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Operator means and their norms 

Fumio Hiai and Hideki Kosaki 

§1. Introduction 

In his very interesting (unpublished) 1979 notes [17] A. Mcintosh 
obtained the following arithmetic-geometric mean inequality for Hilbert 
space operators H, K, X: 

(1) IIHXKII ~ ~IIH*HX +XKK*II-

Among other things he also pointed out that simple alternative proofs for 
so-called Heinz-type inequalities ([9], and see also the discussions in §2) 
are possible based on this inequality. Then, about 15 years later Bhatia 
and Davis ([4]) noticed that the inequality remains valid for all unitarily 
invariant norms (including the Schatten norms II · liP and so on). Recall 
that a norm 111·111 for Hilbert space operators is called unitarily invariant 
when IIIUXVIII = IIIXIII for unitary operators U, V, and basic facts on 
these norms can be found for example in [8, 10, 19]. In recent years 
the arithmetic-geometric mean and related inequalities have been under 
active investigation by several authors, and very readable accounts on 
this subject can be found in [1, 3]. 

Motivated by all of the above, the authors have investigated sim
ple unified proofs for known (as well as some new) norm inequalities, 
some refinement of the norm inequality (1) (such as the arithmetic
logarithmic-geometric mean inequality), and a general theory on opera
tor (and/or matrix) means in a series of recent articles [15, 11, 12]. The 
purpose of the present notes is to give a brief survey on the topics dealt 
in these articles. 

We will derive a variety of integral expressions for relevant operators 
to establish desired norm inequalities. This means that our arguments 
are not just for proving norm inequalities, but we are actually solving 

2000 Mathematics Subject Classification. Primary 47 A30, 47 A63; Sec
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certain operator equations in a very explicit form. We will briefly touch 
this viewpoint at the end of the article, and more details were worked 
out in [12, §4,(A)]. Some related analysis can be found in [18], where the 
notion of a differential is investigated in detail. We also point out that 
the recent article [6] is technically closely related to our works although 
the main emphasis there may be different from ours. 

§2. Arithmetic-geometric mean and related inequalities 

As was observed in [15] one can obtain simple and unified proofs 
for the norm inequalities mentioned in §1 based on the Poisson integral 
formula for the strip 

S = {z E C; 0:::; lm z:::; 1}. 

Namely, for 0 < () < 1 we set dp,o(t) = ao(t)dt and dvo(t) = bo(t)dt with 

sin( nB) 
ao ( t) = -2 (-,-c-os-h-:-( 1r-t7) '-_-'c-o-s(:-7r~())c-:-) 

d b ( ) sin( 7r()) 
an 8 t = 2( cosh( 1rt) +cos( 7r())) · 

Then, for a bounded continuous function f(z) on the strip S which is 
analytic in the interior, the well-known Poisson integral formula 

f(i()) =I: f(t)dp,o(t) +I: f(i + t)dvo(t) 

is valid (see [20] for example). We point out that the total masses of the 
measures dp,8 (t), dvo(t) are 1- (),()respectively. 

We begin with a simple proof for the arithmetic-geometric mean 
inequality (1). To this end, we may and do assume the positivity of H, K 
(by the standard argument on the polar decomposition). The function 
f(t) = Hl+it X K-it (t E R) extends to a bounded continuous (in the 
strong operator topology) function on the strip S which is analytic in 
the interior. Here, Hit, K-it are understood as unitaries on the support 

spaces of H, K respectively. Since dp,1. (t) = dv1. (t) = d~( ) (with 
2 2 2cos 1rt 

total mass ! ) , we have 

H!xK! = !(4) = I:f(t)dp,!(t)+I:f(i+t)dv!(t) 

l oo Kit(KX + XK)K-it dt . 
-oo 2cosh(7rt) 
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The unitary invariance of Ill · Ill thus implies 

IIIK!xK!III s IIIHX +XKIII x 100 d\ ) = ~IIIHX +XKIII· 
_ 00 2 cosh rrt 2 

Heinz-type inequalities ([9]) deal with operators offorms H~ X Ki ± 
1 1 

Ho XK"P, where p, q 2': 1 with 1/p + 1/q = 1. Note that the preceding 
argument also shows 

(2) H~XK!q =I: HitHxK-itdJ.LJq(t) +I: HitXKK-itdv1,;(t), 

(3) HiXK~ =I: HitHxK-itdJ.L~(t) +I: HitXKK-itdv~(t). 

We note dj.Ll = dv1. and dJ.Ll = dv1.. Hence, by summing up (2) and 
q p p q 

(3), we get 

1 1 1 1 

H"PXK7i +HoXK"P I: Hit(HX +XK)K-itdJ.L!q(t) 

+I: Hit(HX + XK)K-itdv1,; (t) 

,100 Kit(HX + XK)K-itd(J.Ll + Vl)(t). 
-oo q q 

This expression obviously shows 

1 1 1 1 

IIIH"PXKo + HoXK"PIII s IIIHX +XKIII 

since the total mass of the measure d(J.L !q + v !q) ( t) is ~ + ~ = 1. The 
"difference version" 

(4) 
1 1 1 1 

IIIH"PXKo- HoXK"PIII s I~ -11 x IIIHX- XKIII· 

is also valid. Indeed, by subtracting (3) from (2), we have 

H~ XKi -Hi XK~ = 1oo Hit(HX- XK)K-itd(J.L 1 - v 1 )(t). 
-oo q q 

It is plain to see 

sin( 2n) 
q 

cosh(2rrt) - cose;)' 
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and consequently we have 

1 1 1 1 

H"PXK<i- H<iXK"P 

100 SineK) 
= Hit(HX- XK)K~it q dt 

~oo C0Sh(27rt)- COSeqK) 

00 " ( 2K) 1 is is Sin ds 
= H2(HX- XK)K~2 q x -. 

~oo COSh(7rS)- COSeqK) 2 

Let us assume 1 < p < 2. Then, the above measure is exactly df-L!!.. ( s) 
2 

with the total mass 1- ~ = 1- 2(1-.!) = ~- 1 (> 0), showing (4) 
q p p 

in this case. The opposite case 2 < p < oo can be handled simply by 
switching Hand K. 

It follows from ( 4) that 

is valid for 0 < E < ~. Let us assume the invertibility of H, K 2: 0 here. 
By dividing the above by E and then by letting E ~ 0, we easily see 

lll(logH)(H~XK~)- (H~XK~)(logK)III ~ IIIHX- XKIII· 

From this we obtain the following commutator estimate: 

Theorem 1 (Theorem 4, [15]). For operators A, B, X with A, B 
self-adjoint, we have 

II lAX- X Bill ~ Ill exp( 4 )X exp( -~)- exp(-4 )X exp( ~)Ill 

for each unitarily invariant norm Ill · Ill· 

A somewhat related topic is the "matrix Young inequality" due to 
T. Ando. In [2] he showed that for each positive matrices H, K and 
1 < p < oo (with the conjugate exponent q) one can find a unitary 
matrix U satisfying 

(the special case p = q = 2 was dealt in [5]). In particular, 

is valid, however in [2, §7] he pointed out that 

(5) IIIHXKIII ~ III~HPX + ~XKqlll is false 
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(unless p = 2) for example for the operator norm Ill · Ill = II · II· 
Let us try to understand this phenomenon. Assume that H ( = 

exp A), X are matrices, and let A be a diagonal matrix with diagonal 
entries At, A2, · · · , An E R. We set 

Y =I: exp(itA)(~ exp(A)X +~X exp(A)) exp( -itA)f(t)dt 

with f(t) to be determined. The (j, k)-component of Y is 

Therefore, if one wants Y = exp( ~)X exp( ~ ), then one must have 

This requirement is the same as 

(6) 
exp(-;-) exp( ~) 
exp(Aj) + exp(.Ak) 

p q 

1 

that is, 

It is possible to compute explicitly the inverse Fourier transform of this 
function, and indeed we can prove 

(7) 
1 1 "t pvqo(l!.)-• 

!~)= q • 

2 cosh ( nt + ¥ ( ~ - ~)) 

By the standard approximation argument we get the next result in the 
special case H = K. Then, the general case can be handled by the 
well-known 2 x 2-matrix trick: by applying the special case to 

H-=[Ho KO] - [0 X] and X= 0 0 , 

one can look at the (1, 2)-component to get the desired conclusion. 
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Theorem 2 (Theorem 6, [15]). For operators H, K, X with H, K 
positive and p E (1, oo) with the conjugate exponent q we have 

H~XK~ =I: Hit(f,HX + ~XK)K-itf(t)dt 

with the function f(t) defined by (7). In particular, for each unitarily 
invariant norm Ill · Ill we have 

IIIH~XK~III::::; kplllf,HX + ~XKIII 

with kp =I: lf(t)ldt (< oo). 

Notice I: f(t)dt = (Ff)(O) = 1. However, f(t) is complex-valued 

and consequently kp =I: lf(t)ldt > 1 (unless p = 2). This fact corre

sponds to the failure of (5). The constant kp can be rewritten as 

1 1 " 

p"Pqo 12 dB kp=--
7r o J 1 - /'i,2 sin2 () 

with /'i, = sin ( ~ 0 - ~)) . 
Note that kp depends only on p E (1, oo) (independent of the choice of 
111·111), but unfortunately kp blows up when either p ".. 1 or p / oo. On 
the other hand, unitarily invariant norms under which the map A ---.IAI 
is Lipschitz continuous were thoroughly analyzed in [7, 14]. For such a 
unitarily invariant norm Ill ·Ill a constant k = klll·lll can be chosen in 
such a way that · 

IIIH~XK~III::::; klllf,HX + ~XKIII 
is valid for all p E (1, oo) (see [12, Proposition 3.1]). 

§3. Refinement of the arithmetic-geometric mean inequality 

The logarithmic mean of positive scalars >., f-L is 

>.-J-L =11 Atf-L1-tdt. 
log >. - log f-L 0 

The second integral form indicates that for operators H, K, X with 
H, K 2: 0 one can introduce their logarithmic mean by 

L = 11 HtXK1-tdt. 
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The above right side should be understood in the weak sense, i.e., 

(L~,ry) = 11 (HtXK1 -t~,ry)dt (for each vectors ~,ry). 

For simplicity, we set 

G 

A 

H!xK! (geometric mean), 
1 2 (HX + XK) (arithmetic mean), 

and we would like to compare the three means. 
The ratios (between the relevant scalar means) are 

with 
s/2 

91 (s) = sinh(s/2) 
d ( ) tanh(s/2) 

an 92s = / . s 2 
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By repeating the argument (recall (6)) before Theorem 2 with Hit in
stead of eitA, we arrive at the integral expressions 

G 

L 
2dt 

7r 

The densities 7r2 and~ log lcoth (1rt) I here arise as the inverse 
2 cosh ( 1rt) 1r 2 

Fourier transforms of 91 ( s) and 92 ( s). They are positive functions (i.e., 
9i(s)'s are positive definite thanks to the Bochner theorem) with total 
mass 9i(O) = 1. Consequently, we get the following strengthening of (1) 
(i.e., arithmetic-logarithmic-geometric mean inequality): 

Proposition 3 (Proposition 1, [11]). Let H, K, X be Hilbert space 
operators with H, K ?: 0. For any unitarily invariant norm Ill · Ill we 
have 
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Actually, further refinement is possible by introducing the two series 
of operator means corresponding to the following natural scalar means: 

1 m- 1 k m-1-k 
_ L).m-1/1~, 
m 

k=O 

The cases m = 2 and n = 1 correspond to the arithmetic and geo
metric means respectively. Note that what was important in the proof 
of Proposition 3 is the positive definiteness of ratios between relevant 
scalar means, and this reasoning (together with some others) enables us 
to prove 

Theorem 4 (Theorem 5, [11]). Let H, K, X be Hilbert space op
erators with H, K positive, and Ill · Ill be a unitarily invariant norm. 
(i) For each m (?: 1) and n (?: 2), the following inequalities are valid: 

( ii) 

1 m k m 1-k 11 
-Ill l:H=+ 1 XK ~+ 1 Ill :::; Ill HtXK1-tdtlll 
m k=1 o 

< 
n-1 

1 ~ k n-1-k -Ill L..Hn- 1 XK~III < 
n 

k=O 
~IIIHX +X Kill· 

1 m k m+1-k 
The quantity -Ill L H m+ 1 X K-:m::t"illl is monotone increasing in 

m 
k=1 

m, and furthermore we have the monotone convergence 

n-1 
1 ~ k n-1-k 

(iii) The quantity -Ill L.. H n- 1 X K~ Ill is monotone decreasing in 
n 

k=O 
n. 

Notice that the assertion (ii) in the theorem is a certain monotone 
convergence theorem for a norm, and more precise convergence results 
(for operators) for various means are investigated in our recent article 
[13]. 

§4. General means for matrices 

It is clear from the discussions so far that the positive definiteness of 
ratios between involved scalar means is a key to establish norm inequal
ities. This viewpoint in fact enables us to investigate norm comparison 
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of means in a more axiomatic fashion, which makes it possible to han
dle various other means. In this section we explain this approach, but 
for simplicity we will mainly restrict ourselves to finite-dimensional op
erators (see Remark 6 for the infinite-dimensional case). Namely, we 
introduce a certain class of binary means (for positive scalars), to each 
of which one can associate a matrix mean in a natural way. 

By a symmetric homogeneous mean we shall mean a continuous 
positive function on [0, oo) x [0, oo) satisfying 

(a) M(>-., M) = M(f.L, >-.), 
(b) M(a>-., af.L) =aM(>-., M) for any a> 0, 
(c) M ( >-., f.L) is non-decreasing in A and f.L, 
(d) min{A,f.L} ::=:; M(A,f.L):::; max{A,f.L}. 

We denote by 9Jt the set of all such means. 
For HE Mn(C), then x n matrices, we write H 2': 0 if His positive 

semi-definite, and H > 0 if H 2': 0 is invertible. We regard Mn (C) 
as a (finite-dimensional) Hilbert space equipped with the inner product 
(X, Y) = Tr(XY*) (X, Y E Mn(C)). For H, K 2': 0 let LH, RK be the 
left multiplication by H and the right multiplication by K respectively, 
i.e., LHX = HX and RKX = XK for X E Mn(C). Note that they are 
commuting positive operators acting on Mn(C), and for each M E 9Jt 
one can perform the functional calculus M(LH, RK) (which is a positive 
operator acting on Mn(C)). Thus, for each X E Mn(C) we can consider 
M(LH, RK )X (E Mn(C)), which will be simply denoted by M(H, K)X. 

Assume that the spectral decompositions of H, K E Mn(C) are 

n n 

H = LAiPi, K = L/.LjQj 
i=l j=l 

with eigenvalue lists { >-.i}, {Mj} and rank-one projections {Pi}, { Q1} re
spectively. Then, M(H, K) is obviously given by 

(8) 
n 

M(H,K)X = L M(Ai,f.Lj)PiXQj. 
i,j=l 

This means that with the diagonalization 

via unitary matrices U, V we have 

(9) 

where o means the Hadamard product (i.e., the entry-wise product). 
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With the interpretation of M(H, K)X explained so far, we can prove 

Theorem 5 (Theorem 1.1, [12]). For means M, N E 9J1 the fol-
lowing conditions are equivalent: 

(i) one can find a symmetric probability measure v on R satisfying 

M(H,K)X = 1: Hi 8 (N(H,K)X)K-i 8 dv(s) 

for all matrices H, K, X (of any size) with H, K > 0; 
(ii) onehasiiiM(H,K)XIII:::; IIIN(H,K)XIIIforeachmatricesH,K, 

X (of any size) with H, K ?: 0 and for each unitarily invariant 

norm 111·111; 

(iii) one has IIM(H, H)XII :::; IIN(H, H)XII for each matrices H, X 
(of any size) with H ?: 0; 

(. ) r ).. ( ) [ M ( .>..i, Aj)] IV Jor each AI, .Az, ... , n > 0 with any n , N(.A· ).. ·) . . is 
2' J I~l,J~n 

a positive semi-definite matrix; 
(v) the function M(et, 1)/N(et, 1) is positive definite on R. 

In the above, the measure v in ( i) is the representing one for the ratio 
M(et, 1)/N(et, 1) in the Bochner theorem, i.e., 

We consider the following typical one-parameter families of means: 

with -= :::; a :::; CXJ. The arithmetic, logarithmic and geometric means 
appear as 

MI(.A,JL) 

MI;z(.A, JL) 

(= lim Ma(.A, JL)), 
log).. -log f.L a.-> I 

~' 



while it is easy to see 

M ___E_ (> .. ' JL) n-1 

Operator means 

1 n-l k k-1 -L:,\n-1JLn-1 (n=2,3,···), 
n 

k=O 
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(which correspond to the operator means appeared in Theorem 4). On 
the other hand, with the special choice a = 1/n 

is the usual binomial mean. 
For -oo :::; a :S: {3 :::; oo one can prove the positive definiteness of the 

ratio 

Ma(et, 1) 
M13(et, 1) 

(a- 1){3 (eat- 1)(e<f3-l)t- 1) 
~~~ X ~--~~~~~~ 
a({J- 1) (e(a-l)t- 1)(ef3t- 1) 

(a- 1){3 sinh(at/2) sinh(({J- 1)t/2) 
~~~x---,-~-,---:-----'--~~~---::-:-':-'-:-:--C-
a({J- 1) sinh((a- 1)t/2) sinh({Jt/2) 

(see [12, Theorem 2.1]). Therefore, thanks to Theorem 5 we can ob
tain further generalization of Theorem 4 in §3. One can also prove the 
positive definiteness of ratios such as 

Note 

M1;2(et, 1) 
Ba(et, 1) 

Bljn(et, 1) 
M2(et, 1) 

( 
1 ) 1/a 

cosh(at/2) (a> O), 

coshn(t/2n) 

cosh(t/2) 

1 1= its ds 
cosht = -= e 2cosh(7rs/2)' 

and the positive definiteness of the former is indeed a consequence of the 
infinite divisibility of the probability measure (2cosh(7rs/2))- 1ds. From 
these we conclude 

IIIH112 XK112 III :S: ;n Ill t (~)H~Kn~k Ill :S: ~IIIHX +X Kill 
k=O 
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for instance (see [12, Proposition 3.3]). Some other means as well as a 
variety of comparison results for their norms (based on Theorem 5) are 
obtained in [12]. 

The idea behind Theorem 5 (especially the integral representation 
for matrix means) can be also adopted to obtain solutions to certain ma
trix equations in a very explicit way. To see a flavor of this application, 
as a typical example we consider the matrix equation 

for a unknown matrix Y with positive invertible matrices H, K. The 
equation means M1 ( H, K) Y = X with the logarithmic mean M1 ( >.., J-t) = 

1 ).. - ~ . It is plain to see that the reciprocal is M 0 (>.. -1, f.-t- 1 ), and 
og>..- ogJ-t 

it follows from the expression (9) that the unique solution Y is given by 

Y = Mo(H- 1 , K- 1 )X. 

The comparison of Mo with M 1; 2 , for instance, supplies the integral 
expression 

y -1= H-~+is XK-~-is 7rds 
--co 2cosh2 (7rs) 

for this solution. Furthermore, the different integral expressions 

and 
y = r= r= e-sH X e-tK dsdt 

Jo Jo s + t 
for the same Y are also possible based on some other tools (see [12]). 

Remark 6. It is possible to generalize Theorem 5 to infinite-dimen
sional operators. Namely, we simply replace Mn(C) by the Hilbert space 
C2(H) of Hilbert-Schmidt class operators. In this setting the multiplica
tion operators LH, RK (positive operators in B(C2 (H))) can be also con
sidered for arbitrary positive operators H, K ~ 0. Consequently, as long 
as X is taken from C2 (H), the mean M(H,K)X = M(LH,RK)X (E 
C2 (H)) makes a perfect sense. With this interpretation the theorem re
mains valid for Hilbert space operators. In [12, §4,(C)] the requirement 
X E C2(H) was not explicitly mentioned, and we apologize for this inac
curacy. 
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A theory of means M(H, K)X with X E B(H) is more preferable. 
Such a theory is developed in our recent article [13] based on the theory of 
double integral transformations. Roughly speaking it is a continuous ver
sion of (8), and for a very wide class of scalar means M(>., JL) (including 
all the examples in [12]) corresponding operator means M(H, K)X ( E 
B(H)) are completely justified for each X E B(H). Moreover, in the 
forthcoming article [16] we will obtain a variety of new norm inequali
ties not covered here (nor in [11, 12, 13, 15]). 
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