t but for 
an appropriate stopping time T. Let T = Tf. If we can show that X 
must hit K before Y does, then (4.2) follows and we have cp2(x) :::; 'P2(Y) 
for this particular pair (x, y). We will not go into details of how it is 
best to choose x and y and what assumptions one must make about 
the geometry of D to carry out the argument outlined above. Instead, 
we will describe a coupling of reflected Brownian motions (the "mirror" 
coupling) that keeps the two Brownian particles in a relative position 
that ensures that Tf :::; T};. 

Let us start by defining the mirror coupling for free Brownian mo­
tions in JR.2 • Suppose that x, y E JR.2 , x =/:- y, and that x and y are 
symmetric with respect to a line M. Let Xt be a Brownian motion 
starting from x and letT be the first timet with Xt EM. Then we let 
Yt be the mirror image of Xt with respect to M for t :S T, and we let 
Yt = Xt fort > T. The process Yt is a Brownian motion starting from 
y. The pair (Xt, Yt) is a "mirror coupling" of Brownian motions in JR.2 . 

Next we turn to the mirror coupling of reflected Brownian motions 
in a half-plane 1{, starting from x, y E H. One can construct reflected 
Brownian motions Xt and Yt in 1{, starting from x andy, so that they 
have the following properties. The processes Xt and Yt behave like free 
Brownian motions coupled by the mirror coupling as long as they are 
both strictly inside 1{. When one of the processes hits the boundary, 
the two particles cannot behave as a "free" mirror coupling in the whole 
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plane. We will describe their motion by specifying constraints on the 
particles-otherwise they can move in an arbitrary way. Let M be the 
line of symmetry for x andy and H = M n 81{. Then for every t, the 
distance from Xt to H is the same as for yt. Let Mt be the line of 
symmetry for Xt and yt. The "mirror" Mt may move, but only in a 
continuous way, while the point Mt n 81{ = H will never move. The 
absolute value of the angle between the mirror and the normal vector to 
81{ at H can only decrease. These properties are illustrated in Fig. 4.1. 
The processes stay together after the first time they meet. The most 
important property of the mirror coupling is that the two processes Xt 
and yt remain at the same distance from a fixed point, the "hinge" H. 

Figure 4.1. 

When D is a polygonal domain, the processes Xt and yt will reflect 
on different sides of 8D at different times. Since the reflecting particle 
cannot sense the global shape of the domain, the above description of the 
mirror coupling in a half-plane can be applied to describe the possible 
motions of the mirror (the line of symmetry between the processes) 
whenever only one of the processes is on the boundary. This simple 
recipe breaks down when the two processes hit the boundary at the same 
time. It is not obvious that two processes forming a mirror coupling can 
indeed hit the boundary at the same time but we conjecture that it is 
indeed true. The construction of the mirror coupling following the time 
when the two processes are simultaneously on the boundary has not been 
properly addressed in [BK] and [BB 1]. In an earlier paper of Wang [W], 
mirror couplings were used without any proof of their existence. This 
unsatisfactory situation has been remedied recently as the full proof of 
the existence of mirror couplings in piecewise smooth domains has been 
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given in [AB2], and the motion of the mirror following the time when 
both particles are on the boundary has been analyzed in [B2]. 

We will not present a detailed analysis ofthe motion of two particles 
related by a mirror coupling in a planar domain. The arguments involve 
no more than high school geometry. 

The last coupling to be presented here is a "scaling coupling" in­
troduced by Pascu [P]. This coupling is the most complex of the three 
couplings so we will only sketch the main ideas of this technique. The 
main objective of any coupling technique is to construct two processes 
whose relative motion is highly restricted, although each of the processes 
by itself is a reflected Brownian motion. This can lead to a condition 
such as (4.4) that can be in turn translated into an analytic statement 
using a formula such as (4.2). 

Pascu's idea was to start with a planar Brownian motion Xt and 
let yt = X at/ ya, for some fixed a > 0. It is well known that Y is also 
a planar Brownian motion. The novelty of this coupling lies in the fact 
that although the shape of the trajectory of Y is a scaled image of the 
shape of the trajectory of X, the corresponding pieces of the trajectory 
occur at different times. In other words, the two processes run with 
different clocks. This rules out straightforward reasoning such as that in 
(4.1)-(4.4) but nevertheless Pascu managed to translate the information 
about possible geometric positions of the two processes into an analytic 
statement. 

Two further technical aspects of scaling couplings should be men­
tioned here. The hot spots problem needs a construction of a pair of 
reflected Brownian motions in a domain D, not free Brownian motions 
in the whole plane. Hence, the simple scaling idea has to be modified 
in a way somewhat reminiscent of the way the mirror coupling in the 
plane is modified to handle reflected Brownian motions, because if X is 
a reflected Brownian motion in D then yt = X at/ ya is not. Second, 
Pascu combined scaling couplings with conformal mappings in order to 
be able to handle arbitrary convex domains with a line of symmetry 
(the first step was to do the construction in a semi-disc). Conformal 
mappings preserve reflected Brownian motions but they require a time 
change. It was a very non-trivial observation of Pascu that the time 
change involved in his argument had the properties needed to- finish the 
argument when the domain was convex. 
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