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Principal blocks with extra-special
defect groups of order 27
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81. Introduction

Let G be a finite group and p be a prime number. Let b be a p-
block of G, P be a defect group of b and k(b) (respectively, [(b)) be
the number of irreducible ordinary characters (respectively, irreducible
Brauer characters) in b. Suppose that

two blocks b and V' of finite groups G and G’ respectively,
(1) have the common defect group P and their Brauer cate-
gories Bry, n(G) and Bry ,(G') are equivalent.

(See [FH] for Brauer categories.) When we consider only principal p-
blocks, their defect groups are Sylow p-subgroups and having the same
Brauer category is equivalent to having the same p-local structure. See
the definition in section 4 in [R] : Finite groups G and H have the
same p-local structure if they have a common Sylow p-subgroup P such
that whenever Q; and Q2 are subgroups of P and f: @1 — Q2 is an
isomorphism, then there is an element g € G such that f(z)=z9 for all
z € Q; if and only if there is an element h € H such that f(z)=2z" for
allz € Q..
Under condition (1) there is a question whether we have

(2) k(b)=k(V') and I(b)=1(¥)
or not. We have a following conjecture.

Conjecture 1. When b and b/ are principal blocks satisfying con-
dition (1), the equalities in (2) hold.

When P is an abelian group, it is known that a block b of G and its
Brauer correspondent Brp(b) in Ng(P) have the same Brauer category
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(Proposition 4.21 in [AB]), and Broué conjectured that they are derived
equivalent (respectively, isotypic). See Conjecture 6.1 and Question 6.2
in [Br2]. Note that each of these conjectures implies that we have

(3) k(b)=k(Brp(b)) and L(b)=1(Brp(b))

for any block b with abelian defect group P. As is stated in [Br2] Broué’s
conjectures above do not necessarily hold when P is not an abelian
group. The principal 2-block b of any one of Suzuki groups Sz(gq) and its
Brauer correspondent have the same Brauer category (actually, fusion
of P is controlled by its normalizer, since Sylow 2-subgroups are T.I.
sets), but they are not derived equivalent nor isotypic ; nevertheless (3)
holds for them (cf. Consequences 5 and 7 in [A]). Here we have to add
one more remark. M. Kiyota pointed out that a semidirect product of
an elementary abelian 3-group Z3x Zs of order 9 by a quaternion group
of order 8 whose unique involution acts on Z3xZ3 trivially, has only two
3-blocks (i.e. the principal block by and the other block b1) and their
Brauer categories are equivalent to each other but we have [(bg) #1(by).

In this paper we fix P as an extra-special group of order 27 and
of exponent 3, and consider principal 3-blocks b having P as a de-
fect group and check Conjecture 1. Note that in this case having the
same Brauer category implies having the same inertial quotient F( =
Ng(P)/PCq(P) here ) and the same fusion of P. At any rate, using the
classification of finite simple groups, we determine k(b),[(b) and ko(b)
completely and proves that Conjecture 1 is true for such blocks, and
consequently we prove that Dade’s conjecture of ordinary form holds for
b. (Here ko(b) is the number of irreducible ordinary characters in b of
height zero.)

When the author visited 1'Université Paris 7, Lluis Puig suggested
an idea of using his construction of characters as functions on local
pointed elements which can be found in Corollary 4.4, Theorem 5.2 and
Theorem 5.6 in [P]. The author uses his idea to prove Theorem 1 below.

In the following we denote a cyclic group of order m by Z,,, a
quaternion group of order 8 by Qg, a dihedral group of order 8 by Dg
and a semidihedral group of order 16 by SD;g respectively.

Theorem 1. Letb be the principal 3-block of a finite group G with
an extra-special defect group P of order 27 and of exponent 3. Let E
be the inertial quotient of b (i.e. E = Ng(P)/PCq(P)) and let u be a
non-trivial element in Z(P). Then we have the following.

(1) When Ng(P) C Cg(Z(P)), fusion of P in G is controlled by
Ng(P) and one of the following holds :



Principal blocks with extra-special defect groups of order 27 415

(1) If E =1, then b is 3-nilpotent, k(b) = 11,ko(b) =9 and
1(b)=1.
(i) If E= Z,, then k(b) =10, ko(b) =6 and l(b)=2. ( In this
case E acts on P/Z(P) fived-point-freely. )
(i) If E=Zy, then k(b)=14, ko(b) =6 and l(b)=4.
(iv) If E2Qs, then k(b)=16, ko(b)=6 and I(b)=5.
When Ng(P) € Cq(Z(P)), E is isomorphic with either Zs, Zox
Za,Zg,Dg or SDyg and we have an estimate of k(b) as below
according to E and the number of conjugacy classes of elements
of order 3. When E~2Z,, E does not act on P/Z(P) fized-point-
freely. In each case k(b)—1(b) takes a constant value. When
E>7s, each case is further divided into two subcases according
to fusion of a basic set of Cg(u) in the extended centralizer
Co'(u) (= {g€G|u? =u or u™'}). The subcase where each
element of a basic set of Cg(u) is fized by C;*(u) corresponds
to subcase 1. Otherwise it is subcase 2.
(i) Suppose that E=Zs.
(1)—(1) If fusion of P is controlled by Ng(P), then P—{1}
consists of 6 classes and k(b)—1(b)=8 and k(b)=
10.
(1)-(2) Otherwise, P—{1} consists of 5 classes and k(b)—
1(b)="7 and 9<k(b) <11.
(ii) Suppose that E= ZoxZy. Then one of the following holds.

(11)—~(1) If fusion of P is controlled by Ng(P), then P—{1}
consists of 4 classes and k(b)—1(b)="7 and k(b)=11.

(ii)—(2) P—{1} consists of 3 classes, k(b)—1(b) =5 and
8<k(b)<11.

(i1)~(3) P—{1} consists of 3 classes, k(b)—1l(b) = 6 and
10< k(b) <12.

(ii)~(4) P—{1} consists of 2 classes, k(b)—1(b) =4 and
T<k(b)<12.

(ii)-(5) P—{1} consists of 2 classes, k(b)—1(b) = 3 and
6<k(b)<11.

(i1)—(6) P—{1} consists of 1 class, k(b)—1(b) =2 and 5 <
k(b) <18.

(iii) Suppose that E=Zg.

(ii)—(1) If fusion of P is conirolled by Ng(P), then P—{1}
consists of 2 classes and k(b)—1(b)=>5. In subcase
1,8<k(b) <14. In subcase 2,8<k(b)<12.

(iii)—(2) Otherwise, P—{1} consists of 1 class and k(b)—
I(b) =4. In subcase 1,8 < k(b) < 18. In subcase
2,7<k(b)<15.
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(iv) - Suppose that E= Dg. Then one of the following holds.
(iv)—(1) If fusion of P is controlled by Ng(P), then P—{1}
consists of 3 classes, k(b)—1(b)=8 and k(b)=13.
(iv)—(2) P—{1} consists of 2 classes, k(b)—1(b) = 6 and
9<k(b)<13.
(iv)—=(3) P—{1} consists of 1 class, k(b)—1(b)=4 and 7<
k(b) <15.
(v) Suppose that E~=SD1g.
(v)~(1) If fusion of P is controlled by Ng(P), then P—{1}
consists of 2 classes, k(b)—1(b)=T and 10<k(b) <
15.
(v)—(2) Otherwise, P—{1} consists of 1 class, k(b)—I(b)=5
and T<k(b)<14.

Using the classification of finite simple groups we obtain the follow-
ing theorem. As is well known, we can assume that O, (G) =1 when we
treat the principal p-block of G.

Theorem 2. (Using the classification of finite simple groups.) Let
G be a finite group with Oz (G) =1 having an extra-special Sylow 3-
subgroup P of order 27 and of exponent 3. Let M be a minimal normal
subgroup of G. Then one of the following holds :
(i) M = Z5 and Z(P) is a normal subgroup of G and fusion of
P in G is controlled by Ng(P). As for the principal 3-block
b, k(b) and l(b) are uniquely determined according to its inertial
quotient.
(ii) M =2Z3xZs and G/M is embedded in GL(2,3). In particular,
G is 3-solvable.
(iii) M=PSL(3,q) where ¢ = 4,7 (mod 9). Furthermore we have

PGL(3,q) CGC Aut(PSL(3, )
(iv) M=PSU(3,q?) where ¢ =2,5 (mod 9). Furthermore we have
PGU(3,¢*) CG C Aut(PSU(3,¢%)).

(v) MMy, Ru or Jy. Furthermore G=M.
(vi) M = PSL(3,3), PSU(3,3%), 2F4(2)', M12, Jo or He. Further-
more G=M or Aut(M).
(vil) M =Ga(q) where ¢ = 2,4,5,7 (mod 9). Furthermore M C G C
Aut(M).
(viil) M =22Fy(q) where 2°™*! =q = 2,5 (mod 9). Furthermore M C
G C Aut(M).



Principal blocks with extra-special defect groups of order 27 417

The number k(b) in case of Ng(P) C Cq(Z(P)) (see Theorem 1 (2))
is uniquely determined by E as follows: If E = Z, (respectively Zz X
Zy, Zg, Dg and SDig), then k(b) = 10 (respectively, 11, 13, 13 and 14).
When Ng(P) € Cq(Z(P)), we have always ko(b) = 9. Furthermore,
Dade’s conjecture of ordinary form holds for b in any case. The above
groups in (ii) through (viii) fall into the cases described in Theorem 1
(2) as follows. The numbers in the statements below correspond to those
in Theorem 1 (2). The semidirect product of Z3 x Z3 by SL(2,3), some
groups in (iii) above and PGU (3, ¢*) - (odd order) with q = 2,5 (mod 9)
satisfy (1)-(2). The semidirect product of Z3 x Zs by GL(2,3), all the re-
maining groups in (iii) above and PGU (3, q?)-(even order) with ¢ = 2,5
(mod 9) satisfy (ii)-(2). PSL(3,3) and My, satisfy (ii)-(5). PSU(3,3?)
and Jy satisfy (iii)-(1). Maa, Aut(Miz), Aut(PSL(3,3)), He and
Aut(He) satisfy (iv)-(2). 2F;(2) satisfies (iv)-(3). Aut(PSU(3,3?)),
Aut(J2) and all the groups in (vil) above satisfy (v)-(1). Ru, Ju and all
the groups in (viil) above satisfy (v)-(2).

§2. Remarks on Theorem 1

(1) After the author obtained Theorem 1, Masao Kiyota told the
author that several years ago he already determined k(b) , ko(b) and I(b)
for principal blocks b when Ng(P)CCs(Z(P)) by Brauer and Olsson’s
method using the orthogonality relation between columns of generalized
decomposition matrix.

(2) Outline of the proof is as follows. First, list up all possible
Broué’s (or Alperin’s) conjugation families for b-subpairs (with an aid
of 3-strongly embedded subgroups) in order to determine fusion of b
subpairs in G ([Brl, CP]). This work means that we list up all possible
Brauer categories as in [CP]. Note that when b is a principal p-block,
b-subpairs are equivalent to p-subgroups. Second, collect information
about blocks bg such that

(lvb) Z (Q»bQ) Q(Pa 6),

where (P, e) is a fixed maximal b-subpair. Third, construct a Z-basis
of generalized characters in b which vanish on 3-regular elements. Here
we apply L.Puig’s Theorem 5.6 in [P], where he gave some equivalent
conditions of a function on local pointed elements to be a generalized
character. Fourthly, determine the decomposition of each character in
the above Z-basis into irreducible characters in order to know k(b). It
is known that any irreducible character in b appears in some generalized
character in this Z-basis. In order to determine these decompositions the
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author used a computer and also checked the elementary divisors of Car-
tan matrices by a computer. Unfortunately, when Ng(P)<Z Ca(Z(P)),
we can not determine k(b) uniquely. There are huge number of possible
decompositions. But, as for k(b), it seems that we can get almost the
same estimate of k(b) as this by hand.

(3) When F is of order 2, either G has a normal subgroup of index 3,
or G is a 3-solvable group of 3-length 1 by S.D. Smith and A.P. Tyrer’s
theorem in [ST.

§3. Remarks on Theorem 2

(1) Using the strong assumption that Z(P) < G, k(b) in (i) is deter-
mined. Here we already use the classification of finite simple groups to
determine the number of irreducible ordinary characters in the principal
3-block with an elementary abelian defect group of order 9 and with the
cyclic inertial quotient of order 8.

(2) If G is a 3-solvable group with O3 (G) =1 and has an extra-
special Sylow 3-subgroup of order 27 and of exponent 3, then G is com-
pletely determined, that is, either the semidirect product of P and a
group E isomorphic with 1, Zs, Zy x Z5, Z4, Qg, Dg, or SDig or
the semidirect product of Z3xZs by SL(2,3) or GL(2,3) (with faithful
actions). (cf. Proposition 53.4 in [Ka] or [Ko]).

(3) It is not easy to choose the irreducible characters in b among
all irreducible characters in G when G belongs to one of infinite series
in (iii), (iv), (vii) and (viii). Fortunately, any nonprincipal 3-block of a
simple group in these infinite series has some proper subgroup of P as a
defect group. So using the estimate of k(b) in Theorem 1 and the known
facts on the number of irreducible ordinary characters in other 3-blocks
and some more information about b itself, we determine k(b) effectively
in these cases. The author thanks Ken-ichi Shinoda and Meinolf Geck
for information about 2Fy(q).

(4) In order to prove Dade’s conjecture in this case, we consider the
set of G-conjugacy classes of radical 3-chains as the disjoint union of two
subsets, one of which consists of classes of chains whose final subgroups
are defect groups of the principal blocks of the normalizers of the chains
and the other consists of the rest. There is a bijection from the former
subset to the latter given by the Brauer correspondence between the
corresponding principal blocks, sending a class of chains of length m
into that of length m—1. Then by cancellation we get the conclusion
(cf. 2.3 in [U1]).
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§84. Perfect isometries and Morita equivalences

Having the same p-local structure does not always guarantee a de-
rived category equivalence between the principal p-blocks (see counter
examples in §1). But the author thinks that we can still expect some-
thing. Recall Broué’s theorem :

Theorem 3 (Broué, Theorem3.1 [Br2]). If two blocks are derived
category equivalent, then there is a perfect isometry between these blocks.

In view of this theorem, we can expect a derived equivalence between
blocks if there exists a perfect isometry between them, although it is not
proved that they are equivalent. In any case, it is meaningful to check
whether a perfect isometry exists, as the first step towards checking
the existence of a derived equivalence. The author and her student
M.Nakabayashi did it in the following cases. (cf. Theorem 2 and [N]).

Proposition 4.  The groups in (i) (respectively (ii), (iii), (iv), (v},
(vi) and (vii)) below have the same 3-local structure and there is a perfect
isometry between the principal 3-blocks of any two of them.

(i) PSU(3,32), Jo.

(i) PSL(3,3), Mia.

(lll) M24 5 H@, Aut(He)

(iv) Aut(Mi2), Aut(PSL(3,3)).

(v) Ru, Jy.

(vi) the semidirect product of Z3x Z3 by SL(2,3), PGU(3,q?) with

g=2,5(mod 9), PGL(3,q) with ¢=4,7{mod 9).
(vii) Ga(q) with q a power of 2 and ¢=2,4,5,7 (mod 9).

Proposition 5. The groups in (i)’ (respectively (ii)’, (iii)’, (iv)’,
(vY and (vi)') have the same 3-local structure, but there is no perfect
isometry between their principal 3-blocks which sends the trivial charac-
ter to the trivial character. Here P is the extra-special group of order 27
and of exponent 3.

(i)! the semidirect product of P by Zs, PSU(3,3?%),

(ii), M24, A’ut(Mlz)

(iil)" Ru, 2F4(2)
(iv) G2(2), Aut(Js)
(v) Aut(Js), the semidirect product of P by SDy¢ with the faithful
action
(vi)) G2(4), the semidirect product of P by SDqg with the faithful
action.

On the other hand, there are Koshitani and Kunugi’s results on the
principal 3-blocks of PSU(3,¢?) and PSL(3, q) with elementary abelian
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defect groups of order 9 ([KK], [Ku]). Based on them we have got the
following theorem.

Theorem 6 (N. Kunugi and Y. Usami [KU}, [U2]). The principal
3-blocks of all the groups in (i) (respectively (ii), (iil) and (iv)) below are
Morita equivalent.
(i) PGU(3,q?) defined over the finite field GF(q?) satisfying ¢g=2,5
(mod 9).

(ii) PGL(3,q) satisfying g=4,7 (mod 9).

(iii) SU(3,q?) defined over the finite field GF(q?) satisfying ¢=2,5
(mod 9).

(iv) SL(3,q) satisfying ¢=4,7 (mod 9).

Moreover, let g be a power of 2 and satisfying ¢ =2 or 5(mod 9).
Then the author and M.Nakabayashi have almost finished proving that
the principal 3-blocks of G2(g) and G2(2) are Morita equivalent to each
other.

For the characters of groups in Theorem 2, see the following:

1. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and
R.A. Wilson, Atlas of Finite Groups, Clarendon Press, (1985)
Oxford.

2. B. Chang, The conjugate classes of Chevalley groups of type
(G2), J. Algebra, 9 (1968), 190-211.

3. B. Chang and R. Ree, The characters of G»(g), Symposia Math-
ematica XIIL, Instituto Nazionale de Alta Mathematica, (1974),
395-413.

4. V. Ennola, On the characters of the finite unitary groups, Ann.
Acad. Sci. Fenn., 323 (1963), 1-34.

5. H. Enomoto, The conjugacy classes of Chevalley groups of type
(G3) over finite fields of characteristic 2 or 3, J. Fac. Sci. Univ.
Tokyo Sect. I Math., 16 (1970), 497-512.

6. H. Enomoto and H. Yamada, The characters of G3(2"), Japan.
J. Math., 12 (1986), 325-377.

7. K. Shinoda, The conjugacy classes of the finite Ree groups of
type (F4), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975),
1-15.

8. G. Malle, Die unipotenten Charaktere von 2F4(¢?), Comm. in
Algebra, 18(7) (1990), 2361-2381.

9. R. Steinberg, The representation of GL(3, q), GL(4, q), PGL(3,q)
and PGL(4,q), Canadian J. Math., 3 (1951), 225-235.
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