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Algebraic Shifting and Spectral Sequences 

Art M. Duval 

Abstract. 

There is a canonical spectral sequence associated to any filtration 
of simplicial complexes. Algebraically shifting a finite filtration of 
simplicial complexes produces a new filtration of shifted complexes. 

We prove that certain sums of the dimensions of the limit terms 
of the spectral sequence of a filtration weakly decrease by algebraically 
shifting the filtration. A key step is the combinatorial interpretation 
of the dimensions of the limit terms of the spectral sequence of a 
filtration consisting of near-cones. 

§1. Introduction 

The key step of Bjorner and Kalai's characterization [BK] of !­
vectors and Betti numbers of simplicial complexes was that algebraically 
shifting a simplicial complex K produces a new complex f:l(K) whose 
homology Betti numbers are the same as those of K, i.e., 

(1) 

But the Betti numbers of ll(K) are much easier to compute, because 
f:l(K) is shifted and hence a near-cone. 

Relative homology is a little less straightforward. First note that 
if L ~ K are a pair of simplicial complexes, then f:l(L) ~ f:l(K) [Ka2, 
Theorem 2.2]. The equality (1) above becomes merely an inequality for 
relative homology, 

in other words, relative Betti numbers (weakly) increase in each dimen­
sion [Du2] (see also [Ro], where a more general result, on generic initial 
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ideals and Grabner bases, was subsequently proved). As with the Betti 
numbers of a single near-cone, the relative Betti numbers of a pair of 
near-cones are easy to compute. 

We now examine what happens when a finite filtration 

(2) K: 0 = Ko <;;; K1 <;;; • · • <;;; Km = K 

of a simplicial complex K is algebraically shifted, i.e., when each sub­
complex in the filtration is algebraically shifted, giving a new filtration 

~(K): 0 = ~(Ko) <;;; ~(K!) <;;; • • • <;;; ~(Km) = ~(K). 

In particular, we will be concerned with a cohomology spectral sequence 
of this filtration whose limit terms E)x,, ... , E;;:; filter the cohomology 
H*(K, k) of K over a field k. That is, dimE)x, +···+dimE;;; = 
(3*(K) = H*(K, k); we can think of E~ as providing the contribu­
tion of K 8 \K8 _ 1 to the cohomology of K. Our main result (Theorem 
6.1) is that the quantity dim E)x, +···+dim E'fx, (weakly) decreases, and 
hence dimE~ 1 + · · · + dimE;;:; (weakly) increases, by applying alge­
braic shifting. In some sense then, algebraic shifting moves more of the 
cohomology to later in the filtration of K. Relative homology is just the 
n = 2,p = 1 case, as E?x, = H*(K2, K!) for the filtration 0 <;;; K1 <;;; K2. 

As with Betti numbers and relative Betti numbers, the quantity 
dim E)x, + · · · + dim E'fx, is easy to compute for near-cones, and this is 
an important step of the proof. 

Section 2 reviews the necessary background for simplicial complexes, 
including the exterior face ring, in which all our subsequent calcula­
tions take place. In Section 3, we first construct the spectral sequence 
corresponding to K, and then use elementary manipulations to replace 
dim E)x, + · · · + dim E'fx, by an expression not using spectral sequences. 
Then in Section 4 we interpret this expression combinatorially for near­
cones; this combinatorial interpretation resembles and complements the 
combinatorial interpretations of the Betti numbers of a near-cone and 
the relative Betti numbers of a pair of near-cones. In Section 5, we 
briefly review algebraic shifting, and then modify arguments from [Du2] 
to prove the key inequality. Section 6 proves Theorem 6.1, which merely 
consists of tying together the results of the previous three sections. 

§2. Simplicial complexes 

For any subsetS of a simplicial complex K, let Sq denote the set of q­
dimensional faces of S. In particular, Kq is the set of q-dimensional faces 
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of K itself; context should distinguish between Kq, for the q-dimensional 
faces of K, and K 8 , for a member of the filtration (2). 

Let k be a field, fixed throughout the paper. The qth Betti number 
of a simplicial complex K is j3q = j3q(K) = dimk fiq(K), where fiq(K) is 
the qth reduced cohomology group of K (with respect to k). Recall that 
over a field k, dimk fiq(K; k) = dimk Hq(K; k), so that Betti numbers 
measure reduced homology as well as reduced cohomology. 

Definition. Let K be a ( d- 1 )-dimensional simplicial complex on 
vertex set [n] := {1, ... , n }. Let V = { e1, ... , en}, and let A(kV) denote 
the exterior algebra ofthe vector space kV; it has a k-vector space basis 
consisting of all the monomials es := eio 1\ · · · 1\ ei0 , where S = { i0 < 
· · · < iq} ~ [n] (and e0 = 1). Note that A(kV) = EB;~: 1Aq+l(kV) is a 
graded k-algebra, and that Aq+1(kV) has basis {es: lSI = q + 1}. Let 
(IK)q be the subspace of Aq+1 (kV) generated by the basis {es: lSI = 

q+1, S ~ K}. Then IK := EB~;;;;~ 1 (IK )q is the homogeneous graded ideal 
of A(kV) generated by {es: S ~ K}. Let M[K] := Aq+1 (kV)/(IK)q· 
Then the graded quotient algebra A[K] := EB~;;;;~ 1 Aq[K] = A(kV)/IK is 
called the exterior face ring of K (over k). 

The exterior face ring is the exterior algebra analogue to the Stanley­
Reisner face ring of a simplicial complex [St ]. For x E k V, let x denote 
the image of x in A[K]. For S ~ K, let 

S = span{ep: FE S}. 

As with I = IK above, Iq will denote the q-dimensional part of any 
homogeneous graded subspace I contained in A[K]. 

It is not hard to verify (or see equation (3) below) that the usual 
coboundary operator 8: Aq[K]---> Aq+1 [K] used to compute cohomology 

may be given by 8: x f---7 J 1\x, where f = e1 +···+en. However, it will be 
necessary (see Section 5) to use a more "generic" coboundary operator, 
which will not change cohomology. Let k = k(au, a12, ... , ann) be the 
field extension over k by n 2 transcendentals, { aij h~i,j~n, algebraically 
independent over k. We will consider A[K] as being over k instead of k 
from now on. We are, in effect, simply adjoining these aij 's to our field 
of coefficients. 

For now, we will only need the first n transcendentals, au, ... , aln· 
Let fi = a 11 e1 + · · · + a 1nen. Then define the weighted coboundary 
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operator 8: A[K] -+ A[K] by 8: x ~--+ h 1\ x, so 

n 

(3) 8(es) = h 1\ es = 2:>Xljej 1\ es = L ±aljesu{j} 
j=l j<f.S 

SU{j}EK 

(hence the name weighted coboundary operator). Betti numbers may be 
computed using this 8, i.e., (3q(K) = dimk(ker 8)q/(im 8)q [BK, pp. 289-
290]. 

§3. Spectral sequences 

The filtration (2) in Section 1 naturally gives rise to a filtration of 
ideals in A[K], as follows. For 0 ::::; s ::::; m, define 

so the ideals (Js form a filtration 

(4) 

By e.g. [Sp, p. 493], there is a convergent spectral sequence Er corre­
sponding to this filtration. By this we mean that there is a sequence of 
pairs {(Er,dr)}r?l, where: Er is a bigraded vector space over a field k; 
d is a differential onE of bidegree (r 1-r) (sod · Es,t -+ Es+r,t-r+1)· 

r r ' r· r r ' 

H(Er) := (kerdr/imdr) ~ Er+li E~,t ~ ifs+t(Ks\Ks-1); and B:xo is 
associated to a filtration on H*(K), in that E~l ~ ker(Hs+t(K) -+ 

Hs+t(Ks+d)/ker(Hs+t(K)-+ Hs+t(Ks)). For every E~,t expression in 
this section, the "total degree" s+t is fixed, at say q, so we will suppress 
the "complementary degree" t, and write E: to mean E~,q-s ( s is called 
the "filtered degree"). Similarly, every subspace of A[K] is understood 
to be just the q-dimensional component, and so we will write I to mean 
Iq· For further details on spectral sequences of filtrations, see, e.g., [Sp, 
Section 9.1]. 

It is straightforward to verify that 

and dr = 8 form a spectral sequence corresponding to the filtration ( 4) 
as described above, where 
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(The verification is analagous to that for the homology spectral sequence 
of a filtration [Sp, pp. 469-470].) Then, letting r----> oo, 

zs-1 
Es = oo 

00 z~ + (im8 n Qs-1) 

(5) 
z:--1 + (Js 

where 

Z:'x, = {c E Q8 : 8c = 0} = Qs n ker8. 

Lemma 3.1. For the spectral sequence defined above, 

(ker8 + QP) 
dimE,;;q-1 + · · · + dimE~q-p =dim q. 

(im8 + QP)q 

Proof. Recall that the total degree s + t of every E:·t is fixed at q, 
as is the dimension of every subspace of A[K], and so we suppress the 
q's in the proof. 

By equation (5), 

(6) 

(ker8n(Js-1) +Qs 
E:'x, = (im 8 n (Js-1) + Qs 

(ker 8 + Q8 ) n (Js-1 

(im8 + Q 8 ) n Qs- 1 

The result now follows by an easy induction on p. For p = 1, by equation 
(6), 

E 1 = (ker8 + Q1) n Q0 

oo (im8 + Q1) n Q0 

ker8 + Q1 

im8 + Q1 



58 A.M. Duval 

If p > 1, then 

dim E 1 +···+dim EP =(1) (dim E 1 +···+dim EP-1) +dim EP OC> 00 00 00 (X) 

=(2) dim ker8 + (jp-1 
im8 + QP-1 

. (ker 8 + QP) n QP- 1 
+dim -

(im8 + QP) n QP-1 

=(3) dim (ker 8 + QP) + ~p-1 
(im8 + QP) + QP-1 

. (ker 8 + QP) n QP- 1 
+dim _ 

(im8 + QP) n QP-1 

=(4) dim ker8 + Cj_P. 
im8 + QP 

Equality =(2) above is by induction and equation (6), equality =(3) fol­
lows from QP s;;; QP-1, and equality =(4) is a routine exercise in linear 
algebra (or see [Du2, Lemma 5.1]). Q.E.D. 

§4. Near-cones 

Let v be a vertex of a simplicial complex K. Let 

delK v =del v :={FE K: v U F (j_ K} 

be the deletion of v (in K), let 

lkKv=lkv:={FEK:v(j_F, vUFEK} 

be the link of v (in K), and let the star of v (in K) be 

v * lkv ={FE K: v U FE K} 

the cone over lk v. Then K may be partitioned 

K = ( v * lk v) u del v. 

The link and star of v are subcomplexes of K. 
We will say K is a near-cone with apex v if every face F in delK v 

has its entire boundary {F\w: w E F} contained in v * lkK v. In this 
case, every face of delK v is a facet (i.e., is maximal in K), since v * lk v is 
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a subcomplex. If we contract the subcomplex v * lk v to v, what remains 
is a sphere for every face in del v; therefore 

(7) f3q(K) =#{FE delK v: dimF = q} 

when K is a near-cone with apex v [BK, Theorem 4.3]. 

Lemma 4.1. If K is a near-cone with apex v, then 8(lkv) = 
{8eF: FE lkv} is a basis for im8. 

Proof. The members of 8 (lk v) are linearly independent because if 
FE lkv then 8eF has nontrivial support on evUFl but if G E lkv and 
G -/= F, then 8ea has no support on evuF· Thus for each member of 
8(lkv) there is a face on which it alone has nontrivial support; linear 
independence follows immediately. 

On the other hand, we will show that if G rj. lk v, then 8e0 is in the 
span of 8(lk v ). If G E del v, then 8ea = 0, since G is a facet. The only 
possibility remaining is that G = v U F for F E lk v. In that case 

so 

8eF = ±a1vea + L ±a1weFuw 
w,Pv 

FUwEK 

0 = 82 eF = ±a1v8ea + L ±a1w8eFuw' 
w,Pv 

FUwEK 

and so 

8ea = L ± (alw) 8(Fuw). 
w#v alv 

FUwEK 

Now, if v U ( F U w) rj. K, then F U w E del v, so F U w is a facet and so 
8eFuw = o. But ifvu(Fuw) E K, then Fuw E lkv, so 8eFuw E 8(lkv). 
Thus 8ea is in the span of 8(lkv). Q.E.D. 

Lemma 4.2. If K is a near-cone with apex v, then 

ker8 = D + im8, 

where D = delK v. 

Proof. Since every face in D = delK v is a facet, jj C ker8, so 
D + im 8 ~ ker 8. 

By equation (7), 

dim(ker8)- dim(im8) = {3*(K) = ldelvl = dimD. 
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dim(i5 + im8) = dimi5 + dim(im8)- dim(i5 n im8) 

= dim(ker 8) - dim(i5 n im 8). 

So now it only remains to show that 

(8) i5 n im8 = 0. 

To this end, recall from the proof of Lemma 4.1 that each 8e F in 
8(1kv) is the unique element of 8(lkv) with nonzero support on evl.JF, 

but now no~ further that v U F fj. del v. Thus any nonzero element 
of im8 = 8(1kv) has nontrivial support outside delv, which establishes 
equation (8), and hence the lemma. Q.E.D. 

Lemma 4.3. If K = L U Q is a partition of the faces of a near­
cone K into two disjoint subsets, then 

. (ker8 + Q)q . 
d1m _ =#{FELq:vfj.F, vUFfj.K}. 

(im8 + Q)q 

Proof. Again let D = delK v. Then 

Thus, 

ker8 + Q 

im8+Q 

- -D+im8+Q 

im8+Q 

D 
~ -=------;:::,.-

.5 n (im8 + Q) 
D 

DnQ 

D 
---
- ~ 0 

DnQ 

by Lemma4.2 

by equation ( 8) 

dim (ker8 + ~)q = ID 1-I(D n Q) I 
(im8 + Q)q q q 

= ldelK v n Lql 

=#{FE Lq: v fj. F, v (J F fj. K}. 

Q.E.D. 
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§5. Algebraic shifting 

Algebraic shifting transforms a simplicial complex into a shifted sim­
plicial complex with many of the same algebraic properties ofthe orig­
inal complex. Algebraic shifting was introduced by Kalai in [Ka1]; our 
exposition is summarized from [BK] and included for completeness. 

Definition. If R = {r0 < · · · < rq} and S ={so < · · · < sq} are 
(q + 1)-subsets of [n] = {1, ... , n }, then: 

• R '.5,p S under the standard partial order if ri :5, Si for all i; and 
• R <L S under the lexicogmphic order if there is a j such that 

rj < Sj and ri = Si fori < j . 

Lexicographic order is a total order which refines the partial order. 

Definition. A collection C of (q + 1)-subsets of [n] is shifted if 
R '.5,p SandS E C together imply that R E C. A simplicial complex D. 
is shifted if the set of q-dimensional faces of D. is shifted for every q. 

It is not hard to see that shifted simplicial complexes are near-cones 
with apex 1. 

Recall (see Section 2) that { aij h::;i,j::On are n 2 transcendentals ad­
joined to our field of coefficients. 

Definition (Kalai). For 1 :5, i :5, n, let 

n 

fi = Laijej, 
j=l 

so {h, ... , fn} forms a "generic" basis of kV. (Note this is consistent 
with our definition of h in Section 2.) Define fs := fio 1\ · · · 1\ fi. for 
S = {io < · · · < iq} (and set !0 = 1). Let 

D.(K, k) := {S ~ [n]: fs ~ span{fR: R <L S}} 

be the algebmically shifted complex obtained from K; we will write D.(K) 
instead of D.(K, k) when the field is understood to be k. In other words, 
the (q+ 1)-subsets of D.(K) can be chosen by listing all the (q+ 1)-subsets 
of [n] in lexicographic order and omitting those that are in the span of 
earlier subsets on the list, modulo IK and with respect to the !-basis. 

The algebraically shifted complex D.(K) is (as its name suggests) 
shifted, and is independent of the numbering of the vertices of K [BK, 
Theorem 3.1]. 

Recall from Section 1 that if L ~ K is a pair of simplicial com­
plexes, then D.(L) ~ D.(K). Thus for Q = K\L, we may define D.(Q) = 
D.(K)\D.(L). 
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Lemma 5.1. Let L <;;; K be a pair of simplicial complexes and 
Q = K\L. Then 

dim (ker 8 + Q)q ~#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(K)}. 
(im8 + Q)q 

Proof. This is implicit in the proof of [Du2, Theorem 5.2]. As it is 
not stated there explicitly, we reproduce here some of the details. From 
[Du2, Lemma 4.4] 

dim(im8 n Q)q+l ::; #{FE 6.(K)q: 1 tf. F, 1 U FE 6.(Q)}, 

and from [Du2, Lemma 4.5] 

dim(8Q)q+l ~#{FE 6.(Q)q: 1 tf. F, 1 U FE 6.(Q)}. 

Then, since L = K\ Q, 

dim (im 8 ~ Q)q+l ::; #{FE 6.(L)q: 1 tf. F, 1 U FE 6.(Q)}. 
(8Q)q+l 

By equations (1) and (7), respectively, 

But, with the notation 8- 1Q := {x E A[K]: 8x E Q}, we also have 

{3q(L) =dim (8-lQ~ by [Du1, Lemma 3.3] 
(im8 + Q)q 

d. (8- 1Q)q d. (ker8+Q)q 
= lm + lm -

(ker 8 + Q)q (im 8 + Q)q 

d . (im8nQ)q+l d" (ker8+Q)q [ 
= 1m _ + 1m by Du1, Lemma 3.6], 

(8Q)q+l (im8 + Q)q 

and so - -
dim (ker8 + ~)q = {3q(L) _dim (im8 n Q)q+I 

(im 8 + Q)q ( 8Q)q+l 

~#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(£)} 

-#{FE 6.(L)q: 1 tf. F, 1 U FE 6.(Q)} 

=#{FE 6.(L)q: 1 tf. F, 1 U F tf. 6.(K)}. 

Q.E.D. 
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§6. Proof of Main Theorem 

Given a filtration K of a simplicial complex K, let E:,t refer to the 
terms of the corresponding spectral sequence given in Section 3, and let 

e8 't(K) =dim E':,:}(K). 

Theorem 6.1. For all p, q, 

el,q-1(K) + · · · + ep,q-C.p(K) 2: el,q-1(.6-(K)) + · · · + ep,q-p(.6.(K)). 

Proof. For 0 ~ s ~ m, let I: 8 = .6.(K)\.6.(K8 ), so 

A[.6.(K)] =}SO 2 }Sl 2 · · · 2 }Sm = h(K) 

is the filtration of ideals of A[.6.(K)] corresponding to the filtration .6-(K). 
By Lemmas 3.1 and 5.1, 

el,q-l(K) + ... + ep,q-p(K) =dim (ker8K + QP)q 
(im8K + QP)q 

2: #{FE .6-(Kp)q: 1 (j_ F, 1 U F (j_ .6-(K)}. 

On the other hand, because .6-(K) is shifted and hence a near-cone, 
Lemmas 3.1 and 4.3 give 

el,q-1 (.6-(K)) + ... + ep,q-p(.6.(K)) =dim (~er 8A(K) + }SP)q 
(1m8A(K) + I;P)q 

=#{FE .6-(Kp)q: 1 (j_ F, 1 U F (j_ .6-(K)}. 

Q.E.D. 

Note that el,q-l(K) + · · · + em,q-m(K) = (3q(K), which, by equation 
(1) is unchanged under algebraic shifting. Thus, Theorem 6.1 says that 
algebraic shifting puts less of the fixed sum of the es,q-s's into the ear­
lier part of the filtration, and hence puts more into the later part. In 
particular, 

eP+l,q-p-l(K) + ... + em,q-m(K) 

~ eP+l,q-p-1(.6-(K)) + · · · + em,q-m(.6.(K)). 
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