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Algebraic Shifting and Spectral Sequences

Art M. Duval

Abstract.

There is a canonical spectral sequence associated to any filtration
of simplicial complexes. Algebraically shifting a finite filtration of
simplicial complexes produces a new filtration of shifted complexes.

‘We prove that certain sums of the dimensions of the limit terms
of the spectral sequence of a filtration weakly decrease by algebraically
shifting the filtration. A key step is the combinatorial interpretation
of the dimensions of the limit terms of the spectral sequence of a
filtration consisting of near-cones.

§1. Introduction

The key step of Bjérner and Kalai’s characterization [BK] of f-
vectors and Betti numbers of simplicial complexes was that algebraically
shifting a simplicial complex K produces a new complex A(K) whose
homology Betti numbers are the same as those of K, i.e.,

1) pI(K) = B*(A(K)).

But the Betti numbers of A(K) are much easier to compute, because
A(K) is shifted and hence a near-cone.

Relative homology is a little less straightforward. First note that
if L C K are a pair of simplicial complexes, then A(L) C A(K) [Ka2,
Theorem 2.2]. The equality (1) above becomes merely an inequality for
relative homology,

BUK, L) < BUA(K), A(L));

in other words, relative Betti numbers (weakly) increase in each dimen-
sion [Du2] (see also [R8], where a more general result, on generic initial
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ideals and Grobner bases, was subsequently proved). As with the Betti
numbers of a single near-cone, the relative Betti numbers of a pair of
near-cones are easy to compute.

‘We now examine what happens when a finite filtration

(2) ’C@ZKggKlggKm:K

of a simplicial complex K is algebraically shifted, i.e., when each sub-
complex in the filtration is algebraically shifted, giving a new filtration

A(K): 0= A(Ko) € A(KL) C -+ € AlKm) = A(K).

In particular, we will be concerned with a cohomology spectral sequence
of this filtration whose limit terms El ..., E™ filter the cohomology
H*(K,k) of K over a field k. That is, dimE. + --- + dim E? =
B*(K) = ﬁ*(K,k); we can think of ES  as providing the contribu-
tion of K \K,_1 to the cohomology of K. Our main result (Theorem
6.1) is that the quantity dim EL +---+dim EZ, (weakly) decreases, and
hence dim EPF! + ... 4 dim E™ (weakly) increases, by applying alge-
braic shifting. In some sense then, algebraic shifting moves more of the
cohomology to later in the filtration of K. Relative homology is just the
n=2,p=1 case, as F2 = fI*(Kg,Kl) for the filtration § C K; C K>.

As with Betti numbers and relative Betti numbers, the quantity
dim EL + --- + dim EZ, is easy to compute for near-cones, and this is
an important step of the proof.

Section 2 reviews the necessary background for simplicial complexes,
including the exterior face ring, in which all our subsequent calcula-
tions take place. In Section 3, we first construct the spectral sequence
corresponding to K, and then use elementary manipulations to replace
dim E, + --- + dim EP, by an expression not using spectral sequences.
Then in Section 4 we interpret this expression combinatorially for near-
cones; this combinatorial interpretation resembles and complements the
combinatorial interpretations of the Betti numbers of a near-cone and
the relative Betti numbers of a pair of near-cones. In Section 5, we
briefly review algebraic shifting, and then modify arguments from [Du2]
to prove the key inequality. Section 6 proves Theorem 6.1, which merely
consists of tying together the results of the previous three sections.

§2. Simplicial complexes

For any subset S of a simplicial complex K, let S, denote the set of ¢-
dimensional faces of §. In particular, K, is the set of ¢-dimensional faces
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of K itself; context should distinguish between K, for the g-dimensional
faces of K, and K, for a member of the filtration (2).

Let k be a field, fixed throughout the paper. The gth Betti number
of a simplicial complex K is 39 = 89(K) = dimg, fIQ(K), where I:TQ(K) is
the gth reduced cohomology group of K (with respect to k). Recall that
over a field k, dimy HY(K; k) = dimg H,(K;k), so that Betti numbers
measure reduced homology as well as reduced cohomology.

Definition. Let K be a (d—1)-dimensional simplicial complex on
vertex set [n] :={1,...,n}. Let V = {e1,...,e,}, and let A(kV) denote
the exterior algebra of the vector space kV'; it has a k-vector space basis
consisting of all the monomials eg = e;, A -+ Ae;,, where § = {ig <
<+ <4} C [n] (and eg = 1). Note that A(kV) = @Z;ilAq”rl(kV) is a
graded k-algebra, and that A9T1(kV) has basis {es: |S] = ¢+ 1}. Let
(Ik)q be the subspace of A7 (kV) generated by the basis {es: S| =
g+1, S¢ K}. Then Iy := EBZ;l_l(IK)q is the homogeneous graded ideal
of A(kV) generated by {es: S & K}. Let AYK] := AT kV)/(IKk)q-
Then the graded quotient algebra A[K] := @g;l_lAq [K] = A(kV) /I is
called the ezterior face ring of K (over k).

The exterior face ring is the exterior algebra analogue to the Stanley-
Reisner face ring of a simplicial complex [St]. For = € kV, let 7 denote
the image of z in A[K]. For S C K, let

S = span{ép: F € S}.

As with I = Ix above, I, will denote the g-dimensional part of any
homogeneous graded subspace I contained in A[K]. .

It is not hard to verify (or see equation (3) below) that the usual
coboundary operator §: AY[K] — AYT![K] used to compute cohomology
may be given by §: T — f/\ﬁf, where f =ej+---+e,. However, it will be
necessary (see Section 5) to use a more “generic” coboundary operator,
which will not change cohomology. Let k= k(aq1, a1a,... ,any) be the
field extension over k by n? transcendentals, {;;}1<i j<n, algebraically
independent over k. We will consider A[K] as being over k instead of k
from now on. We are, in effect, simply adjoining these «;;’s to our field
of coefficients.

For now, we will only need the first n transcendentals, a1, ..., 1n.
Let fi = ajie1 + -+ + cypen. Then define the weighted coboundary
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operator §: A[K] — A[K] by 6: % — f1 A, so

(3) 6(55) = fﬂ‘i ANEs = Zaljgj Neg = Z ialjgsu{j}
j=1 Jj&s
Su{j}ek
(hence the name weighted coboundary operator). Betti numbers may be
computed using this §, i.e., 39(K) = dimg(ker §),/(im 6), [BK, pp. 289
290).

83. Spectral sequences

The filtration (2) in Section 1 naturally gives rise to a filtration of
ideals in A[K], as follows. For 0 < s < m, define

Q° = K\Ks
so the ideals és form a filtration
(4) AK]=Q°2---2Q™=0=Ig.

By e.g. [Sp, p. 493], there is a convergent spectral sequence E, corre-
sponding to this filtration. By this we mean that there is a sequence of
pairs {(E,,d;)}r>1, where: E, is a bigraded vector space over a field k;
d is a differential on E,. of bidegree (r,1—7) (so d,: ES* — EStmi=r+1),
H(E,) := (kerd,/imd,) & Fry1; EP' = HV(K\K,_1); and Eo is
associated to a filtration on H*(K), in that ES! = ker(H*Vt(K) —
H*""(Ks11))/ ker(HSTH(K) — H"(Kj)). For every E* expression in
this section, the “total degree” s+t is fixed, at say g, so we will suppress
the “complementary degree” t, and write E> to mean E297° (s is called
the “filtered degree”). Similarly, every subspace of A[K] is understood
to be just the g-dimensional component, and so we will write I to mean
I,. For further details on spectral sequences of filtrations, see, e.g., [Sp,
Section 9.1].
It is straightforward to verify that

z:! ZE 4 Q0

"L LT 6z + @

S

and d, = 6 form a spectral sequence corresponding to the filtration (4)
as described above, where

78 ={ce Q% bce Q*"}).
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(The verification is analagous to that for the homology spectral sequence
of a filtration [Sp, pp. 469-470].) Then, letting r — oo,

s—1
ES = oo —
Z5, + (imé6 N @s—1)
Z5 + Q¢
5) =T T
(im&N Q1) + Qs

where

75, = {ce Q% 6c=0} = Q° Nkeré.

Lemma 3.1. For the spectral sequence defined above,

OP
dim EL4! + .- + dim EZ97? = dim (ker§ + Q%)q 9 )q.
(im & + QP),

Proof. - Recall that the total degree s+t of every E2* is fixed at g,
as is the dimension of every subspace of A[K], and so we suppress the

¢’s in the proof.
By equation (5),

(ker 6§ N Q*~1) + Q°

(im& N Q1) + Q*

© _ (ker6+§s)ﬂ£2~5_1‘
(imé+ Q3)NnQs-1

ES =

The result now follows by an easy induction on p. For p = 1, by equation

(6),

1 (ker6+QHNQ°  kers+ Q!
C (mé+QH)NQ°  imé+ Q'
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If p > 1, then
dimEL + -+ dim B2, =Y (dim EL, + --- + dim EZ*) + dim EZ,
_@) g KO+ Q7!
imé + Qpr-1

1 dig dT6 @ NQP
(imé +Qr)NQr1

0 i e £0) 2
(imé + Qr) + QP!

(ker § + QP) N QP~?

(imé 4+ Qr) N Qr—1

ker 6 + @p

imé + @P .

+ dim

=" dim

Equality = above is by induction and equation (6), equality =(3) fol-
lows from QP C QP~1, and equality =® is a routine exercise in linear
algebra (or see [Du2, Lemma 5.1]). Q.ED.

§4. Near-cones

Let v be a vertex of a simplicial complex K. Let
delgv=delv:={Fe K:vUF ¢ K}
be the deletion of v (in K), let
kgv=lkv:={FeK:vgF, vUF € K}
be the link of v (in K), and let the star of v (in K) be
vxlkv={Fe K:vUF € K}
the cone over lkv. Then K may be partitioned
K = (v*lkv) Udelw.

The link and star of v are subcomplexes of K.

We will say K is a near-cone with apez v if every face F' in delg v
has its entire boundary {F\w: w € F} contained in v * lkx v. In this
case, every face of delk v is a facet (i.e., is maximal in K), since vxlkv is
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a subcomplex. If we contract the subcomplex v *lk v to v, what remains
is a sphere for every face in del v; therefore

(7) BYUK) = #{F € delg v: dim F = ¢}
when K is a near-cone with apex v [BK, Theorem 4.3].

Lemma 4.1. If K is a near-cone with aper v, then §(lkv) =
{6€r: F € lkv} is a basis for imé.

Proof. The members of 6(lk v) are linearly independent because if
F € lkv then Ser has nontrivial support on €,z, but if G € lkv and
G # F, then §eg has no support on €,,r. Thus for each member of
6(lkv) there is a face on which it alone has nontrivial support; linear
independence follows immediately.

On the other hand, we will show that if G € lkv, then é€s is in the
span of §(lkv). If G € delw, then §ég = 0, since G is a facet. The only
possibility remaining is that G = v U F for F' € lkv. In that case

berp = *Tajeq + Z +010€ P

wHv
FUweK
SO
0=6%F = tar,06c+ » Fo1w6epuw,
wH#v
FUweK
and so
fec= Y + (a“") 5(F Uw).
A1y
wHv
FUweK

Now, if v U (FUw) € K, then FUw € delv, so F Uw is a facet and so
8€pcw = 0. But if vU(FUw) € K, then FUw € lkv, 50 §€pyy,, € §(lkv).
Thus e is in the span of §(lkv). Q.ED.

Lemma 4.2. If K is a near-cone with apex v, then
ker§ = D + im 6,

where D = delg v.

Proof. Since every face in D = delg v is a facet, D C ker 6, so
D +imé C kerd.
By equation (7),

dim(ker §) — dim(im 6) = 8*(K) = |delv| = dim D.
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Thus
dim(D + im §) = dim D + dim(im §) — dim(D N im &)
= dim(ker ) — dim(D M im 6).
So now it only remains to show that
(8) DNimé = 0.

To this end, recall from the proof of Lemma 4.1 that each éér in
6(lkv) is the unique element of §(lk v) with nonzero support on €,y r,
but now note further that v U F' € delv. Thus any nonzero element

of imé = §(lkv) has nontrivial support outside delwv, which establishes
equation (8), and hence the lemma. Q.E.D.

Lemma 4.3. If K = LUQ is a partition of the faces of a near-
cone K into two disjoint subsets, then

(ker§ + Q),
(im 6 + é)q

Proof. Again let D = delg v. Then

dim =#{FeLgsvgF, vUF¢K}.

keré—!—@ - 5+im6+é

=~ = = by Lemma 4.2
imé+Q imé+ @
N D
DN (imé + é)
= ~D = by equation (8)
Dn@
D
DNQ
Thus,
. (keré + Q
am " Da _1p ) (D)
(im 6 + Q)q
= |delg v N Lg|

=#{FeLsvgF, vUF ¢gK}.
Q.E.D.
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§5. Algebraic shifting

Algebraic shifting transforms a simplicial complex into a shifted sim-
plicial complex with many of the same algebraic properties of the orig-
inal complex. Algebraic shifting was introduced by Kalai in [Kal]; our
exposition is summarized from [BK] and included for completeness.

Definition. If R= {rg <--- <7q} and S = {sg < --- < 54} are
(g + 1)-subsets of [n] = {1,...,n}, then:
e R <p S under the standard partial order if r; < s; for all ; and
e R <y S under the lexicographic order if there is a j such that
r;<sjand r;=s; fori<j.
Lexicographic order is a total order which refines the partial order.

Definition. A collection C of (g + 1)-subsets of [n] is shifted if
R <p S and S € C together imply that R € C. A simplicial complex A
is shifted if the set of g-dimensional faces of A is shifted for every gq.

It is not hard to see that shifted simplicial complexes are near-cones
with apex 1.

Recall (see Section 2) that {a;;}1<i j<n are n? transcendentals ad-
joined to our field of coefficients.

Definition (Kalai). For 1 <14 < n, let
n
fi= Zaijeja
j=1

s0 {f1,..., fn} forms a “generic” basis of kV. (Note this is consistent
with our definition of f; in Section 2.) Define fs := fi, A--- A f;, for
S ={ip < - <iq} (and set fy =1). Let

A(K, k) :={S C [n]: fs & span{fr: R < S}}

be the algebraically shifted complex obtained from K; we will write A(K)
instead of A(K, k) when the field is understood to be k. In other words,
the (g+1)-subsets of A(K') can be chosen by listing all the (g+1)-subsets
of [n] in lexicographic order and omitting those that are in the span of
earlier subsets on the list, modulo Ix and with respect to the f-basis.

The algebraically shifted complex A(K) is (as its name suggests)
shifted, and is independent of the numbering of the vertices of K [BK,
Theorem 3.1].

Recall from Section 1 that if L C K is a pair of simplicial com-
plexes, then A(L) C A(K). Thus for @ = K\L, we may define A(Q) =
A(K)\A(L).
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Lemma 5.1. Let L C K be a pair of simplicial complezes and
Q = K\L. Then

dim 0+ Qg >#{FeA(L);:1¢F, 1TUF ¢ A(K)}.
(imé + Q)q
Proof. This is implicit in the proof of [Du2, Theorem 5.2]. As it is
not stated there explicitly, we reproduce here some of the details. From
[Du2, Lemma 4.4]

dim(imé N Q)1 < #{F € A(K): 1¢ F, LUF € A(Q)},
and from [Du2, Lemma 4.5]
dim(6Q)g11 = #{F € A(Q): 1 € F, 1UF € A(Q)}.

Then, since L = K\Q,

dim 328 0 Qg <#{FeA(L);:1¢F, 1UFc AQ)}.
(6Q)q+1
By equations (1) and (7), respectively,
BUL) =B A(L) =#{F € A(L)g: 1 ¢ F, 1UF ¢ A(L)}.

But, with the notation §7*Q := {Z € A[K]: 6% € Q}, we also have

q — di (6_16)‘1
BYL) = dim ——(im6 o). by [Dul, Lemma 3.3]
=dim __Mq_ + dim sz
(ker6 + Q)q (imé + Q)q
= dim (in(sD—Q)‘#—l + dim w by [Dul, Lemma 3.6],
(6Q)q+1 (imé + Q)4
d ~ . ~
an Szim (ker § + Q)q _ §9(L) - dim (im 6D Q)g+1
(imé + Q)q (6Q)g+1

>H#{FeA(L)g:1¢F, 1TUF ¢ A(L)}
—#{FeA(L);:1¢F, 1UF € A(Q)}
=#{FecAL);:1¢F, 1UF ¢ AK)}.
Q.E.D.
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§6. Proof of Main Theorem

Given a filtration K of a simplicial complex K, let ES? refer to the
terms of the corresponding spectral sequence given in Section 3, and let

e>*(K) = dim ES!(K).
Theorem 6.1. For all p,q,
YITHK) 4 -+ ePTP(K) > DT A(K)) + - - - + ePIP(A(K)).
Proof. For 0 < s <m,let £° = A(K)\A(Kj), so
A[AK)]=E0281 2. D8™ = Ik

is the filtration of ideals of A[A(K)] corresponding to the filtration A(K).
By Lemmas 3.1 and 5.1,

(ker 6k + @p)q

> #{F € A(Kp): 1 ¢ F, 1TUF ¢ A(K)}.

eH I K) + -+ - 4+ eP17P(K) = dim

On the other hand, because A(K) is shifted and hence a near-cone,
Lemmas 3.1 and 4.3 give

(ker 5A(K) + ip)q
(im5A(K) + f)p)q
= #{F e A(K,);: 1€ F, 1UF ¢ A(K)}.

Q.E.D.

Note that eb9=1(K) + -+ 4+ e™9~™(K) = B9(K), which, by equation
(1) is unchanged under algebraic shifting. Thus, Theorem 6.1 says that
algebraic shifting puts less of the fixed sum of the e>9~%’s into the ear-
lier part of the filtration, and hence puts more into the later part. In
particular,

DT HA(K)) + - - - + ePIP(A(K)) = dim

ep+1,q—p—1(;C) R 6m,q—m(;C)
< PHHIPTHARK)) + - e™T(A(K)).
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