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Length Functions for G( r, p, n) 

Toshiaki Shoji 1 

Abstract. 

In this paper, we construct a length function n(w) for the com
plex reflection group W = G(r,p, n) by making use of certain parti

tions of the root system associated to W = G(r, 1, n). We show that 
the function n(w) yields the Poincare polynomial Pw(q). We give 
some characterization of this function in a way independent of the 
choice of the root system. 

§1. Introduction 

Let W = G(r, l,n) be an imprimitive complex reflection group. 
In [BMl], K. Bremke and G. Malle introduced a certain type of root 
system ( and its partition into positive an~egative roots) associated to 
W, and defined a length function n 1 on W by making use of the root 
system. They showed that this function satisfies some good properties 
as a generalization of the length function of finite Coxeter groups. In 
particular, the polynomial LwEW qni(w) coincides with the Poincare 

polynomial Pw(q) of W. In [RS], we studied further properties of n 1 , 

and gave some characterization of it in a way independent of the choice 
of the root system, in connection with the usual length function defined 
by standard generators of W. 

In (BM2], a similar problem was studied for the reflection subgroup 
G(r,r,n) of W. They defined a length function ib on W by using a 
similar root system as above, but by using completely different partition 
into positive and negative roots. They defined a length function n 2 on 
G(r, r, n) as the restriction of ii2 , and showed that n 2 yields the Poincare 
polynomial Pc(r,r,n) ( q). 

Received February 23, 1999. 
1 This paper is a contribution to the Joint Research Project "Representa

tion Theory of Finite and Algebraic Groups" 1997-99 under the Japanese
German Cooperative Science Promotion Program supported by JSPS and 
DFG. 
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In this paper, we consider a more general group W = G(r,p, n). 
The group W is a reflection subgroup of W containing G(r, r, n). We 
construct some partitions of the root system, (in fact, w~need two kinds 
of such partitions) and define a length function n on W associated to 
the root system. We also define a function n on W as the restriction of 
n on W. We then show that our length functions satisfy the property 
that 

! L /i(w) = L qn(w) = Pw(q), 

p wEW wEW 

where Pw(q) is the Poincare polynomial associated to W. Our function 
n(w) is much more complicated than the previous cases. But in some 
sense, it is the mixture of the functions n1 and n2. In fact, if p = I, 
n(w) coincides with n1(w), while if p = r, n(w) coincides with n2(w). 

We give a characterization of the function n on W in a similar way 
as in [RS], in an independent way of the choice of the root system. This 
is done by making use of a certain length function on W defined without 
using the root data. However, in contrast to _!_he case treated in [RS], it 
is not the function defined by generators of W or W. 

§2. Length functions associated to a root system 

2.1 Let V be the unitary space en with the standard basis vec
tors e1, ... , en. We denote by W = G(r, I, n) the imprimitive complex 
reflection group generated by reflections t, s2, ... , Sn- Here Si is the per
mutation of ei and ei-1 for i = 2, ... , n, and t is the complex reflection 
of order r defined by te1 = (e1 and tei = ei for i =I- I, where ( is a fixed 
primitive r-th root of unity. The group W has a Coxeter-like diagram 
with respect to the set S = { t, s2, ... , sn} of generators as follows; 

B};°) : 0==0----------0 ----0-----0 
t S3 Sn-1 

For each factor p of r, we denote by W = G(r,p, n) the reflection 
subgroup of W of indexp generated by S = {tP, s1 = r 1s2t, s2, ... , sn}
The special case where p = r, the group W' = G(r, r, n) is generated 
by S' = {s1,---,sn}- We have W' CW CW. We put r = pd. The 
presentation of the group W in terms of the set S is determined by 
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[BMR]. In particular, if p 2: 3, d-/- 1, the Coxeter-like diagram of W is 
given as follows. 

----0----0 
Sn-1 Sn 

2.2 Let <I> be a root system associated to W defined in [BMl]. 
Here we follow the description of <I> given in [RS]. Hence we consider 

a set X = {eia) 11::::: i::::: n,a E Z/rZ}, and we express an element 
(eia), e?)) EX x X as eia) - e?> whenever i-/- j. The root system <I> is 
defined by 

<I> = <I> 1 IJ <I> s with 

<1>1 = {eia) - e?) 11::::: i,j::::: n,i -/-j,a,b E Z/rZ}, 

<l>s = X = {eia) 11::::: i::::: n,a E Z/rZ} 

An element in <1>1 (resp. i~<l>s) is called a long root (resp. a short root), 
respectively. The group W acts naturally on the set <I> in such a way 
thats· permutes e~a) and e~a) and te(a) = e(a+l) te(a) = e(a) for 1· --1- 1 

i i i-1, 1 1 ' J J t · 

For a = eia) - e?) E <1>1, we define -a E <1>1 by -a = e)b) - eia). We 

shall define two types of partitions, <1>1 = <I>t U <1>1 = <I>t+ U <1>1- such 
that <1>1 = -<I>t, <1>1- = -<1>t+. In the following formulae, long roots 

a E <1>1 are always denoted as a = eia) - e?>. Also for each a E Z, let 
a be the integer determined by the condition that a = a (mod p) and 
that -p/2 < a ::::: p/2. The partition of the first type is given as follows. 

(2.2.1) <I>t = { a I -p/2 < a ::::: 0, i > j} 

u {a IO< a::::: p/2, p/2 < b::::: r - p/2, i > j} 

U {a I -p/2 < b::::: 0, 0 < b::::: r - p/2, i < j} 

U {a IO< b Sc p/2, -p/2 < a Sc p/2, i < j}, 

<1>1 = {a I -p/2 < b Sc 0, i < j} 

U {a IO< b::::: p/2, p/2 < a Sc r - p/2, i < j} 

U {a I -p/2 Sc a Sc 0, 0 <a::::: r - p/2, i > j} 

u {a IO< a::::: p/2, -p/2 < b::::: p/2, i > j}. 
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The fact that <I>1 = -<I>t, and that <I>1 is a disjoint union of <I>t and <I>1 
is verified as follows. Set 

A = { a I -p/2 < a ::; 0, i > j}, 

B = {a IO< a::; p/2, p/2 < b::; r - p/2, i > j}, 

C = {a I -p/2 <a::; 0, 0 <a::; r - p/2, i > j}, 

D = {a IO< a::; p/2, -p/2 < b::; p/2, i > j}. 

Then, it is easy to see that A, B, C and D are mutually disjoint, and 
AU BU CUD coincides with the set {a E <I>1 I i > j}. Moreover, we 
have 

<I>t =AU BU-CU -D, <I>1 =-AU-BUCUD. 

This shows the required property. 
The partition of the second type is given as follows. 

(2.2.2) <t>t+ = {a I -p/2 <a::; o, i > j} u {a Io< ii::; p/2, i < j}, 

<t>,- = { a I o < a ::; p/2, i > j} u { a I -p/2 < ii ::; o, i < j}. 

We also define a grading of <I> s by modifying the grading of <I> s given 
in [RS] as follows. Let 4> 8 = 4>8 ,o U 4> 8 ,1 U · · · U <I>s,d-1, where 

(2.2.3) 

4>8 ,m = {e~a) I mp- p/2 <a::; mp+ p/2, 1::; i::; n} (0::; m < d). 

and 

Next we define a subset n = n; u Of' u Os of <I> as follows. 

f2 = {e~O) I 1 < i < n} 
s i - - ' 

n; = {e?) - e;b) I b = 0 {mod p), i > j}, 

n;' = {e~a) - etp-a) I -p/2 <a< 0, 0::; m < d, i > j} 

u{/mp-bH)_/b) IO< b < p/2 0 < m < d i < 1"} 
i J - ' - ' ' 

where 

if pis even, 

if pis odd. 
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We define functions ii1, ii;', ii8 : W ---; N by 

-11( ) - I ,--,11 n ,.;--, nl W - WHl '¥l , 

and by 

n8 (w) = L v(w(a)), 
aEO, 

where for each a E <I>s, we put v(a) =kif a E <I>s,k· We define a length 

function ii : W ---; N by ii = ii1 + iif' + iis. We consider the restriction 
of these functions to W, and define n1, nf' and n 8 as the restriction of 
ii1, ii?, and iis, respectively. Then we define a length function n of W 
by n = n1 +n1' + ns. 

Remark 2.3. In the case where p = 1, we have Of' = 0. Moreover, 
<I>t = {a I a= O}U{a I bi= O}, and <1>1 = -<I>t. This partition together 
with the set !11 u Ds coincide with the set !11 U !1 8 of <1>1 given in [RS], 
and the grading of <I> 8 also coincides with that of <I> s given there. Hence 
the function n coincides with the length function of G(r, 1, n) defined in 
[BMl]. 

While in the case where p = r, we have <1> 8 = <I>s,O· Moreover <I>t = 
<J>t+, <1>1 = <1>1-, and this partition of <I>i together with !11 u Of' coincide 
essentially with those given in [BM2]. (Also note that !11 coincides with 
the root system of the symmetric group Sn)- Hence n agrees with the 
length function of G(r, r, n) defined there. 

2.4. Let W1 be the reflection subgroup of W generated by I = 
{tP, s1, s2, ... , sm} for some m:::; n. Then W1 is isomorphic to G(r,p, m). 
It is clear from the definition that the restriction of n on W1 coincides 
with the function n1 defined similarly for G(r,p, m). On the other hand, 
let J = {tP, s2, ... , sn} be a subset of S, and WJ the subgroup of W 
generated by J. If d > 1, then W J is isomorphic to G ( d, 1, n), and 
J coincides with the standard set of generators of G(d, 1, n). While if 
d = 1, WJ is isomorphic to Sn. Let nJ be the length function of WJ as 
given in [RS]. In the case where d > 1, we denote by nJ,l and nJ,s the 
functions associated to long roots and short roots, respectively. 

Lemma 2.5. The restriction of n on W J coincides with nJ. 

Proof. The case where d = 1 is easy. So, we assume that d > 1. 
Let <I>1,J be the subset of <I>1 consisting of roots of the form e~a) - e?) 
with p I a, p I b. Then <I>1,J is in a natural correspondence, via the map 
e(a) - e(b) ~ e(a') - e(b') with a' = a/p b' = b/p with the set of long 

i J • J , , 

roots for G(d, 1, n), where <I>1,J n <I>t (resp. <I>1,J n <I>i-) corresponds to 
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the set of positive (resp. negative) roots, respectively. Similarly, let <P s,J 
be the subset of <P8 consisting of eia) with p I a. Then <Ps,J corresponds 
naturally to the set of short roots for G(d, 1, n), and the restriction of the 
grading of <P8 to <P8 ,J coincides with the grading of the set of short roots. 
Note that the above correspondence is compatible with the actions of 
WJ. Under this correspondence, the sets n1 and 0 8 are mapped to the 
sets 01 and 0 8 in the root system for G(d, 1, n). Since w(Os) c <Ps,J 
(resp. w(OD C <P1,J) for each w E WJ, we see that the restriction of n 8 

(resp. nz) on WJ coincides with nJ,s (resp. nJ,l), respectively. Hence 
in order to prove the lemma, it suffices to show that nz'(w) = 0, i.e., 

w(Oz') C <Pi+ for w E WJ. Take an element a= et> - e?> E w(Oz'). 
Then either -p/2 <ii< 0 and b = -ii, or O < b::::; p/2 and ii= -b + <5. 
This implies that a E <Pi+ and the lemma follows. Q.E.D. 

2.6. By applying Lemma 2.5, we can determine the values n(s) for 
s E S as follows. 

(2.6.1) n(s) = {~ 

3d-1 

if S E { S2, ... , Sn}, 
ifs = tP with d > 1, 

ifs = s1 with p ~ 3 or d = 1, 

if s = s1 with p = 2, d > 1. 

In fact, the first two case follow from the lemma. We consider the 
remaining cases. We have s1 (OD C <Pi if p ~ 3 or d = 1. While if 

p = 2, and d > 1, then s1(e~o) - elb}) < 0 for b = 0 (p). On the other 

hand, s1(e1°>) = e~1) and s1(e~0)) = e1-1>, and s1 leaves other short 
roots fixed. Hence by (2.2.3), s1(08 ) C <P8 ,o if p ~ 3. While if p = 2, 

we have s1(e~0)) E <P1,d-1, and s1 maps all other elements in 0 8 to <Ps,O· 
Moreover we have 

n"ns <P-- - l 2 -
{{e(mp) - e(l) IO< m < d} 

1 i( 1 )- {e~-f)-elmp+f)IO:::;m<d} 
if pis even, 

if pis odd, 

where p = 2/ + 1. This implies that n1 (s1) = 0, nz'(s1) = d and n8 (s1) = 
0 if p ~ 3 or d = 1, and nz(s1) = d, nz'(s1) = d and n8 (s1) = d - 1 
otherwise. So we have n(s1) = d or 3d - 1 and (2.6.1) follows. 

Let <P1,J be the subset of <Pi defined in the beginning of the proof of 

Lemma 2.5. Set <PtJ = <P1,J n <Pi. We define a subset WJ of W by 

(2.6.2) 



Length Functions 

Then the following lemma holds. 

Lemma 2.7. Let w E WJ,w' E WJ. Then we have 

(2.7.1) nf(ww') = nf(w'), 

n;'(ww') = nf'(w), 

ns(ww') = ns(w'). 

In particular, n(ww') = n(w) + n(w'). 

333 

Proof. Since 0 1 c q,iJ, it follows from (2.6.2) that n1(w) = 0. 
(2.6.2) implies also n8 (w) •= 0. On the other hand, we know that 
n?(w') = n?(w') = 0 from the proof of Lemma 2.4. Hence the last 
formula follows from (2.7.1). We show (2.7.1). Since w(q,i;°J) C g,1, 
w' ( o:) and ww' ( o:) have the same sign for o: E 01. This implies the first 
assertion of (2.7.1). Let 

n;' = { et) - e?) I -p/2 < a < o, a+ b = o, i > J} 

U{et)-e?) IO< b::; p/2, a+ b = 8, i < j}. 

Since w'(Ot') c q,i+, we see that w' stabilizes !1;'. The second assertion 
follows from this if we notice that the definition of the sets q, i+ or g,, -
depends only on a and b for o: = eia) - e?), and that r!f' has the same 
pattern as Of' for the action of w'. The last assertion is also immediate 
from (2.2.3). This proves the lemma. Q.E.D. 

2.8. By modifying the definition in [BM2], we define an element 
w(a, m) E W for -p/2 <a::; p/2, 1 ::; m::; n as follows. 

(2.8.1) 
if O < a ::; p/2, 

if - p/2 < a::; 0. 

Let us define a subset N of W by 

N = {w(a1, l)w(a2, 2) · · · w(an, n) I -p/2 < ai ::; p/2}. 

We set N' = N n W. Then N' can be written as 

(2.8.2) 

N' = {w(a1, l)w(a2, 2) · · • w(an, n) EN IL ai = 0 (mod p)}. 

Also we set WJ = WJ n W. We have the following proposition. 
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Proposition 2.9. The set N (resp. N') coincides with the set WJ 
(resp. WJ ). Moreover, N (resp. N') gives rise to a system of complete 

representatives of left cosets W /WJ {resp. W/WJ), respectively. 

Proof. First we show that N is contained in WJ. Take a = eimp) -

e;m'p) E cf>1,J- Then for w EN, w(a) is expressed as w(a) = eimp+ak) -

e}m'p+ai), where ak and a1 satisfy the following condition; 

-p/2 <ak :=:; p/2, 0 <a1 :=:;p/2 if i > j, k < l, 
-p/2 <ak :=:; 0, -p/2 <a1 :=:; p/2 if i > j, k > l, 
-p/2 <ak :=:; p/2, -p/2 <a1 :=:; 0 if i < j, k < l, 

0 <ak :=:; p/2, -p/2 <a1 :=:; p/2 if i < j, k > l. 

Then it is easy .to see that w(o:) E <I>t exactly when m = 0 if i > j, and 
when m' =f=. 0 if i < j. But this condition is equivalent to the condition 
that a E <I>tJ• It follows that w(<I>tJ) C <I>f. Next take ef> E 0 8 • Then 

we have w(ei0)) = ej°;) for some j with -p/2 < ai :=:; p/2. This implies 
that w(ns) C cf>s,O• Hence we have NC WJ. 

Next we note that WJ is a subset of the set of left coset represen
tatives of W by W J. In fact assume that there exist w1, w2 E W J such 
that w1 = w2x with x E WJ. Then by (2.7.1) in the proof of Lemma 
2.7, we have nf(w2x) = n1(x) and nf(wi) = 0. Hence nz(x) = 0. Since 
the restriction of n1 on WJ is the length function on WJ = G(d, 1, n), 
we have x = 1. So w1 = w2. 

It follows from the above remark that I W JI :=:; I W /W JI = pn. On the 
other hand, we have IN'I = pn. (In fact, if w = w(a1, 1) · · · w(an, n) EN, 
then there exists ei0) such that w( ei0)) = e~an). Hence the elements in N 
are parametrized by n-tuples (a1, ... , an) with -p/2 < ai :=:; p/2). This 
shows that N = W J gives a complete set of representatives for W /W J. 

The statement for W follows from this by noticing that IN' I = 
IW/WJI = pn-1 _ Q.E.D. 

Remark 2.10. The above proposition shows that any element w E W 
(resp. w E W) can be expressed in a unique way as 

(2.10.1) w = w(a1, l)w(a2, 2) · · · Wn(an, n)w', 

where w' E WJ (resp. and I:i ai = 0 (mod p)). The numbers a1, ... , an 
occuring in the decomposition (2.10.1) can be interpreted directly as 
follows; since W '.:::! Sn ~ (Z/rz)n, an element w in W can be written 
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in a form w = uz, with u E Sn and z E (Z/rz)n. Note that z can 
be written uniquely as z = (z1, ... , Zn) with Zi E Z such that -r /2 < 
Zi :S r /2 for i = 1, ... , n. Each Zi determines an integer Zi such that 
-p/2 < Zi :S p/2, and that Zi = zi (mod p) as in 2.2. Under these 
notations, we have ai = Zi for i = 1, ... , n. See also 3.2 for more details. 

We shall compute th values nf' ( w) for w E N, and nf' ( w) for w E N'. 

Lemma 2.11. The following formulae hold. 

(i) _,,( ( )) _ {d(m - 1)(2a - 1) n1 w a,m -
d(m - 1)(-2a) 

if 0 < a :S p/2, 

if - p/2 < a :S 0. 

(ii) For w = w(a1 , l)w(a2, 2) · · · w(an, n) EN we have, 

n 

(2.11.1) ri;'(w) = L nf'(w(ai, i)). 
i=l 

Moreover, the function nf' coincides with n on N. In particular, if 
w EN', the value n(w) is given by the right hand side of (2.11.1). 

Proof. First we show (i). Let w = w(a, m). Assume that 0 < 
/2 Th ta T k (b) (kp-b) n,1 

a :S p . en w = SmSm-1 · · · s2 . a e a = ei - ej E HI , 

where i > j and -p/2 < b < 0. Then w(a) becomes positive unless 
j = l, i :S m. In that case we have w(a) = e~~1 - e~p-b+a), and 

w(a) < 0 if and only if -p/2 < -b + a :=:; 0. This condition is equivalent 
to p/2 < a - b < p, and we have 

U{a = e?) - etp-b) En;' I w(a) < O} 

= U{a I p/2 < a - b < p, 0 :=:; k < d, 2 :=:; i :=:; m} 

= {d(m - l)(a - 1) if pis even, 
d(m - l)a if pis odd. 

Next take a = e~mp-b+o) - e?) E Of', where i < j and 0 < b :S p/2. A 
similar consideration as above shows that w(a) < 0 if and only if i = 1 
and 0 < a - b + c5 :S p/2. Then we have 

tt{a = e~mp-b+o) - e?) En;' I w(a) < 0} 

= tt{a IO< a - b + c5 :=:; p/2, 0 :=:; k < d, 2 :S j :=:; m}, 

{
d(m - l)a if pis even, 

- d(m - l)(a - 1) if pis odd. 
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It follows that n?(w) = d(m - 1)(2a - 1). 
Next assume that -p/2 < a :S 0. Then w = Sm··· s2tas2 ···Sm. 

First take a = e?) - etp-b), where i > j and -p/2 < b < 0. Then 

w(a) is positive unless i = m. In that case, w(a) = e~+b) - etp-b) and 

w(a) < 0 if and only if 0 <a+ b :S p/2. This implies that -p <a+ b :S 
-p/2, and we have 

It{ a= e?) -etp-a) E Of' I w(a) < O} 

= lt{a I -p <a+ b :S -p/2, 0 :=:; k < d, 1 :=:; j < m} 

= d(m - 1)(-a). 

Next take a = e~kp-b+o) - e;b), where i < j and 0 < b :=:; p/2. Then 

w(a) is positive unless j = m. In that case w(a) = e?p-b+o) - e~+b), 
and w(a) < 0 if and only if -p/2 <a+ b :S 0. Hence we have 

lt{a =e?p-b+o) - e?) E Of' I w(a) < O} 

= { a I -p /2 < a + b :S 0, 0 :=:; k < d, 1 :S i < m} 

= d(m - l)(-a) 

It follows that n?(w) = (m - l)d(-2a), and we get (i). 

Next we show (ii). Take a = e?) - e;mp-b) E Of', with i > j, and 

assume that w(a) < 0. Now w(a) can be written as w(a) = eib+ak) -
e}mp-b+ai) for some k, l. First consider the case where k > l. Let 
w' = w(ak+l, k + l) · · · w(an, n). Then w'(a) can be written as w'(a) = 
eib) - eY:•p-b) for some j' < k. It follows that /3 = w'(a) E Of' and 
w(ak, k)/3 < 0. If k < l, we consider w" = w(a1+1, l + l) • • • w(an, n) 
instead of w'. Then w"(a) can be written as w"(a) = ei~) - eimp-b) for 
some i' > 1. Hence /3 = w"(a) E Of' and w(a1,l)/3 < 0. Conversely, we 

take /3 = e~~) - ej":'p-b) E Of' with i' > j', and assume that w(ak, k)/3 < 
0. Then i' = k or j' = 1. If we set a = w'- 1 (/3), then we see that 
a = e(b) - e(mp-b) E O" with i > 1· and that w(a) < 0 

i J l , · 

A similar fact as above also holds for a = eimp-b+o) - e?) E Oz'. 
(Here, /3 = efmp-b+o) - eib) with i' < k, or /3 = eimp-b+o) - e?) with 

1 < j', and so /3 E Of'). This proves (2.10.1). 
Finally, assume that w EN'. Then n(w) = nf'(w) by (2.7.1). Hence 

(2.10.1) gives the value n(w). Q.E.D. 

Remark 2.12. If p ~ 3 or d = l, then s 1 = w( -1, 1 )w(l, 2) E N'. 
While if p = 2, d =/- l, we have s1 = ww' with w = w(l, l)w(l, 2) EN' 
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and w' = s2C2s2 E WJ. Here n(w) = d and n(w') = nJ(w') = 2d - l. 
So, in this case we have n(s1) = 3d - 1 by Lemma 2.7. This justifies 
(2.6.1). 

2.13. For a complex reflection group G, we denote by Pc(q) the 
Poincare polynomial associated to the coinvariant algebra of G. The 
Poincare polynomial Pw(q) for W = G(r,p, n) is given as 

(2.13.1) 
n-1 ri 1 dn 1 II q - q -

Pw(q) = -- · --. 
. q-l q-l 
i=l 

Then the following proposition holds. 

Proposition 2.14. We have 

! L qn(w) = L qn(w) = Pw(q). 
p - w wEW wE 

Proof. We show the second equality. By Lemma 2.7 and Proposi
tion 2.9, we have 

(2.14.1) 

Now WJ is isomorphic to G(d, 1, n) and the restriction of n on WJ 
coincides with nJ by Lemma 2.5. Hence by [BMl, Prop. 2.12] we have 

(2.14.2) 
n di 1 L qn(w) = Pc(d,l,n)(q) = II qq --l . 

wEWJ i=l 

On the other hand, in the expression w = Li w(ai, i) E N', we can 
choose a2, ... , an freely, and a1 is determined uniquely by a2, ... , an. 
Moreover, we have nf'(w(a, 1)) = 0 by Lemma 2.11. Hence again by 
using Lemma 2.10, we have 

(2.14.3) 
n p-1 n-1 ri l L qn(w) = II L qdk(i-1) = II qdi = 1 · 

wE/v' i=2 k=O i=l q 

Substituting (2.14.2) and (2.14.3) into (2.14.1), we get the second equal
ity. The formula½ LwEW qn(w) = Pw(q) can be proved in a similar way 
if one notices that 

n p-1 L qn(w) = II L qdk(i-1). 

wE/v i=l k=O 

Q.E.D. 
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§3. A characterization of the function n 

3.1. In this section we shall cha~terize the length function n in 
terms of a certain length function on W, which is defined independent 
of the root system. We use the same notation as in Remark 2.10. 

Let Wo = G(2, 1, n) be the Weyl group of type Bn. We define a 

map cp : W--+ Wo by cp(w) = a(e1, ... , en), where w = a(z1, ... , Zn) is 
as above, and ei is determined by 

if Zi > 0, 

if Zi ~ 0. 

(Here we use the same notation for Wo as the special case r = 2 for 
G(r, 1, n)). Let us define a length function £1 : W --+ N as follows. 
For w = az, we put l1(w) = lo(cp(w)), where lo is the length function 
on Wo with respect to the long roots. (More precisely, using the basis 
e1, ... , en of V, the set of long roots 4>1 C V associated to Wo is given 
as 4>1 = {±ei ± ei 11 ~ i,j ~ n,i ,f. j}, on which Wo acts naturally. 
Now the set 4>f of positive roots is given as 4>f = { ei ± ei I i > j}. For 

w' E Wo, we put lo(w') = l4>i n -w'(4>t}I). Next we define a function 

£2 : W--+ N by l2(w) = I::;=1 Zi, where 

{
2z· -1 

A i 
Zi = 

-2Zi 

if Zi > 0, 

if Zi ~ 0. 

Then we define a length function f, by f, = £1 + £2. It is clear from the 
definition that if r = 2, £2 coincides with the length function of Wo with 
respect to short roots, and so the function f, coincides with the usual 
length function of the Weyl group of type Bn. 

3.2. Let w = w(a1, 1) · · • w(an, n) be an element in N. The 
expression w = az of w as in 3.1 can be described as follows. Let 
I= {1 ~ i ~ n I ai > 0}, and J the complement of I in {1, 2, ... , n}. We 
write I= {i1 > i2 > · · · > ik} with k = III, and J = {j1 < J2 < · · · < j1} 
with l = IJI. Set 

(3.2.1) 

and 

(3.2.2) 

( 1 2 .. · 
a= i1 i2 · · · 7i)· 
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Then we have w = az. Conversely, any element w = az with u, z defined 
as above in terms of I, J, together with the condition that -p/2 < ai ~ 
p/2, gives an element of N. These facts can be checked by using the 
induction on n. 

Now cp( w) E Wo can be expressed as a signed permutation, 

(3.2.3) cp(w) = ( 1_ 
-i1 

k k+ 1 
-ik ]1 ;). 

From this we see that the set { cp( w) I w §__ W} coincides with the set of 
distinguished representatives for the set Wo /Sn. 

We have the following lemma. 

Lemma 3.3. Let N and WJ be as before. Then for each w EN, w is 
the unique minimal length element in the coset wWJ with respect to £. 
In other words, 

N = {w E WI £(w) ~ C(ww') for any w' E WJ}. 

Proof. Let w = uz EN. To prove the lemma, it is enough to show 
C(w) < C(ww') for any w' E WJ - {l}. Since w' E WJ, one can write 
w' = a' z' with u' E Sn and z' = (zL ... , z~) such that zi = 0 (mod p). 
Here u'-/= 1 or z'-/= 0. Then ww' = aa'u'-1(z)z', and u'- 1 (z)i = Zo-'(i)· 

Since zi = 0 (mod p), we have Zo-'(i) + zi = Zo-'(i)· Hence cp(ww') = 
cp( w )a'. But since cp( w) is a distinguished representative for the cosets 

Wo/Sn, we see that £1(w) < Ci(ww') if a'-/= l. 
Next we show that £2(w) < £2(ww') if z'-/= 0. We may assume that 

r -/= p. By our assumption, we have -p/2 < Zo-'(i) ~ p/2, and zi = 0 
( mod p). If Zo-' ( i) and zi have the same sign, clearly I Zo- 1 ( i) + zi I > I Zo- 1 ( i) 1-

(In this case, if lzo-'(i) + zil > r /2, one has to replace Zo-'(i) + zi by 
zo-'(i) + zi ± r. But since r -/= p, still the inequality holds). Now assume 
that Zo-'(i) and zi have the distinct sign. Then we have IP - Zo-'(i)I 2:: 
lzo-'(i)I, and the equality holds only when Zo-'(i) = p/2. So the only 
case we have to care about is the case that Zo-'(i) = p/2 and zi = -p. 
But in this case, (zo-'(i) + zi)" = p > Zo-'(i) = p - l. This shows that 
£2(w) < £2(ww') if z' -/= 0. Hence we have £(w) < C(ww') if w' -/= 1 as 
asserted. Q.E.D. 

3.4. Let I= { t\.::!:' s2 , ••• , Sn-d be a subset of S, and we consider 
the subgroup Wr of W generated by I. Hence Wr is isomorphic to 
G(r,p, n - 1). We set V = {w(a, n) I -p/2 <a~ p/2}. Then we have 
the following lemma. 
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Lemma 3.5. (i) The set 1) is a set of complete representatives of 

the double cosets W1 \ W /WJ. 
(ii) Forw = w(a1, l) · · · w(an, n) EN, we have f(w) = Ei f(w(ai, i)). 

(iii) The set 1) is characterized as the set of elements w E W such that 

w is the unique minimal length element in W1wWJ with respect 
to£. 

Proof We know already by Remark 2.10 that W = W11JWJ. On 
the other hand, let x = w(a, n) E D. Then any element y E W1xWJ 

has the property that y maps some eio) to e~a') with a' = a (mod p). 
This implies that the double cosets are disjoint for distinct elements in 
1), and we get (i). 

We show (ii). Let w EN. Then by using (3.2.3), one can check that 
cp(w) = cp(w(a1, 1)) • • • cp(w(an, n)), and that cp(w(an, n)) is a distin
guished representatives for the cosets (W1 )o \ Wo. (Here (W1 )o denotes 
the subgroup of Wo of type Bn-1 obtained from W1). Hence the func
tion £0 is additive with respect to the decomposition of cp(w), and so we 
have f1(w) = Eif(w(ai,i)). On the other hand, ifwe write w = crz as 
in 3.2, z is given as in (3.2.2). This implies that f2(w) = Ei f2(w(ai, i)), 
and the assertion follows. 

Finally we show (iii). Take x = w(a,n) E D. Then by Remark 
2.10, any element y E W1xWJ can be written uniquely as y = w1xw2 
with w1 E N1 and W2 E W J. (Here N1 = N n W1). Then by Lemma 
3.3, f(w1x) ~ f(w1xw2), where the equality holds only when w2 = 1. 
On the other hand, by (ii), we have f(w1x) = f(w 1) + f(x). Hence (iii) 
holds. Q.E.D. 

Remark 3.6. The set N (resp. D) is also characterized as the set of 

minimal length elements in each coset in W/WJ (resp. W1\W/WJ) by 
Proposition 2.9 and Lemma 2.11. 

3. 7. We now give a characterization of the function ii in terms of 
the function£. In some sense this gives a characterization of the function 
non W since nlw = n. Note that by Lemma 3.3 and Lemma 3.5, the 
sets N and 1) are determined by the function £ independently of the 
choice of the root system. 

Theorem 3.8. Assume that d -/. l. Then the function n : W -+ N is 
the unique function satisfying the following properties. 

(i) The restriction of n on WJ (resp. on W1) coincides with nJ 
(resp. n1), where n1 denotes the function on W1 = G(r, l, n - l) 
defined in a similar way as n on W. 
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(ii) For w E N, w' E WJ, we have ii(ww') = ii(w) + ii(w'). For 
w E Ni, w' E 'D, we ha;!!! ii(ww') = ii(w) + ii(w'). 

(iii) Let g be an element in W which is conjugate tot, with g -It. Set 
o: = p/2 if p is even, and o: = -(p - 1)/2 if p is odd. Then we 
have 

0 < ii(g) < ii(g-1) < ii(g2 ) < ii(g-2) < • • • < ii(g°'), 

(iv) ! L qii(w) = Pw(q). 
p -wEW 

Proof. We have already seen in section 2 that ii satisfies the con
dition (i), (ii) and (iv). We show that ii satisfies (iii). Take g E W as 
in (iii). Then g can be written as g = sisi-1 · • · s2ts2 •••Si-I Si for some 
i 2: 2. Hence we have 

(3.8.1) a {w(a, i)si · · · s2 
g = 

w(a, i) 
if 0 < a $. p/2, 
if - p/2 < a $_ 0. 

Since Si••• s2 E WJ, the length ii(ga) can be computed by Lemma 2.7 
and Lemma 2.11, as follows. 

ii(ga) = {(i -l){d(2a -1) + 1} 
(i - 1)(-2ad) 

if O < a $_ p/2, 
if - p/2 <a$_ 0. 

Since d -:/ 1, the condition (iii) is verified by using _!_he above formula. 
Next we show the uniqueness of ii. If~= 1, Wis the cyclic group 

generated by t and W J is the subgroup of W generated by tP. Hence it 
is determined by the conditions (i) and (ii). So we assume that n > 1. 
By (i) and (ii), it is enough to see that ii(w) is determined uniquely for 
w E 'D. Let w = w(a,n) E 'D and set c(a) = ii(w)/(n - 1). Then by 
(iv), we have 

(3.8.2) {c(a) I -p/2 <a$_ p/2} = {O, d, 2d, ... , (p - l)d}. 

Since IVI = p, c(a) are all distinct. On the other hand, let g 
Sn··· s2ts2 ···Sn- Then by (3.8.1) and (ii), we have 

ii(ga) = {(n - l)(c(a) + 1) 
(n - l)c(a) 

Hence by using (iii), we have 

if O < a $_ p/2, 
if - p/2 < a $_ 0. 

c( i) + 1 < c(-i) < c( i + 1) + 1 
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for i = 1, 2, .... Since c(a) = 0 (mod d), and d i- 1, we have c(i) < 
c(-i) < c(i + 1). It follows, by (3.8.2), that we have 

c(a) = { (2a - l)d 
(-2a)d 

if a> 0, 

if a::; 0. 

The function n is now determined on V, and so the theorem follows. 
Q.E.D. 

Remark 3.9. In the case where d = l, the property (iii) in the theorem 
does not hold. Instead, we have the following relation. 

Then the function n is characterized by the properties (i) ~ (iv), but 
replacing (iii) by (iii'). In fact, by a similar argument as above, we have 

c(i) + 1 = c(-i) < c(i + 1) + 1 

for i = 1, 2, .... Thus c(i) is the smallest integer among all the c(a) such 
that /a/ ~ i. Since the set {c(a) I -p/2 <a::; p/2} coincides with the 
set {0,1, ... ,p- l}, this determines c(i) and so c(-i) successively for 
i = 1, 2, .... Hence the function n is determined uniquely. 
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