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Criticality of Generalized Schrodinger Operators
and Differentiability of Spectral Functions

Masayoshi Takeda and Kaneharu Tsuchida

Abstract.

Let i be a positive Radon measure in the Kato class. We consider
the spectral bound C(\) = —inf o(H*) (A € R!) of a generalized
Schrédinger operator HM = —%A — M on R?, and show that the
spectral bound is differentiable if d < 4 and p is Green-tight.

§1. Introduction

Let (D, H'(R%)) be the classical Dirichlet integral and u a positive
Radon measure in the Kato class. For a Schrédinger operator HM =
—1A — A, X € R, define the spectral function C(\) by

C(\) = —inf{f:0€a(H™)}
= —inf {lD(u,u) - )\/ #2dp : uw € HY(R?), / u?dr = 1} ,
2 R4 R4

where o(H*) is the set of the spectrum of H* and 4 is a quasi-
continuous version of u. In this paper, we study the differentiability
of the function C(A).

When the potential p is a function in a certain Kato class, Arendt
and Batty [3] proved that the spectral function is differentiable at A =0
and its derivative equals to zero ([3, Corollary 2.10]). Using a large de-
viation principle for additive functionals of the Brownian motion, Wu
[27] obtained a necessary and sufficient condition for the spectral func-
tion being differentiable at 0. In [24] one of the authors extended Wu’s
result to measures which may be singular with respect to the Lebesgue
measure. Furthermore, one of the authors showed that if d < 2 and the
measure p is Green-tight (in notation, p € K3°), the spectral function is
differentiable on R!. Here the class X$° was introduced in Zhao [29](see
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Definition 2.1 (II) below). A main objective of this paper is to extend
the results in [24] as follows:

Theorem 1.1. Ifd < 4 and p € K, then the spectral function
C(}) is differentiable for all A € RL.

Define AT = inf{A > 0 : C(\) > 0}. We then see that AT = 0
for d < 2 and At > 0 for d > 3 and the proof of Theorem 1.1 is
reduced to the proof of the differentiability of C(\) at A = A*t. In
[24], the differentiablity at A = 0 is derived from the fact that for d < 2
the Brownian motion is a Harris recurrent process with infinite invariant
measure, the Lebesgue measure. We will extend this method for d = 3, 4
by applying the criticality theory of Schrédinger operators.

We first extend the criticality theory to the generalized Schrédinger
operator H*; we show in Corollary 3.5 below that if d > 3, then the oper-
ator HA ¥ is critical, that is, H*# does not admit the minimal positive
Green function but admits a positive continuous HA " #_harmonic func-
tion. This harmonic function is called a ground state, which is uniquely
determined up to constant multiplication. Moreover, if d = 3, 4, HAH
is null critical, that is, the ground state does not belong to L2. In
fact, denoting by & the ground state, we prove in section 5 that h(z) is
equivalent to the Green function G(0,z) of the Brownian motion on a
neighbourhood of the infinity; there exist positive constants ¢, C such
that

(1D z |d T S h(z) < || > 1.

C
|z|d— Tpld—2"
The criticality and the null criticality are regarded as extended notions
of recurrence and null recurrence respectively. Using these facts, we see
that if d = 3, 4, the h-transformed process generated by the Markov
semigroup

PN A f(2) = —— exp(—tH  #) (k) (z)

h(z)
becomes a Harris recurrent Markov process with infinite invariant mea-
sure h?dz. Furthermore, through the h-transformation a functional in-
equality for the critical Schrédinger form is derived (Theorem 4.4) ; the
inequality is an extenstion of Oshima’s inequality ([11]) which holds for
the Dirichlet forms generated by symmetric Harris recurrent Markov
processes. We now obtain Theorem 1.1 by applying the argument in
[24] to the transformed process. This is a key idea of the proof of Theo-
rem 1.1. The equation (1) tells us that if d > 5, H ® becomes positive
critical, that is, the ground state belongs to L?. Thus we can not use
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our method and have not known yet whether C()\) is differentable or
not. '
The criticality of Schrédinger operators is studied by many people
(M. Murata, Y. Pinchover, R. Pinsky,...). In particular, the equation
(1) was shown by Murata [10] for classical Schrédinger operators on R4
and extended by Pinchover [12] to second order elliptic operators in a
domain of R?.

Our motivation lies in the proof of the large deviation principle for
continuous additive functional A} in the Revuz correspondence with
p. The function C()) is regarded as a logarithmic moment generating
function of the additive functional A* (see [21]), and the differentiability
of logarithmic moment generating functions play a crucial role in the
Gartner-Ellis Theorem (see [7]). In fact, using Theorem 1.1, we can
show the large deviation principle for additive functional A} associated
with p € K.

82. Preliminaries

Let W = (P,, B;) be a Brownian motion on R? (d > 3). Let p(t,z,y)
be the transition density function of W and G(z,y) its Green function,
G(z,y) = C(d)|z — y|>~¢, where C(d) = (2m)"'I'(% — 1). For a measure
p, the O-potential of p is defined by Gu(z) = [, G(z,y)u(dy). Let P,
be the semigroup of W, P, f(z) = [z p(t,z,y)f(y)dy = Ez[f(B:)]. The
Dirichlet form of W is given by (1/2D, H*(R%)) where D denotes the
classical Dirichlet integral and H*(R?) is the Sobolev space of order 1
([8, Example 4.4.1]). Let (1/2D, H}(R?)) denote the extended Dirichlet
form of (1/2D, H*(R?)) ([8, p.36]). Note that H!(R?) is a Hilbert space
with inner product D because W is transient ([8, Theorem 1.5.3]). Let
Go(z,y) be the a-resolvent kernel of W.

Throughout this paper, the Lebesgue measure is denoted by m and
m(dz) is abbriviated to dz. For r > 0, we denote by B(r) an open
ball with radius R centered at the origin. We use ¢, C, ..., etc as positive
constants which may be different at different occurrences. We now define
classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measure yu on R? is said to
be in the Kato class (1 € Kq in notation), if

) lim sup / G(z,y)u(dy) = 0.
=0 2er? Jjo—y|<a
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(II) A measure p is in KJ° if p is in Kq and satisfies

(3) lim sup / G(z,y)u(dy) = 0.
R—»oowemd lyl>R

For u € Kg4, define a symmetric bilinear form £# by
() £ (u,u) = ;D(ww) — [ Pdu, ue H'RY,
Rd

where % is a quasi continuous version of « ([8, Theorem 2.1.3]). In the se-
quel, we always assume that every function u € H2(R?) is represented by
its quasi continuous version. Since u € ICy charges no set of zero capacity
by [2, Theorem 3.3|, the form £* is well defined. We see from [2, Theorem
4.1] that (€#, H'(R?)) becomes a lower semi-bounded closed symmetric
form. We call (E#, HY(R?)) a Schrédinger form. Denote by H* the self-
adjoint operator generated by (£#, H'(R%)): &#(u,v) = (HFu,v). Let
P} be the L%-semigroup generated by H*: P! = exp(—tH*). We see
from [2, Theorem 6.3(iv)| that P} admits a symmetric integral kernel
pH(t,z,y) which is jointly continuous on (0,00) x R% x R4,

For p € K4, AY denotes a positive continuous additive functional
which is in the Revuz correspondence with u: for any positive Borel
function f and v-excessive function A,

1 t
(%) <t 5=l 1B | [ 5(BI0AE].

([8, p-188]). By the Feynman-Kac formula, the semigroup P} is written
as

(6) Ff f(z) = Eq[exp(AY)f(B:)].

§3. Criticality and ground state

Definition 3.1. A real-valued function h is said to be harmonic on
a dmr_zain D with respect to H* if for any relatively compact open set
GcGCD,

(1) h(z) = Eglexp(AL_)h(Br;)], z€G,

where Tg s the first exit time from G, 7¢ = inf{t > 0: B; ¢ G}.

We formally write a H*-harmonic function h as H*h = 0. An
operator H* is said to be subcritical if H* possesses the minimal positive
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Green function G*(z,y), that is,
G'@y) = [ Pltavdt<co, ziy
0

The operator H* is said to be critical if G*(z,y) = oo and a positive
continuous H¥-harmonic function exists. If the operator H* is neither
subcritical nor critical, it is said to be supercritical (see [13, p.145]).

The spectral function C()) is defined by the bottom of the spectrum
of HM: for p € KL,

(8) C()\) = —inf {8)"“(u, u); u€ Hl(Rd),/ uldz = 1} .
R4
Define
AT = inf{A>0:C()\) > 0}.
We then see that C(\) =0 for A < AT ([23]).

Lemma 3.1. For p € K3°, there exists a positive continuous func-
tion such that H> #h = 0.

Proof. Let A, be the bottom of spectrum of H " for the Dirichlet
problem on B(n). Since 0 = —C(At) < A1 < An, H ¥ is suberit-
ical on B(n). Let G™ denotes the Green operator of H* ¥ on B(n).
We define a function h, by h,(z) = ¢,G"*1I,, (x), where I, is the
indicator function of A,(= B(n + 1) \ B(n)) and c, is the normalized
constant, ¢, = (G"*1I4, (0))"!. Then h, is a harmonic function on
B(m), m < n. Indeed, for z € B(m)

Eulexp(\ A Yhn (B, )] = caBalexp(A* A2 )G™ 1. (B, )]
Tn+1
— c\E. [exp(vAﬁm)EB,m [ / exp<A+A:*)IA,.<Bt>dt”,
0

where 7, = inf{t > 0 : B; ¢ B(m)}. By the strong Markov property,
the right hand side is equal to

Tn+1 09.,-m
bt [T expN (s, + A 001, ), (Busr, )t
0

Tn41907, +Tm
= cuEs [ / exp(/\+Af)IAn(Bt)dt].

Noting that 7,41 06, + T, = Th41 and fOT"‘ exp(At AY)I4, (By)dt = 0,
we see that the last term is equal to hy(z). Therefore h, satisfies (7)
for G = B(m).
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Now by [4, Corollary 7.8], {h,} is uniformly bounded and equicon-
tinuous on B(1), so we can choose a subsequence of {h,} which con-

verges uniformly on B(1). We denote the subsequence by {hg)}. Next
take a subsequence {hslz)} of {h&l)} so that it converges uniformly on
B(2). By the same procedure, we take a subsequence {hﬁmﬂ)} of
{hﬁ,’")} so that it converges uniformly on B(m + 1). Then the function,
h(z) = limp—.c0 AT (z), is a desired one. Q.E.D.

Lemma 3.2. The following statements are equivalent:

(i) inf{%D(u,u) u € HY(R?), /Rd u?dy = 1} <1;
(ii) inf {8“(u,u) TuUE Hl(Rd),/Rd uldr = 1} <0.

Proof. Assume (i). Then there exists a gy € C$°(R?) such that

Jga ©3dp = 1 and 1/2D(po,p0) < 1. Letting up = ‘PO/\/fRd pidz, we
have E#(ug, ug) < 0.
(it) = (i) follows similarly. Q.E.D.

Remark 3.3. We see from [25, Lemma 3.5] that if

inf{lD(u,u) : / uldy = 1} <1,
2 R
then

inf {8“(u,u) : uldr = 1} <0.

R4
However, the converse does not hold in general. Indeed, let p = opg,
the surface measure of the sphere dB(R). Then if R < %, the first
infimum is greater than 1, while the second infimum is equal to 0 ([25]).

Lemma 3.4. Let p € K. Then the number AT is characterized as
a unique positive number such that

©) inf {%D(u, w2t /R wldp = 1} —1

Proof. Define
FO) =inf{%D(u,u): A/Rd W?(c)u(dz) = 1},

Note that F'(A\) = F(1)/X. Then F(1) is nothing but the bottom of
spectrum of the time changed process by the additive functional A% ([22,
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Lemma 3.1]). We see by [23, Lemma 3.1] that 1-resolvent Rf of the
time changed process satisfies R}l € Cy(R?). Hence it follows from
(17, Corollary 3.2] and [23, Corollary 2.2] that F/(1) > 0. Consequently
we see that A° = F(1) is a unique positive constant such that F(\°) = 1.
Lemma 3.2 leads us that A\ = AT, Q.E.D.

Corollary 3.5. For u € K3, the operator HX'# is critical.

Proof. Let F(X) be the function in the proof of Lemma 3.4. Then
it is known in [25, Theorem 3.9] that the operator H* is subcritical if

and only if F(A) > 1. Hence by Lemma 3.1 and Lemma 3.4, H*'# is
critical. Q.E.D.

Lemma 3.6. A positive H B -harmonic function h satisfies
P} Hh(z) < h(z).
Proof. Let x € B(m). By Definition 3.1, h satisfies
h(z) = Bylexp(X* A% )h(B,,)]

for any n > m. Here 7, is the first exit time from B(n). It follows from
the Markov property that

E;lexp(AT AV)R(B:);t < T
= Eglexp(A\T AY)exp(ATA¥ o0 60,)h(B:, 00;);t < 7]
= Eglexp(At A% )h(B;,);t < Tm| < h(z).

Hence we have
PMPh(z) = lim E,lexp(\t A)A(By);t < Tm] < h(z).
Q.E.D.

Let P, be a positive semigroup with integral kernel p(t,z,y). A
positive function h is called P;-ezcessive if h satisfies P;h(z) < h(zx).
For a Pi-excessive function h(z), the h-transformed semigroup P} is
defined by
10 PM@ = [ epts b))y, t>0, o,y <R

re h(x)

Then P} becomes a Markovian semigroup.

Let h be the function defined in Lemma 3.1. We see from Lemma 3.6
that the h-transformed semigroup Pt)‘ woh generates a h?m-symmetric
Markov process WAk = (PATwh X,). Note that W' 4 is recurrent
because of the criticality of HAH,
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Lemma 3.7. Finely continuous Pt)‘+“ -excessive functions are unique
up to constant multiplication.
Proof. We follow the argument in [13, Theorem 4.3.4]. Let A, h’ be

finely continuous Pt'\+“ -excessive functions. Since
K 4
E. [t a8 (5 ) (80| < 1 @)

we have
Atk E/ < P_I
e )| < ),
where EX"#h is the expectation of h-transformed process W*"#*. For
y € R? and € > 0, we put U.(y) = {2 : |h(2) — h(y)| < €}. Since U(y) is
finely open, oy, (y) < 00, Pz)‘+"’h—a.s [8, Problem 4.6.3]. Replacing ¢ by
0, We have

(1) B2 )| < F o),

Note that the left hand side of (11) converges to %,(y) as € — 0. We

then have
[ h' W
T = e i )| <m0
h/
< ﬁ(z).
Since z and y are arbitrary, h'/h is a constant function. Q.E.D.

Now we give known facts on the Kato class.

Theorem 3.8 ([20]). Let u € K4. Then for any u € H(R%)

2 [ @) < |Gale (Dl +a [ a)is).

R4
It is known from [1] (also see [28]) that u € K  if and only if
(13) lim_[|Gaplloo = 0.

Therefore we see that for any e there exists a constant M (e) such that
for any u € H(R?)

(14) /R w(z)u(dz) < Dl u) + M(e) / w2(z)dz.

Rd
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For a measure p, let pg(-) = p(- N B(R)) and pge = pu(- N B(R)®).

Lemma 3.9. If p € K, then the embedding of H:(R?) to L?(u)
18 compact.

Proof. Let {u,} be a sequence in H!(R?) such that
Un — up € HI(R?), D-weakly.

Rellich’s theorem says that for any compact set K C R¢
(15) unlx — uolg  L?(m)-strongly.

Now, for ¢ € C§°(R?) with ¢ =1 on B(R)
/ fun — vo[*r(dz) = / luntp — ow|*r(dz)
R¢ Ré
< eD(unp — uop, Unp — uop) + M (e) /d [ung — uop|2dz
R

by (14), and the second term converges to 0 as n — oo by (15). Since
sup D(unp — uop, Unp — uop) < 00
n

by the principle of uniform boundedness and ¢ is arbitrary, u,, converges
to ug in L%(ug). Moreover, since by Theorem 3.8,

/ [ty — uo|?p(dz) = / [, — uo|?ur(dz) +/ |tn, — uo|?pRe(dx)
R4 Ré Ré
< [ un — wol(de) + |Gl owD (= o, = ),
R

lim Sup/ lun — uo|*p(dz) < ||Gpre|loo Sup D(un — uo, Un — uo)-
n—oo Re n
Hence according to the definition of K3° the right hand side converges to

0 by letting R to oo. Therefore {u,} is an L%(u)-convergent sequence.
Q.E.D.

Assume that H* is subcritical or critical. Let h be a positive HH*-
harmonic function. We denote by D.(E#) the family of m-measurable
function u on R? such that |u| < co m-a.e. and there exists an £¥-
Cauchy sequence {u,} of functions in H'(R%) such that lim, o tn = u
m-a.e. We call {u,,} as above an approzimating sequence for u € D.(EH).
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Note that the Dirichlet form (£#% D(£#")) associated with the
Markov semigroup P} s given by

EWh(u,v) = E¥(hu, hv)
D(E*M) = {ue L*(R%h%dz): hu € D(E*)}.

Then we see that u € D.(E#) if and only if u/h € D.(E*P), where
D.(E*") is the entended Dirichlet space of (E#" D(£#")). Conse-
quently, the Schrodinger form £# can be well extended to D.(E*) as
a symmetric form: for u € D.(E*) and its approximating sequence {u,}

(16) EF¥(u,u) = lim E*(un,un), u € D,(EH)

(see [8, p.35]). We call (E#, D.(E*)) the extended Schridinger form. We
see from [18, Definition 1.6] that a function u belongs to D.(E) if there
exists a sequence {u, } of functions in H?! (Rd) such that lim,, oo un, = u
m-a.e. and

sup EH(up, un) < 00.

If (&, H(R?)) is a subcritical Schrédinger form, that is, the asso-
ciated operator H* be subcritical, then (£#,D.(£*)) becomes a Hilbert
space by [8, Lemma 1.5.5]. In particular, a positive H*-harmonic func-
tion & does not belong to D (E#). If (E#, H'(R?)) is a critical Schrodinger
form, that is, the associated operator H* be critical, its ground state h
belongs to D.(E*) on account of [8, Theotem 1.6.3]. Noting that for
neKy

E¥(u,u) < (1/2 + [|Gptlloo)D(u, )

by Theorem 3.8, we see that D.(E#) includes H1(R9).

For w > 0 € Cy(R?) define v = Aty —w-m. We then see that H” is
subcritical. Let G¥(z,y) be the Green function of H” and G” the Green
operator,

(17) 6*1(@) = [ (0w

By [26, Theorem 3.1], the Green function G¥(z,y) is equivalent to
G(z,y): there exist positive constants ¢, C such that

(18) cG(z,y) < G¥(z,y) < CG(z,y) forz#y.

Lemma 3.10. For a positive function ¢ € Cy(R?), G*¢ belongs to
D.(E¥)
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Proof. Let G be the B-resolvent associated with H”. Then Gie
belongs to H*(R?) and G%p — G”¢ as 3 — 0. Moreover,

E¥ (G, Gpp) < E5(GRe, Gip) = (9, Ghp) < (0,G¥p)

and the right hand side is not greater than C(p,Gy) < oo by (18).
Q.E.D.

The next theorem is first obtained by Murata [10, Theorem 2.2]
when the potential p is absolutely continuous with respect to the
Lebesgue measure.

Theorem 3.11. For w € Co(R?) with w > 0, w Z 0, let v =
At pu—w-m. The positive continuous H B _harmonic function h satisfies

(19) W) = [ 6 @ nhwumi.

Proof. Note that by Lemma 3.9 there exists a function uy € H(R?)
such that ug attains the infimum:

inf {%D(u,u) :u € H(RY), X"/ uldp = 1} =1.
R4

The function ug then satisfies the following equation:
%D(uo,f) = /\+/ uofdp for all f € HX(R?),
R4
and thus by the definition of v
E¥ (ug, f) = / uofwdz for all f € H}(R?).
R4
On account of the definition of the extended Schrédinger form, we see
that the equation above is extended to any f € D.(€¥). Since Gy €
D.(£) for any ¢ € Co(R?) by Lemma 3.10, we obtain, by substituting
GV for f
/ wo(@)p(z)dz = / wo(2)w(z) G (z)dz = / G (uow) (2)p(x) de,
R4 R4 R4

thus

uo(z) = /Rd G” (z,y)uo(y)w(y)dy, m-a.e.
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Let
o(z) = E, [ /0 "~ exp(AY Juo(B.)w(Be)dt|,
Then the function v(z) equals to up(z) m-a.e. and satisfies
oe) = [ G @ un)ul)dy, ma
Moreover, v(z) is a finely continuous Pt)‘+” -excessive function. Indeed,

WB) = Ba, | 5 exp(atua(Bu( Bt
=E, [ I5” exp(AY 0 0,)uo(Byys)w(Byys)dt

— exp(~ DB | [ exp(4fuo( B (Bt
— exp(—AY) [, exp(AY)uo(Bs)w(By)dt.

(20) 7 ]

fs]

and the first term of the last equality is right continuous because of
the right continuity of F,. Hence v is finely continuous ([10,Theorem
A.2.7]), and thus v(z) = up(z) q.e. Consequently

(21) v(z) = E, [/000 exp(A;’)v(Bt)w(Bt)dt] for any .

Let M, = E,[f;° exp(AY)v(By)w(B;)dt|F,]. Then according to (20) and
(21)

exp (42" )0(3) = expl [ w(Bu)d) exp(42)0(30)
= o)+ [ ol [ wBIwaM, - [ ep(a B )u(B)ds
+ [ o) el [ wB)muE,)s
— o(Bo)+ /0 " expl /0 " w(Bu)dw)dM,,
which implies that

E,[exp(A) #)v(By)] < v(z).
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Hence h(z) = cv(z) by Lemma 3.7, and thus for all =

(22) ha) = [ G @ohu)dy.

Q.ED.

§4. An extension of Oshima’s inequality

In this section, we extend Oshima’s inequality in [11] to critical
Schrodinger forms. The inequality plays a crucial role for the proof of
the differentiability of C()\).

Lemma 4.1. Let h be a positive continuous H "B _harmonic func-

tion. Then the h-transformed semigroup Pt’\+“ o of Pt’\+“ has the strong
Feller property.

Proof. Following the argument in [6, Corollary 5.2.7], we can prove
this lemma. Q.E.D.

Proposition 4.2. For the ground state h, the h-trasformed process
WA b — (PATmh X, is Harris recurrent, that is, for a non-negative

function f,
(23) / f(Xi)dt = oo, P:‘+"‘h-a.s.
0

whenever m({z : f(z) > 0}) > 0.

Proof. Since Pt>‘+“ h generates the h?m-symmetric recurrent Markov
process, we see from [8, Theorem 4.6.6] that

(24) Py los060, <00, ¥n >0l =1 for qe. z € R,

where A = {z : f(z) > 0}. Moreover, since the Markov process WATpah
has transition density with respect to h?m, (24) holds for all z € R?
by [8, Problem 4.6.3]. Hence according to [16, Chapter X, Proposition
(3.11)], we have the equation (23). Q.E.D.

Theorem 4.3. For the form EN'E and its ground state h, there
exist a positive function g € L*(h*m) and a function ¢ € Co(R%) with
Ja Wh?dz = 1 such that for u € D(EX"#P)

@) [ @) - b LA < CE (!,
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where C is a positive constant and

L(u) = /R . uph?dz.

Proof. We can apply Oshima’s inequality to the Dirichlet form
(EXTHh D(EX 1R satisfying the Harris recurrence condition: there ex-
ist a positive function g € L*(h?m) and a function ¢ € Co(R?) with
Jra Yh?dz = 1 such that for any u € D(EN 1Y

) [ lute) - L@ @)z < 08 ),
R4
where
L(u) = / uph?dz.
R4
Therefore substituting v/h for v in (26) and noting the relation

S)‘+“’h(v, v) = 8)‘+”(hv, hv),

we obtain the equality (25). Q.E.D.

§5. Differentiability of spectral function

Lemma 5.1 ([24, Lemma 4.3]). Let p € K. Then for any A >
At, the negative spectrum of o(EM) consists of isolated eigenvalues with
finite multiplicities.

Let H* be critical and h its groung state. Then we call H* null
critical if the function h does not belong to L?(m),

Theorem 5.2. Let p € K. If HY'# is null critical, then its
spectral function C()\) is diffentiable.

Proof. Note that by Lemma 5.1, for A > At —C()) is the princi-
pal eigenvalue of Schrodinger operator HM = —%A — Ap. By analytic
perturbation theory [9, Chapter VII], we can see that C()) is differen-
tiable on A > At. Hence we only need to prove the differentiability of
C(X) at A = A*. Since C()) is convex, it is enough to prove that there
exists a sequence {\,} such that A\, | At and dC()\,)/dX | 0. By the
perturbation theory [9, p.405, Chapter VII (4.44)], we see

dc()) .
27 - =
(27) s /R uddy,
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where u) is the L2-normalized eigenfunction corresponding to —C(}\),
that is,

(28) C\) = )\/md uldy — %D(u;,u;).

Using (14) and taking € > 0 so small that A€ < 1/2, we have

_C(/\n) + /\nM(e)
1/2 — Ane '

D(ux,,ux,) <

Noting that C(A,) — 0 as n — oo, we see

(29) supD(uy,,uy,) < oo.
n

Since
EN B(un,, un,) — EMH(ur,,ua,) € (An — AD)IGpllooD(ua,, ua,)

the right hand side converges to 0 as n — oo by (29). Thus we obtain

(30) lim S”\+“(u>‘n,u>\n) =0.

n— o0

For the ground state h of HAE let HAT#P be the h-transformed opera-
tor. For ¢ € Co(R?) with [p. wh2dz =1, let L(u) = [pa uw(z)¢(z)h?(z)dz.

Then we have
< \// u? d:c\/ Y2 (z)h?(z)dz < .
R T R4

Hence we can choose a sequence {\,} tending to A* such that L(ux, /h)
converges to a certain constant C. Noting by Thorem 4.3,

/ luy, — Ch|ghdz

S/|UA

< o “(uxn,uxn)“u / |L<3;f>—0|gh2dz~+o,
Re

— Chlghdz

)|ghd:c +

we see uy, — Ch a.e. by choosing a subsequence if necessary. Since

1 =liminf [ w3} dr _>_/ liminf u} dz = CZ/ h?dz,
R " R Re

n—oo d M—oo
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the constant C must be equal to 0 on account of the null criticality.
Since C(),) is an eigenvalue for —H #, uy = e COnEPrnby,
Thus we have by [2, Theorem 6.1 (iii)]

luaalloo < €O P g 00 < (1B ||2,00 < 00

Also we can assume that uy, — 0 g.e. as k — oo by choosing a subse-
quence. Therefore we have

lim sup / uin dy
n—oo Rd
< timsup [ o du +limsup [Gurells D, )
n— 00 R4 -0
< |GpgelloM.
By letting R to co, we complete the proof. Q.E.D.

Finally we consider the situation in Theorem 5.2. By Theorem 3.11
we have

c / G*(z,y)w(y)dy < h(z) < C / G (@, y)w(y)dy,
K K

where K is the support of w. Let B(R) D K. Applying the Harnack
inequality to G¥(z,-), z € B(R)°, we see that

cG*(z,0) < h{r) < CG¥(z,0) on z € B(R)".
We see from the equation (18) that the ground state h satisfies
(31) ¢G(z,0) < h(z) < CG(z,0), on z € B(R).

Hence we see that if d < 4, h is not in L2, that is, HA'E s null critical.
Therefore combining {24, Theorem 4.3] and Theorem 5.2, we obtain
Theorem 1.1.
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