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Massey products of complex hypersurface 
complements 

Daniel Matei 1 

Abstract. 

It was shown by Kohno that all higher Massey products in the ra
tional cohomology of a complex hypersurface complement vanish. We 
show that in general there exist non-vanishing triple Massey products 
in the cohomology with finite field coefficients. 

§1. Introduction 

The study of the topology of hypersurface complements is a classical 
subject in algebraic geometry. Most of what is known about these spaces 
is related to invariants of their rational homotopy type. In this paper, we 
attempt to show that their IF p-homotopy type captures in general more 
information than the Q-homotopy type, where IF P is the prime field of p 
elements. 

Let X be the complement to a hypersurface S in c_pd. Then we 
have the following results due to Kohno [12, 13]: Massey products in 
H* (X, Q) of length :2: 3 vanish. Moreover, the Malcev Lie algebra of 
n 1 (X) and the completed holonomy Lie algebra of H'5o 2 (X, Q) are iso
morphic. Thus, the Q-completion of n 1 (X) is completely determined by 
the Q-cohomology algebra of X. In the case when Sis a hyperplane ar
rangement X is Q-formal by Morgan [17], that is the entire Q-homotopy 
type of X is determined by the algebra H* (X, Q). In this context, it 
seems natural to pose the following questions: Are there non-vanishing 
Massey products in H*(X,IFp) for all primes p? Is X a IFp-formal space, 
particularly when X is a hyperplane arrangement complement? 

Massey products are known to be obstructions to formality, see [5, 7]. 
So, if the answer to the first question was yes, then the space X would 
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not be IFp-formal. For compact Kahler manifolds the above questions 
were answered by Ekedhal in [6] by constructing such manifolds M with 
non-vanishing triple products in H*(M,IFp)· Thus, a compact Kahler 
manifold although is «;)?-formal by [5], in general it may not be IFp-formal. 
The case of non-compact complex algebraic varieties is already different 
over Q from the compact case. As pointed out by Morgan in [17] such 
varieties may not be «;)?-formal. 

The main result of this paper settles in affirmative the existence of 
non-vanishing Massey products in the 1Fp-cohomology of a hyperplane 
arrangement complement for all odd primes p, thus showing that ar
rangement complements are not IF p-formal in general. 

Theorem 1.1. For every odd prime p, the complement X to the 
complex reflection arrangement A in <C3 associated with the unitary re
flection group G(p, 1, 3) has, modulo indeterminacy, non-vanishing Massey 
products in H 2 (X,IFp)· 

The cohomology operations that came to be known as Massey prod
ucts were introduced by W. S. Massey in [14]. Since then, they became 
important tools in algebraic topology, being especially used as means of 
distinguishing spaces with the same cohomology but different homotopy 
type. In general they are rather complicated objects, since they are in 
fact sets of cohomology classes. But, in certain cases, they turn out to 
be cosets as shown by May in [16], the simplest instance being that of 
the Massey products of three cohomology classes. In this paper we will 
only consider triple Massey products of cohomology classes of degree 1 
in the cohomology algebra in degrees at most 2. In fact all the com
putations will take place in the group cohomology of the fundamental 
group 1r1 (X) of our hypersurface complement. By the Lefschetz-Zariski 
classical theorem a generic 2-dimensional section of X captures all that 
topological information. 

The hypersurfaces S that we will be our main focus are the hyper
plane arrangements. Firstly because their complements are «;)?-formal 
as discussed above. Secondly because the integral cohomology of their 
complements is known to be torsion-free, see [19]. In general, for a hy
persurface S consisting of non-linear irreducible components, H*(X, Z) 
will have torsion, and thus, at least conceptually, the chances of get
ting non-vanishing Massey products in H*(X,IFp) are already greater. 
However, it is possible for a non-linear hypersurface to have torsion-free 
H*(X, Z) as long as sufficiently many components of it are hyperplanes. 
We will briefly consider an example of such a non-linear hypersurface 
that nevertheless has triple non-vanishing Massey products. 
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The arrangement A of Theorem 1.1 is the full monomial arrange
ment A(r, 1, 3) in C3 , with r = p ~ 3. These arrangements are members 
of a series of complex reflection arrangements, A(r, 1, d), associated to 
the full monomial reflection group G(r, 1, d), see [1, 4, 19]. For r ~ 1 
and d ~ 2 let A(r, 1, d) be defined by the polynomial 

Q=zl"'Zd· IT (z[-zj). 
l:<=;i<j:<=;d 

Note that the arrangements A(1, 1, d) and A(2, 1, d) are the Coxeter 
arrangements of type A and respectively B. 

For A a complex hyperplane arrangement in Cd, with complement 
X and group G = 7r1 (X), it is known that the rings H*9(X,][{) and 
H*9 ( G, ][{) are isomorphic for ][{ a field or Z, see for example [15]. 
Moreover, the complement to A(r, 1, d) is a K(7r, 1) with 1!' the pure 
braid group P(r, 1, d) associated to G(r, 1, d), see Orlik and Solomon [18]. 
Taking advantage of this, we use the cochains of G rather than those of 
X to compute Massey products. We will use a presentation of P(r, 1, d) 
obtained by Cohen [2]. 

A key role in the computations is played by the so-called resonance 
varieties of the arrangement, see [8, 15]. The resonance variety R(A, ][{) 
over a field][{ of an arrangement A is the subvariety of H 1 (X,][{) encod
ing the vanishing cup products: 

R(A, ][{) = {.X E H 1 (X, ][{) I 3 J.l ~][{.X such that .XU J.l = 0} . 

The knowledge of the classes in H 1 (X,][{) that cup zero is especially 
needed for calculating a triple Massey product (a, (3, 'Y) as that is well
defined only when a U (3 = (3 U 1 = 0. In [8], Falk gives a combinatorial 
recipe to detect posible essential components of R(A, OC). For A = 
A(r, 1, 3), the classes used to define the non-vanishing Massey products 
belong to such components arising when ][{ = IF P' for the special primes 
p dividing r. It can be shown that A(r, 1, 3) presents non-vanishing 1Fp
Massey products for all primes p and all multiples r of p (multiples of 4 
if p = 2). Here only the case r = p is treated. 

The paper is organized as follows. In Section 2 we define the triple 
Massey products of a 2-complex associated to a finitely presented group, 
and explain how they can be computed from the presentation. In Sec
tion 3 we introduce the monomial arrangements and give presentations 
by generators and relators of the fundamental groups of their comple
ments. In Section 4 we exhibit non-vanishing triple Massey products 
in the IF p-cohomology of the complements to 3-dimensional monomial 
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arrangements, for p an odd prime. We also present a non-linear ar
rangement of curves in CP2 whose complement has non-vanishing triple 
Massey products over JF2. In the last section we pose some further ques
tions that we intend to explore elsewhere. 

§2. Massey products of OW-complexes 

The results on Massey products that we need may be found in the 
works of Porter [20], Turaev [21], and Fenn and Sjerve [9, 10]. In these 
papers the Massey products of !-cohomology classes are computed in 
terms of the so-called Magnus coefficients, via the free calculus of Fox. 
Unless otherwise specified, all the homology and cohomology groups will 
have coefficients in lFp, the integers modulo a prime p. 

Definition 2.1. Let X be a space of the homotopy type of a OW
complex. If o:, {3, 'Y in H 1(X) are such that o: U f3 = f3 U 'Y = 0 then the 
triple Massey product (o:, {3, 'Yl is defined as follows: Choose representa
tive 1-cocycles o:', {3', 1' and cochains x, yin 0 1 (X) such that dx = o:'Uf3' 
and dy = {3'U"f 1• Then z = o:'Uy+xU"(' is a 2-cocycle. The cohomology 
classes z E H 2(X) constructed in this way are only determined up to 
o: U H 1(X) + H 1(X) U "(,and they form a set denoted by (o:, {3, 'Yl· 

As pointed out by May [16], the indeterminacy is a vector space, and 
so (o:, {3, 'Yl can be thought of as a coset modulo o: U H 1 (X)+ H 1 (X) U"(. 
The triple Massey product (o:, {3, 'Yl is said to be vanishing if this coset 
is trivial. 

In this paper X will always be a K(G, 1) for G a finitely presented 
group. We will identify from now on the cohomology of X with that of 
G. 

Let G = (x1, ... , Xn j R1, ... , Rm) be a presentation for G = 11"1(X). 
Assume that Rz is a commutator and that the presentation is minimal. 
By Hopf's formula the homology classes of the relators Rz form a basis 
in H2( G, 7!.) = zm. Morover, the generators Xi determine a basis of 
H1 ( G, 7!.) = zn. Let ei be the dual basis in H 1 ( G, 7!.) = zn. 

Let F be the free group on x1, ... , Xn. If w is a word in F then 
its Fox derivative 81 ( w) is computed by the following rules: 81 (1) = 
0, aj(Xi) = bi,j, and aj(uv) = aj(u)E(v) + uaj(v), where E: ZF---+ 7!. is 
the augmentation of the group ring ZF. 

Let I= (h, ... , iq) be a multi-index with i1 taking values in 1, ... , n. 

The Magnus !-coefficient of a word w is defined by E~0l(w) = c81 (w), 
where a I( w) =ail ... aiq ( w). The lFp-valued Magnus coefficients c}Pl (w) 
of w are defined simply by taking integers modulo the prime p. Most 
of the time we will drop the reference to it and simply write c1 (w) for 
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E}P)(w). We will usually refer to Ei,j(w) and Ei,j,k(w) as a double, and 
respectively triple Magnus coefficient. 

The following result [9, 10, 20, 21] will be used to compute triple 
Massey products. Let a, (3, 'Y be cohomology classes in H 1(G) such that 
aU (3 = (3 U 'Y = 0. Denote by (·, ·) the Kronecker pairing between 
cohomology and homology. Then we have: 

Theorem 2.2. The Massey product (a, (3, 'Y) of a = L aiei, (3 = 

Lf3jej, 'Y = L'Ykek contains e, where: 

(e, Rl) = L aif3i'Yk . Ei,j,k(Rl)· 
l~i,j,k~n 

From now on by (a, (3, 'Y) we will understand the coset of the class e 
modulo the indeterminacy aU H 1 (G)+ H 1 (G) U 'Y. The Massey product 
(a, (3, 'Y) = e is functorial with respect to maps of spaces, as shown by 
Fenn and Sjerve in [9, 10). 

The following formulae can readily deduced from the definitions and 
they will be used to compute the Magnus coefficients of a commutator 
word. 

(2.2) 
Ek,l,m([u, v]) =Ek(u)E!,m(v)- Em(u)Ek,l(v) + Ek,l(u)Em(v)- Ek(v)Ez,m(u)+ 

(Ek(v)El(u)- Ek(u)Ez(v)) · (Em(u) + Em(v)). 

We will also need formulae for products of conjugated generators: 

j j 

(2.3) Ek(X~1 • • • x~3 ) = L Ek(xiJ = L 8k,ia · 
a=l a=l 

(2.4) 
j 

Ek,l(X~1 • • • x~i) = L (Ek(wa)8l,ia- Ez(wa)8k,iJ + L 8k,ia8l,ib' 
a=l l~a<b~j 

where xa = axa-l and 8i,j is Kronecker's delta. 
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§3. Monomial arrangements and their groups 

We introduce in this section our main examples of hypersurfaces 
whose complements have non-vanishing Massey products in the lFp
cohomology. They are the complex reflection arrangements A(r, 1, d) 
associated with the monomial reflection group G(r, 1, d). Their comple
ments are K(1r, 1) spaces and for all practical purposes we will identify 
their cohomology with that of their fundamental groups. We will de
scribe here the group presentations that will be used in the Massey 
products computation. 

3.1. Arrangements groups 

We start with a brief overview of the fundamental group of hy
perplane complements. Let A be a hyperplane arrangement in the 
affine space <Cd and X its complement. Let us recall now the most 
salient features of the fundamental group G = 1rl(X) as a finitely pre
sentable group. For all the details see [19]. First G is generated by 
the meridians /H around each hyperplane HE A. Each codim 2 inter
section Hi, n · · · n Hi" of hyperplanes in A determines n - 1 relations: 
g1g2 · · · gn = g2 · · · gn · g1 = · · · = gn · g1 · · · gn-1, where gj is some con
jugate of the generator Xj = gH1. We denote by [g1, ... , gn] the family 
of commutator relators [g1 ... gi, gi+l ... gnJ, with 1 :::; i < n. 

Thus we are lead to compute the Magnus coefficients of relators in 
families of the form: [x~', ... , x~,n ]. Note that the indices ij are all 
d. t" t D t b Rj th t t [ Wt w; Wj+I Wn] 1s me . eno e y I,w e commu a or xi, ... Xi1 , xiJ+, ... , xin · . 

The Magnus coefficients of order 2 of Ri,w are given by: 

j n 

(3.1) Ek,l (Rrw) = L L (8k,ia8l,ib- 8k,ia8k,iJ· 

a=l b=j+l 

It is easily seen that: 

1 if k = ia and l = ib, 

for some 1 ::::: a ::::: j and j + 1 :::; b ::::: n 

-1 ifk=ibandl=ia, 

for some 1 ::::: a ::::: j and j + 1 :::; b ::::: n 

0 otherwise. 

The Magnus coefficients of order 3 of R11. are given by: ,w 
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if k = ia, 

l = ib, m ¢.I 

if k = ib, 

l = ia, m ¢_I 

if k = ia, 

l = ia', m = ib 

if k = ib, 

l = ib', m = ia 

if k = ia, 

l = ib, m = ia' 

Ez(wb')- Ez(wa)- Em(wb) + 8b5,b' - 1 if k = ia, 

l = ib, m = ib' 

Ek(wa)- Em(wa) + 1 if k = ib, 

l = ia, m = ib' 

Ez(wa')- Ez(wb)- Em(wa) + 8a5,a' + 1 if k = ib, 

l = ia, m = ia' 
0 otherwise. 

where always 1 :::; a, a' :::; j and j + 1 :::; b, b' :::; n. 

3.2. Monomial arrangements 

We introduce now our main class of examples. For r ?: 1 and d ?: 2 
let A(r, 1, d) be the arrangement defined by: 

Q = Z1 • · · Zd · IT (z[- zj). 
15,i<j5,d 

The complement of A(r, 1,d) is a K(rr, 1) with 1r the pure braid 
group P(r, 1, d) associated to the full monomial complex reflection group 
G(r, 1, d), see [1, 18]. The group P(r, 1, d) admits an iterated semidirect 
product structure: P( r, 1, d) = Fn1 ~ • • • ~ Fn 1 , where ni = ( i - 1 )r + 1 
for 1 :::; i:::; r, as shown in [1]. 

A presentation for P( r, 1, d) was obtained by Cohen in [2]. Following 
that paper, let us first describe the co dim 2 intersections among the 
hyperplanes of A(r, 1, d): 
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(3.3) 

(3.4) 

(3.5) 

(3.6) 

D. Matei 

Hi n H(l) n · · · n H(r-l) n H n H(r) 
t,J t,J J t,J 

H k n H},~, if k =I= i or k > j 
H (q) H(s) "f · · k l d" t" t i,j n k,l , I Z, J, , IS InC , 

H (q) H(s) H(t) "f ( d ) 
i,j n j,k n i,k, I t = q + s mo r , 

where Hi = { Zi = 0}, 1 :::; i :::; 3, and Hi(,;) = { zi = (q Zj }, where 
( = exp(27ri/r), 1:::; i < j:::; 3 and 1:::; q:::; r. 

We focus now on the cased= 3. In [2] a presentation of P(r, 1, 3) 
is given having 3r + 3 generators, say XI, ... , x 3r+3, and 2r2 + 6r + 3 
relators. We group these relators in nine families corresponding to the 
types of the codimension 2 intersections. 

(3.7) 

A= [x3r+l, XI, ... , Xr-l, X3r+2, Xr], 

(3.8) 

B = [x3r+l,X2r+l,···,X3r-l,X3r+3,X3r], 

(3.9) 

(3.10) 

Dl,s = [x3r+l, Xr+i]' 1 :::; s:::; r, 
(3.11) 

D2,s = [x3r+3,Xi], 1 :S s :S r, 

(3.12) 

D3 's = [ XiXi+l"""Xr-1 X2r ] 1 < < 
X3r+2 'x2r+i ' - S - r, 

(3.13) 

Ts = [xs, X2r+Sl X2r l' 1 :::; s :::; r, 
(3.14) 

U _ [ X2r-t+l"""X2r-1] 1 < 
t,s - X"' X2r-t, X2r+s-t , _ t < S :'S r, 

(3.15) 

v: _ [ X3r+l X2r-t+l"""X2·r-1] 1 < < t 
s,t - Xs 'X2r-t, X3r+s-t ' - S- < r. 

Now, recall that the notation R = [x~', ... , x'f,n] stands for the fol
lowing set of commutators: { RJ = [x:U' ... x':'j, x':'J+' ... , x:U"]I1 :::; j < 

"1 "J "J+l "n 
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n}. Thus, in agreement with the notations of (3.7)-(3.15), the relators 
in P(r, 1, 3) will be denoted by: Ai, Bi, Ci, where j = 1, ... , r + 1, and 
D1,s, D2,s, D3,s, where j = 1 and is omitted, and finally T1, U/, 8 , V!,t, 
where j = 1, 2. 

§4. Non-vanishing triple Massey products 

In this section we will present non-vanishing triple Massey products 
in the IF P cohomology of certain hypersurface complements. All such 
products will be of the form (a, a, j3) with a and j3linearly independent. 
The main example will consist of the monomial arrangements introduced 
in the previous section. We will also give an example of a non-linear 
arrangement of curves with the desired non-vanishing property. 

4.1. Resonance varieties 

We first determine the vanishing cup products in H 2(X,1Fp), for 
X the complement of a monomial arrangement A, using an invariant 
of a cohomology ring introduced by Falk in [8]. The resonance variety 
R(A,IFp) of an arrangement A is the subvariety of H 1 (X,1Fp) defined 
by: 

In [8] it is shown how one can construct components of R(A,IFp) 
from the so-called neighborly partitions of the arrangement A. The 
neighborly partitions of the monomial arrangements A = A(r, 1, 3) have 
been determined in [4]. The most interesting for us is the partition 

II = (H3, Hi~ I H2, HW I H1, H~;)) giving rise to a component Crr of 
R(A, 1Fp) having the following equations: 

>.1 + · · · + Ar = Ar+l + · · · + A2r-1 = A2r+l + · · · + A3r-l = 0 

>.i + >.2r + >.2r+i = 0, 1 ::; i ::; r, 

(4.1) Ai + A2r-j + A2r+i-j = 0, 1::; j < i::; r, 

Ai + A2r-j + A3r+i-j = 0, 1 ::; i ::; j < r, 
A3r+l = A3r+2 = A3r+3 = 0 

It is easily seen that dim Crr = 3 if p divides r (or 4 divides r, if 
p = 2), and dim Crr = 2, otherwise. 

4.2. Massey products of monomial arrangements 

We prove here the main result, showing that, in general, Massey 
products in the positive characteristic cohomology of a hypersurface 
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complement may not vanish modulo indeterminacy, although over the 
rationals they always do so. 

Theorem 4.1. For every odd prime p the complement X of the 
arrangement A(p, 1, 3) in C3 of degree 3p + 3 has non-vanishing triple 
Massey products in H 2 (X,1Fp)· 

Proof. We will show that a certain triple product (o:, o:, (3) does not 
vanish modulo its indeterminacy. The cohomology classes o: and (3 are 
given in coordinates by 

and respectively by 

f3 : f3i = 0, f3r+i = 1, f32r+i = -1, f33r+l = f33r+2 = f33r+3 = 0, 

where 1 :S i :Sr. Clearly the points o: and (3 satisfy the equations (4.1), 
so they belong to Crr, and moreover o: U (3 = 0. Using (3.2) we can 
express (o:, o:, (3) in the basis of H 2 (X, IFp) given by the duals of the 
relators (3.7)-(3.15), abusing the notation for the sake of simplicity. 

(4.2) 
p p 

(o:,o:,(3) = L(j -1)C1 + (p-1)CP+l_ :Lr.? + L tUls+ 
j=l s=l l:O:::t<s:O:::p 

t~\+ , 
l:O:::s::;t<p 

Next, using (3.1), we obtain the indeterminacy o:UH1(X)+H1 (X)U 
(3. If a = I: aiei and b = I: biei are arbitrary classes in H 1 (X) then we 
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find the following expression for a U a + b U /3: 

(4.3) 

(~a.+ a3v+I + a3v+2) ( t(j- l)Ai + (p- l)Av+I) + 

( ~ b2v+• + b3p+l + b3p+3) ( tu -l)Bi + (p- l)Bv+l)

( ~(ap+s + bp+s) + a3p+2 + a3p+3 + b3p+2 + b3p+3) 

(tu -l)Ci + (p -l)cv+I) + (a3p+l + b3p+I) ~Dl,s-

p p p 

a3p+3 L D2,s- b3p+2 L D3,s + L (as+ a2p+s + a2p) (T.1 + T 8
2) + 

s=l s=l s=l 
p 

L (b.+ b2p+s + b2p) r; + L (a.+ a2p-t + a2p+s-t) Ut1,.-

l~t<s~p l~s~t<p 

L (bs + b2p-t + b3p+s-t) V.~t· 
l~s~t<p 

We want to show that the triple Massey product (a, a, /3) does not 
vanish modulo indeterminacy. Suppose that it does vanish, and so there 
exist a and b in H 1 (X) such that (a, a, /3) is of the form aU a+ b U /3. 
This leads to the following set of equations over IFp: 

p p 

( 4.4) Las + a3p+l + a3p+2 = L b2p+s + b3p+l + b3p+3 = 0, 
s=l s=l 

p 

(4.5) L(ap+s + bp+s) + a3p+2 + a3p+3 + b3p+2 + b3p+3 = -1, 
s=l 

(4.6) a3p+l + b3p+l = a3p+3 = b3p+2 = 0, 

(4.7) as+ a2p+s + a2p = 0, bs + b2p+s + b2p = -1, 

(4.8) as+ a2p-t + a2p+s-t = t, bs + b2p-t + b2p+s-t = -1, 

(4.9) as+ a2p-t + a3p+s-t = t, bs + b2p-t + b3p+s-t = -1, 

where the ranges of the indices in (4. 7), ( 4.8), and (4.9) are those in (4.3). 
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Now from (4.7), (4.8), and (4.9) we can readily see that we must 
have: 

p p p p p p 

2:as = 2:av+s = 2:a2p+s = o and "L.::bs = "L.::bv+s = 2:b2p+s = o. 
s=l s=l s=l s=l s=l s=l 

From these equations combined with ( 4.4), ( 4.5) and ( 4.6) we obtain: 

But this system of equations clearly has no solution. 
Q.E.D. 

Remark 4.2. We will show elsewhere that in fact any triple Massey 
product in H 2 (P, IF p) of the form (a, a, f3) with a and f3 (not propor
tional) in Cn C R(P,lFp) C H 1(P,lFp) does not vanish modulo the 
indeterminacy aU H 1 (P, lFv) + H 1 (P, lF p) U {3, if p I r (or 4 I r, if p = 2), 
where P = P(r, 1, 3). Thus it will follow that for every prime p and 
multiple N ~ 3 of p (of 4 if p = 2) there exists a line arrangement A 
in C2 of degree 3N + 3 whose complement X has non-vanishing triple 
Massey products in H 2(X, IFp)· 

4.3. Curves with non-linear components 

Let C = Q2 u T1 u T2 u T3 be the curve in CP2 of degree 5, consisting 
of a smooth irreducible curve Q2 of degree 2 and three lines T1, T2, T3 
tangent to Q2 . As explained by Kaneko, Tokunaga and Yoshida in [11], 
this curve is related with the discriminant of a certain crystallographic 
group, thus is of the same nature as the above reflection arrangements. 
In [11] a presentation for the fundamental group of the complement to 
c in CP2 is determined: 

An easy computation with double Magnus coefficients shows that all 
lF2 cup products eiue1 vanish except for e1 Ue2 . Moreover, by computing 
triple Magnus coefficients we can see that the Massey products (a, a, /3) 
over lF2 do not vanish, if a~ JF2 · (e1 + e2 + e3). 

Remark 4.3. It is possible to generalize this example to a curve 
C = Qd U T1 U · · · U Tn of degree d + n, where Qd is a smooth irreducible 
curve of degree d ~ 2 and T 1 ... Tn are n ~ d+ 1 tangent lines to Q. Then 
the complement X of C will have non-vanishing triple Massey products 
of the form (a, a, /3) in H 2 (X, IFp), for every prime p dividing d. 
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§5. Further questions 

We end the paper by raising a few questions: 

(1) Note that the above arrangements exhibiting non-vanishing 
Massey products do not admit linear equations over the re
als! Is it true that real complexified arrangements never have 
non-vanishing Massey products? Computational evidence sug
gest that in this case Massey products in H 2 (X, lF P) indeed all 
vanish. 

(2) All non-orientable matroids realizable over some Q(o:) lead to 
complex arrangements with non-vanishing Massey products? 

(3) Is there an analogue of Kohno's result over lFP? Is it true that 
non-vanishing of higher Massey products over lF P implies that 
the lFp-completion of 7r1 (X) is not isomporhic to the completed 
holonomy algebra of H9(X, lFp)? 

(4) Do non-linear curves (with enough cohomology) always present 
non-vanishing Massey products? 

(5) Are there any good criteria for lFv-formality of X? In this 
context, what is the role played by the lower p-central series of 
7ri(X)? 
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