Length Functions for $\boldsymbol{G}(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{n})$

Toshiaki Shoji ${ }^{1}$

Abstract

. In this paper, we construct a length function $n(w)$ for the complex reflection group $W=G(r, p, n)$ by making use of certain partitions of the root system associated to $\widetilde{W}=G(r, 1, n)$. We show that the function $n(w)$ yields the Poincaré polynomial $P_{W}(q)$. We give some characterization of this function in a way independent of the choice of the root system.

§1. Introduction

Let $\widetilde{W}=G(r, 1, n)$ be an imprimitive complex reflection group. In [BM1], K. Bremke and G. Malle introduced a certain type of root system (and its partition into positive and negative roots) associated to \widetilde{W}, and defined a length function n_{1} on \widetilde{W} by making use of the root system. They showed that this function satisfies some good properties as a generalization of the length function of finite Coxeter groups. In particular, the polynomial $\sum_{w \in \widetilde{W}} q^{n_{1}(w)}$ coincides with the Poincare polynomial $P_{\widetilde{W}}(q)$ of \widetilde{W}. In [RS], we studied further properties of n_{1}, and gave some characterization of it in a way independent of the choice of the root system, in connection with the usual length function defined by standard generators of \widetilde{W}.

In [BM2], a similar problem was studied for the reflection subgroup $G(r, r, n)$ of \widetilde{W}. They defined a length function \tilde{n}_{2} on \widetilde{W} by using a similar root system as above, but by using completely different partition into positive and negative roots. They defined a length function n_{2} on $G(r, r, n)$ as the restriction of \tilde{n}_{2}, and showed that n_{2} yields the Poincare polynomial $P_{G(r, r, n)}(q)$.

Received February 23, 1999.
${ }^{1}$ This paper is a contribution to the Joint Research Project "Representation Theory of Finite and Algebraic Groups" 1997-99 under the JapaneseGerman Cooperative Science Promotion Program supported by JSPS and DFG.

In this paper, we consider a more general group $W=G(r, p, n)$. The group W is a reflection subgroup of \widetilde{W} containing $G(r, r, n)$. We construct some partitions of the root system, (in fact, we need two kinds of such partitions) and define a length function \tilde{n} on \widetilde{W} associated to the root system. We also define a function n on W as the restriction of \tilde{n} on W. We then show that our length functions satisfy the property that

$$
\frac{1}{p} \sum_{w \in \widetilde{W}} q^{\widetilde{n}(w)}=\sum_{w \in W} q^{n(w)}=P_{W}(q)
$$

where $P_{W}(q)$ is the Poincaré polynomial associated to W. Our function $n(w)$ is much more complicated than the previous cases. But in some sense, it is the mixture of the functions n_{1} and n_{2}. In fact, if $p=1$, $n(w)$ coincides with $n_{1}(w)$, while if $p=r, n(w)$ coincides with $n_{2}(w)$.

We give a characterization of the function \tilde{n} on \widetilde{W} in a similar way as in [RS], in an independent way of the choice of the root system. This is done by making use of a certain length function on \widetilde{W} defined without using the root data. However, in contrast to the case treated in [RS], it is not the function defined by generators of \widetilde{W} or W.

§2. Length functions associated to a root system

2.1 Let V be the unitary space \mathbf{C}^{n} with the standard basis vectors e_{1}, \ldots, e_{n}. We denote by $\widetilde{W}=G(r, 1, n)$ the imprimitive complex reflection group generated by reflections t, s_{2}, \ldots, s_{n}. Here s_{i} is the permutation of e_{i} and e_{i-1} for $i=2, \ldots, n$, and t is the complex reflection of order r defined by $t e_{1}=\zeta e_{1}$ and $t e_{i}=e_{i}$ for $i \neq 1$, where ζ is a fixed primitive r-th root of unity. The group \widetilde{W} has a Coxeter-like diagram with respect to the set $\widetilde{S}=\left\{t, s_{2}, \ldots, s_{n}\right\}$ of generators as follows;

For each factor p of r, we denote by $W=G(r, p, n)$ the reflection subgroup of \widetilde{W} of index p generated by $S=\left\{t^{p}, s_{1}=t^{-1} s_{2} t, s_{2}, \ldots, s_{n}\right\}$. The special case where $p=r$, the group $W^{\prime}=G(r, r, n)$ is generated by $S^{\prime}=\left\{s_{1}, \ldots, s_{n}\right\}$. We have $W^{\prime} \subset W \subset \widetilde{W}$. We put $r=p d$. The presentation of the group W in terms of the set S is determined by
[BMR]. In particular, if $p \geq 3, d \neq 1$, the Coxeter-like diagram of W is given as follows.

2.2 Let Φ be a root system associated to \widetilde{W} defined in [BM1]. Here we follow the description of Φ given in [RS]. Hence we consider a set $X=\left\{e_{i}^{(a)} \mid 1 \leq i \leq n, a \in \mathbf{Z} / r \mathbf{Z}\right\}$, and we express an element $\left(e_{i}^{(a)}, e_{j}^{(b)}\right) \in X \times X$ as $e_{i}^{(a)}-e_{j}^{(b)}$ whenever $i \neq j$. The root system Φ is defined by

$$
\begin{aligned}
\Phi & =\Phi_{l} \coprod \Phi_{s} \quad \text { with } \\
\Phi_{l} & =\left\{e_{i}^{(a)}-e_{j}^{(b)} \mid 1 \leq i, j \leq n, i \neq j, a, b \in \mathbf{Z} / r \mathbf{Z}\right\} \\
\Phi_{s} & =X=\left\{e_{i}^{(a)} \mid 1 \leq i \leq n, a \in \mathbf{Z} / r \mathbf{Z}\right\}
\end{aligned}
$$

An element in Φ_{l} (resp. in Φ_{s}) is called a long root (resp. a short root), respectively. The group \widetilde{W} acts naturally on the set Φ in such a way that s_{i} permutes $e_{i}^{(a)}$ and $e_{i-1}^{(a)}$, and $t e_{1}^{(a)}=e_{1}^{(a+1)}, t e_{j}^{(a)}=e_{j}^{(a)}$ for $j \neq 1$.

For $\alpha=e_{i}^{(a)}-e_{j}^{(b)} \in \Phi_{l}$, we define $-\alpha \in \Phi_{l}$ by $-\alpha=e_{j}^{(b)}-e_{i}^{(a)}$. We shall define two types of partitions, $\Phi_{l}=\Phi_{l}^{+} \cup \Phi_{l}^{-}=\Phi_{l}^{++} \cup \Phi_{l}^{--}$such that $\Phi_{l}^{-}=-\Phi_{l}^{+}, \Phi_{l}^{--}=-\Phi_{l}^{++}$. In the following formulae, long roots $\alpha \in \Phi_{l}$ are always denoted as $\alpha=e_{i}^{(a)}-e_{j}^{(b)}$. Also for each $a \in \mathbf{Z}$, let \bar{a} be the integer determined by the condition that $\bar{a} \equiv a(\bmod p)$ and that $-p / 2<\bar{a} \leq p / 2$. The partition of the first type is given as follows.

$$
\begin{align*}
& \Phi_{l}^{+}=\{\alpha \mid-p / 2<a \leq 0, i>j\} \tag{2.2.1}\\
& \cup\{\alpha \mid 0<\bar{a} \leq p / 2, p / 2<b \leq r-p / 2, i>j\} \\
& \cup\{\alpha \mid-p / 2<\bar{b} \leq 0,0<b \leq r-p / 2, i<j\} \\
& \cup\{\alpha \mid 0<\bar{b} \leq p / 2,-p / 2<a \leq p / 2, i<j\} \\
& \Phi_{l}^{-}=\{\alpha \mid-p / 2<b \leq 0, i<j\} \\
& \cup\{\alpha \mid 0<\bar{b} \leq p / 2, p / 2<a \leq r-p / 2, i<j\} \\
& \cup\{\alpha \mid-p / 2 \leq \bar{a} \leq 0,0<a \leq r-p / 2, i>j\} \\
& \cup\{\alpha \mid 0<\bar{a} \leq p / 2,-p / 2<b \leq p / 2, i>j\} .
\end{align*}
$$

The fact that $\Phi_{l}^{-}=-\Phi_{l}^{+}$, and that Φ_{l} is a disjoint union of Φ_{l}^{+}and Φ_{l}^{-} is verified as follows. Set

$$
\begin{aligned}
& A=\{\alpha \mid-p / 2<a \leq 0, i>j\} \\
& B=\{\alpha \mid 0<\bar{a} \leq p / 2, p / 2<b \leq r-p / 2, i>j\} \\
& C=\{\alpha \mid-p / 2<\bar{a} \leq 0,0<a \leq r-p / 2, i>j\} \\
& D=\{\alpha \mid 0<\bar{a} \leq p / 2,-p / 2<b \leq p / 2, i>j\}
\end{aligned}
$$

Then, it is easy to see that A, B, C and D are mutually disjoint, and $A \cup B \cup C \cup D$ coincides with the set $\left\{\alpha \in \Phi_{l} \mid i>j\right\}$. Moreover, we have

$$
\Phi_{l}^{+}=A \cup B \cup-C \cup-D, \quad \Phi_{l}^{-}=-A \cup-B \cup C \cup D .
$$

This shows the required property.
The partition of the second type is given as follows.

$$
\begin{align*}
& \Phi_{l}^{++}=\{\alpha \mid-p / 2<\bar{a} \leq 0, i>j\} \cup\{\alpha \mid 0<\bar{b} \leq p / 2, i<j\} \tag{2.2.2}\\
& \Phi_{l}^{--}=\{\alpha \mid 0<\bar{a} \leq p / 2, i>j\} \cup\{\alpha \mid-p / 2<\bar{b} \leq 0, i<j\}
\end{align*}
$$

We also define a grading of Φ_{s} by modifying the grading of Φ_{s} given in $[\mathrm{RS}]$ as follows. Let $\Phi_{s}=\Phi_{s, 0} \cup \Phi_{s, 1} \cup \cdots \cup \Phi_{s, d-1}$, where

$$
\begin{equation*}
\Phi_{s, m}=\left\{e_{i}^{(a)} \mid m p-p / 2<a \leq m p+p / 2,1 \leq i \leq n\right\} \quad(0 \leq m<d) \tag{2.2.3}
\end{equation*}
$$

Next we define a subset $\Omega=\Omega_{l}^{\prime} \cup \Omega_{l}^{\prime \prime} \cup \Omega_{s}$ of Φ as follows.

$$
\begin{aligned}
\Omega_{s} & =\left\{e_{i}^{(0)} \mid 1 \leq i \leq n\right\} \\
\Omega_{l}^{\prime} & =\left\{e_{i}^{(0)}-e_{j}^{(b)} \mid b \equiv 0(\bmod p), i>j\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Omega_{l}^{\prime \prime}=\left\{e_{i}^{(a)}-\right. & \left.e_{j}^{(m p-a)} \mid-p / 2<a<0,0 \leq m<d, i>j\right\} \\
& \cup\left\{e_{i}^{(m p-b+\delta)}-e_{j}^{(b)} \mid 0<b \leq p / 2,0 \leq m<d, i<j\right\}
\end{aligned}
$$

where

$$
\delta= \begin{cases}1 & \text { if } p \text { is even } \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

We define functions $\tilde{n}_{l}^{\prime}, \tilde{n}_{l}^{\prime \prime}, \tilde{n}_{s}: \widetilde{W} \rightarrow \mathbf{N}$ by

$$
\tilde{n}_{l}^{\prime}(w)=\left|w \Omega_{l}^{\prime} \cap \Phi_{l}^{-}\right|, \quad \tilde{n}_{l}^{\prime \prime}(w)=\left|w \Omega_{l}^{\prime \prime} \cap \Phi_{l}^{--}\right|
$$

and by

$$
\tilde{n}_{s}(w)=\sum_{\alpha \in \Omega_{s}} \nu(w(\alpha))
$$

where for each $\alpha \in \Phi_{s}$, we put $\nu(\alpha)=k$ if $\alpha \in \Phi_{s, k}$. We define a length function $\tilde{n}: \widetilde{W} \rightarrow \mathbf{N}$ by $\tilde{n}=\tilde{n}_{l}^{\prime}+\tilde{n}_{l}^{\prime \prime}+\tilde{n}_{s}$. We consider the restriction of these functions to W, and define $n_{l}^{\prime}, n_{l}^{\prime \prime}$ and n_{s} as the restriction of $\tilde{n}_{l}^{\prime}, \tilde{n}_{l}^{\prime \prime}$, and \tilde{n}_{s}, respectively. Then we define a length function n of W by $n=n_{l}^{\prime}+n_{l}^{\prime \prime}+n_{s}$.
Remark 2.3. In the case where $p=1$, we have $\Omega_{l}^{\prime \prime}=\emptyset$. Moreover, $\Phi_{l}^{+}=\{\alpha \mid a=0\} \cup\{\alpha \mid b \neq 0\}$, and $\Phi_{l}^{-}=-\Phi_{l}^{+}$. This partition together with the set $\Omega_{l}^{\prime} \cup \Omega_{s}$ coincide with the set $\Omega_{l} \cup \Omega_{s}$ of Φ_{l} given in [RS], and the grading of Φ_{s} also coincides with that of Φ_{s} given there. Hence the function n coincides with the length function of $G(r, 1, n)$ defined in [BM1].

While in the case where $p=r$, we have $\Phi_{s}=\Phi_{s, 0}$. Moreover $\Phi_{l}^{+}=$ $\Phi_{l}^{++}, \Phi_{l}^{-}=\Phi_{l}^{--}$, and this partition of Φ_{l} together with $\Omega_{l}^{\prime} \cup \Omega_{l}^{\prime \prime}$ coincide essentially with those given in [BM2]. (Also note that Ω_{l}^{\prime} coincides with the root system of the symmetric group S_{n}). Hence n agrees with the length function of $G(r, r, n)$ defined there.
2.4. Let W_{I} be the reflection subgroup of W generated by $I=$ $\left\{t^{p}, s_{1}, s_{2}, \ldots, s_{m}\right\}$ for some $m \leq n$. Then W_{I} is isomorphic to $G(r, p, m)$. It is clear from the definition that the restriction of n on W_{I} coincides with the function n_{I} defined similarly for $G(r, p, m)$. On the other hand, let $J=\left\{t^{p}, s_{2}, \ldots, s_{n}\right\}$ be a subset of S, and W_{J} the subgroup of W generated by J. If $d>1$, then W_{J} is isomorphic to $G(d, 1, n)$, and J coincides with the standard set of generators of $G(d, 1, n)$. While if $d=1, W_{J}$ is isomorphic to S_{n}. Let n_{J} be the length function of W_{J} as given in [RS]. In the case where $d>1$, we denote by $n_{J, l}$ and $n_{J, s}$ the functions associated to long roots and short roots, respectively.

Lemma 2.5. The restriction of n on W_{J} coincides with n_{J}.
Proof. The case where $d=1$ is easy. So, we assume that $d>1$. Let $\Phi_{l, J}$ be the subset of Φ_{l} consisting of roots of the form $e_{i}^{(a)}-e_{j}^{(b)}$ with $p|a, p| b$. Then $\Phi_{l, J}$ is in a natural correspondence, via the map $e_{i}^{(a)}-e_{j}^{(b)} \mapsto e_{i}^{\left(a^{\prime}\right)}-e_{j}^{\left(b^{\prime}\right)}$ with $a^{\prime}=a / p, b^{\prime}=b / p$, with the set of long roots for $G(d, 1, n)$, where $\Phi_{l, J} \cap \Phi_{l}^{+}$(resp. $\Phi_{l, J} \cap \Phi_{l}^{-}$) corresponds to
the set of positive (resp. negative) roots, respectively. Similarly, let $\Phi_{s, J}$ be the subset of Φ_{s} consisting of $e_{i}^{(a)}$ with $p \mid a$. Then $\Phi_{s, J}$ corresponds naturally to the set of short roots for $G(d, 1, n)$, and the restriction of the grading of Φ_{s} to $\Phi_{s, J}$ coincides with the grading of the set of short roots. Note that the above correspondence is compatible with the actions of W_{J}. Under this correspondence, the sets Ω_{l}^{\prime} and Ω_{s} are mapped to the sets Ω_{l} and Ω_{s} in the root system for $G(d, 1, n)$. Since $w\left(\Omega_{s}\right) \subset \Phi_{s, J}$ (resp. $\left.w\left(\Omega_{l}^{\prime}\right) \subset \Phi_{l, J}\right)$ for each $w \in W_{J}$, we see that the restriction of n_{s} (resp. n_{l}^{\prime}) on W_{J} coincides with $n_{J, s}$ (resp. $n_{J, l}$), respectively. Hence in order to prove the lemma, it suffices to show that $n_{l}^{\prime \prime}(w)=0$, i.e., $w\left(\Omega_{l}^{\prime \prime}\right) \subset \Phi_{l}^{++}$for $w \in W_{J}$. Take an element $\alpha=e_{i}^{(a)}-e_{j}^{(b)} \in w\left(\Omega_{l}^{\prime \prime}\right)$. Then either $-p / 2<\bar{a}<0$ and $\bar{b}=-\bar{a}$, or $0<\bar{b} \leq p / 2$ and $\bar{a}=-\bar{b}+\delta$. This implies that $\alpha \in \Phi_{l}^{++}$and the lemma follows.
Q.E.D.
2.6. By applying Lemma 2.5, we can determine the values $n(s)$ for $s \in S$ as follows.

$$
n(s)= \begin{cases}1 & \text { if } s \in\left\{s_{2}, \ldots, s_{n}\right\} \tag{2.6.1}\\ 1 & \text { if } s=t^{p} \text { with } d>1 \\ d & \text { if } s=s_{1} \text { with } p \geq 3 \text { or } d=1 \\ 3 d-1 & \text { if } s=s_{1} \text { with } p=2, d>1\end{cases}
$$

In fact, the first two case follow from the lemma. We consider the remaining cases. We have $s_{1}\left(\Omega_{l}^{\prime}\right) \subset \Phi_{l}^{+}$if $p \geq 3$ or $d=1$. While if $p=2$, and $d>1$, then $s_{1}\left(e_{2}^{(0)}-e_{1}^{(b)}\right)<0$ for $b \equiv 0(p)$. On the other hand, $s_{1}\left(e_{1}^{(0)}\right)=e_{2}^{(1)}$ and $s_{1}\left(e_{2}^{(0)}\right)=e_{1}^{(-1)}$, and s_{1} leaves other short roots fixed. Hence by (2.2.3), $s_{1}\left(\Omega_{s}\right) \subset \Phi_{s, 0}$ if $p \geq 3$. While if $p=2$, we have $s_{1}\left(e_{2}^{(0)}\right) \in \Phi_{l, d-1}$, and s_{1} maps all other elements in Ω_{s} to $\Phi_{s, 0}$. Moreover we have

$$
\Omega_{l}^{\prime \prime} \cap s_{1}\left(\Phi_{l}^{--}\right)= \begin{cases}\left\{e_{1}^{(m p)}-e_{2}^{(1)} \mid 0 \leq m<d\right\} & \text { if } p \text { is even } \\ \left\{e_{2}^{(-f)}-e_{1}^{(m p+f)} \mid 0 \leq m<d\right\} & \text { if } p \text { is odd }\end{cases}
$$

where $p=2 f+1$. This implies that $n_{l}^{\prime}\left(s_{1}\right)=0, n_{l}^{\prime \prime}\left(s_{1}\right)=d$ and $n_{s}\left(s_{1}\right)=$ 0 if $p \geq 3$ or $d=1$, and $n_{l}^{\prime}\left(s_{1}\right)=d, n_{l}^{\prime \prime}\left(s_{1}\right)=d$ and $n_{s}\left(s_{1}\right)=d-1$ otherwise. So we have $n\left(s_{1}\right)=d$ or $3 d-1$ and (2.6.1) follows.

Let $\Phi_{l, J}$ be the subset of Φ_{l} defined in the beginning of the proof of Lemma 2.5. Set $\Phi_{l, J}^{+}=\Phi_{l, J} \cap \Phi_{l}^{+}$. We define a subset \widetilde{W}^{J} of \widetilde{W} by

$$
\begin{equation*}
\widetilde{W}^{J}=\left\{w \in \widetilde{W} \mid w\left(\Phi_{l, J}^{+}\right) \subset \Phi_{l}^{+}, w\left(\Omega_{s}\right) \subset \Phi_{s, 0}\right\} \tag{2.6.2}
\end{equation*}
$$

Then the following lemma holds.
Lemma 2.7. Let $w \in \widetilde{W}^{J}, w^{\prime} \in W_{J}$. Then we have

$$
\begin{align*}
\tilde{n}_{l}^{\prime}\left(w w^{\prime}\right) & =\tilde{n}_{l}^{\prime}\left(w^{\prime}\right), \tag{2.7.1}\\
\tilde{n}_{l}^{\prime \prime}\left(w w^{\prime}\right) & =\tilde{n}_{l}^{\prime \prime}(w) \\
\tilde{n}_{s}\left(w w^{\prime}\right) & =\tilde{n}_{s}\left(w^{\prime}\right)
\end{align*}
$$

In particular, $\tilde{n}\left(w w^{\prime}\right)=\tilde{n}(w)+\tilde{n}\left(w^{\prime}\right)$.
Proof. Since $\Omega_{l}^{\prime} \subset \Phi_{l, J}^{+}$, it follows from (2.6.2) that $\tilde{n}_{l}^{\prime}(w)=0$. (2.6.2) implies also $\tilde{n}_{s}(w)=0$. On the other hand, we know that $\tilde{n}_{l}^{\prime \prime}\left(w^{\prime}\right)=n_{l}^{\prime \prime}\left(w^{\prime}\right)=0$ from the proof of Lemma 2.4. Hence the last formula follows from (2.7.1). We show (2.7.1). Since $w\left(\Phi_{l, J}^{-}\right) \subset \Phi_{l}^{-}$, $w^{\prime}(\alpha)$ and $w w^{\prime}(\alpha)$ have the same sign for $\alpha \in \Omega_{l}^{\prime}$. This implies the first assertion of (2.7.1). Let

$$
\begin{aligned}
& \widetilde{\Omega}_{l}^{\prime \prime}=\left\{e_{i}^{(a)}-e_{j}^{(b)} \mid-p / 2<\bar{a}<0, \bar{a}+\bar{b}=0, i>j\right\} \\
& \cup\left\{e_{i}^{(a)}-e_{j}^{(b)} \mid 0<\bar{b} \leq p / 2, \bar{a}+\bar{b}=\delta, i<j\right\}
\end{aligned}
$$

Since $w^{\prime}\left(\Omega_{l}^{\prime \prime}\right) \subset \Phi_{l}^{++}$, we see that w^{\prime} stabilizes $\widetilde{\Omega}_{l}^{\prime \prime}$. The second assertion follows from this if we notice that the definition of the sets Φ_{l}^{++}or Φ_{l}^{--} depends only on \bar{a} and \bar{b} for $\alpha=e_{i}^{(a)}-e_{j}^{(b)}$, and that $\widetilde{\Omega}_{l}^{\prime \prime}$ has the same pattern as $\Omega_{l}^{\prime \prime}$ for the action of w^{\prime}. The last assertion is also immediate from (2.2.3). This proves the lemma.
Q.E.D.
2.8. By modifying the definition in [BM2], we define an element $w(a, m) \in \widetilde{W}$ for $-p / 2<a \leq p / 2,1 \leq m \leq n$ as follows.

$$
w(a, m)= \begin{cases}s_{m} \cdots s_{2} t^{a} & \text { if } 0<a \leq p / 2 \tag{2.8.1}\\ s_{m} \cdots s_{2} t^{a} s_{2} \cdots s_{m} & \text { if }-p / 2<a \leq 0\end{cases}
$$

Let us define a subset \mathcal{N} of \widetilde{W} by

$$
\mathcal{N}=\left\{w\left(a_{1}, 1\right) w\left(a_{2}, 2\right) \cdots w\left(a_{n}, n\right) \mid-p / 2<a_{i} \leq p / 2\right\}
$$

We set $\mathcal{N}^{\prime}=\mathcal{N} \cap W$. Then \mathcal{N}^{\prime} can be written as

$$
\begin{equation*}
\mathcal{N}^{\prime}=\left\{w\left(a_{1}, 1\right) w\left(a_{2}, 2\right) \cdots w\left(a_{n}, n\right) \in \mathcal{N} \mid \sum a_{i} \equiv 0 \quad(\bmod p)\right\} \tag{2.8.2}
\end{equation*}
$$

Also we set $W^{J}=\widetilde{W}^{J} \cap W$. We have the following proposition.

Proposition 2.9. The set \mathcal{N} (resp. \mathcal{N}^{\prime}) coincides with the set \widetilde{W}^{J} (resp. W^{J}). Moreover, \mathcal{N} (resp. \mathcal{N}^{\prime}) gives rise to a system of complete representatives of left cosets \widetilde{W} / W_{J} (resp. W / W_{J}), respectively.

Proof. First we show that \mathcal{N} is contained in \widetilde{W}^{J}. Take $\alpha=e_{i}^{(m p)}$ $e_{j}^{\left(m^{\prime} p\right)} \in \Phi_{l, J}$. Then for $w \in \mathcal{N}, w(\alpha)$ is expressed as $w(\alpha)=e_{k}^{\left(m p+a_{k}\right)}-$ $e_{l}^{\left(m^{\prime} p+a_{l}\right)}$, where a_{k} and a_{l} satisfy the following condition;

$$
\begin{array}{rrrl}
-p / 2<a_{k} \leq p / 2, & 0<a_{l} \leq p / 2 & & \text { if } i>j, k<l \\
-p / 2<a_{k} \leq 0, & -p / 2<a_{l} \leq p / 2 & & \text { if } i>j, k>l \\
-p / 2<a_{k} \leq p / 2, & -p / 2<a_{l} \leq 0 & & \text { if } i<j, k<l \\
0<a_{k} \leq p / 2, & -p / 2<a_{l} \leq p / 2 & & \text { if } i<j, k>l .
\end{array}
$$

Then it is easy to see that $w(\alpha) \in \Phi_{l}^{+}$exactly when $m=0$ if $i>j$, and when $m^{\prime} \neq 0$ if $i<j$. But this condition is equivalent to the condition that $\alpha \in \Phi_{l, J}^{+}$. It follows that $w\left(\Phi_{l, J}^{+}\right) \subset \Phi_{l}^{+}$. Next take $e_{i}^{(0)} \in \Omega_{s}$. Then we have $w\left(e_{i}^{(0)}\right)=e_{j}^{\left(a_{j}\right)}$ for some j with $-p / 2<a_{j} \leq p / 2$. This implies that $w\left(\Omega_{s}\right) \subset \Phi_{s, 0}$. Hence we have $\mathcal{N} \subset W^{J}$.

Next we note that W^{J} is a subset of the set of left coset representatives of W by W_{J}. In fact assume that there exist $w_{1}, w_{2} \in W^{J}$ such that $w_{1}=w_{2} x$ with $x \in W_{J}$. Then by (2.7.1) in the proof of Lemma 2.7, we have $n_{l}^{\prime}\left(w_{2} x\right)=n_{l}^{\prime}(x)$ and $n_{l}^{\prime}\left(w_{1}\right)=0$. Hence $n_{l}^{\prime}(x)=0$. Since the restriction of n_{l}^{\prime} on W_{J} is the length function on $W_{J}=G(d, 1, n)$, we have $x=1$. So $w_{1}=w_{2}$.

It follows from the above remark that $\left|\widetilde{W}^{J}\right| \leq\left|\widetilde{W} / W_{J}\right|=p^{n}$. On the other hand, we have $|\mathcal{N}|=p^{n}$. (In fact, if $w=w\left(a_{1}, 1\right) \cdots w\left(a_{n}, n\right) \in \mathcal{N}$, then there exists $e_{i}^{(0)}$ such that $w\left(e_{i}^{(0)}\right)=e_{n}^{\left(a_{n}\right)}$. Hence the elements in \mathcal{N} are parametrized by n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ with $\left.-p / 2<a_{i} \leq p / 2\right)$. This shows that $\mathcal{N}=\widetilde{W}^{J}$ gives a complete set of representatives for \widetilde{W} / W_{J}.

The statement for W follows from this by noticing that $\left|\mathcal{N}^{\prime}\right|=$ $\left|W / W_{J}\right|=p^{n-1}$.
Q.E.D.

Remark 2.10. The above proposition shows that any element $w \in \widetilde{W}$ (resp. $w \in W$) can be expressed in a unique way as

$$
\begin{equation*}
w=w\left(a_{1}, 1\right) w\left(a_{2}, 2\right) \cdots w_{n}\left(a_{n}, n\right) w^{\prime} \tag{2.10.1}
\end{equation*}
$$

where $w^{\prime} \in W_{J}\left(\right.$ resp. and $\left.\sum_{i} a_{i} \equiv 0(\bmod p)\right)$. The numbers a_{1}, \ldots, a_{n} occuring in the decomposition (2.10.1) can be interpreted directly as follows; since $\widetilde{W} \simeq S_{n} \ltimes(\mathbf{Z} / r \mathbf{Z})^{n}$, an element w in \widetilde{W} can be written
in a form $w=\sigma z$, with $\sigma \in S_{n}$ and $z \in(\mathbf{Z} / r \mathbf{Z})^{n}$. Note that z can be written uniquely as $z=\left(z_{1}, \ldots, z_{n}\right)$ with $z_{i} \in \mathbf{Z}$ such that $-r / 2<$ $z_{i} \leq r / 2$ for $i=1, \ldots, n$. Each z_{i} determines an integer \bar{z}_{i} such that $-p / 2<\bar{z}_{i} \leq p / 2$, and that $\bar{z}_{i} \equiv z_{i}(\bmod p)$ as in 2.2. Under these notations, we have $a_{i}=\bar{z}_{i}$ for $i=1, \ldots, n$. See also 3.2 for more details.

We shall compute th values $\tilde{n}_{l}^{\prime \prime}(w)$ for $w \in \mathcal{N}$, and $n_{l}^{\prime \prime}(w)$ for $w \in \mathcal{N}^{\prime}$.

Lemma 2.11. The following formulae hold.

$$
\tilde{n}_{l}^{\prime \prime}(w(a, m))= \begin{cases}d(m-1)(2 a-1) & \text { if } 0<a \leq p / 2 \tag{i}\\ d(m-1)(-2 a) & \text { if }-p / 2<a \leq 0\end{cases}
$$

(ii) For $w=w\left(a_{1}, 1\right) w\left(a_{2}, 2\right) \cdots w\left(a_{n}, n\right) \in \mathcal{N}$ we have,

$$
\begin{equation*}
\widetilde{n}_{l}^{\prime \prime}(w)=\sum_{i=1}^{n} \tilde{n}_{l}^{\prime \prime}\left(w\left(a_{i}, i\right)\right) \tag{2.11.1}
\end{equation*}
$$

Moreover, the function $\tilde{n}_{l}^{\prime \prime}$ coincides with \tilde{n} on \mathcal{N}. In particular, if $w \in \mathcal{N}^{\prime}$, the value $n(w)$ is given by the right hand side of (2.11.1).

Proof. First we show (i). Let $w=w(a, m)$. Assume that $0<$ $a \leq p / 2$. Then $w=s_{m} s_{m-1} \cdots s_{2} t^{a}$. Take $\alpha=e_{i}^{(b)}-e_{j}^{(k p-b)} \in \Omega_{l}^{\prime \prime}$, where $i>j$ and $-p / 2<b<0$. Then $w(\alpha)$ becomes positive unless $j=1, i \leq m$. In that case we have $w(\alpha)=e_{i-1}^{(b)}-e_{m}^{(k p-b+a)}$, and $w(\alpha)<0$ if and only if $-p / 2<\overline{-b+a} \leq 0$. This condition is equivalent to $p / 2<a-b<p$, and we have

$$
\begin{aligned}
\sharp\left\{\alpha=e_{i}^{(b)}-e_{j}^{(k p-b)}\right. & \left.\in \Omega_{l}^{\prime \prime} \mid w(\alpha)<0\right\} \\
& =\sharp\{\alpha \mid p / 2<a-b<p, 0 \leq k<d, 2 \leq i \leq m\} \\
& = \begin{cases}d(m-1)(a-1) & \text { if } p \text { is even }, \\
d(m-1) a & \text { if } p \text { is odd. }\end{cases}
\end{aligned}
$$

Next take $\alpha=e_{i}^{(m p-b+\delta)}-e_{j}^{(b)} \in \Omega_{l}^{\prime \prime}$, where $i<j$ and $0<b \leq p / 2$. A similar consideration as above shows that $w(\alpha)<0$ if and only if $i=1$ and $0<\overline{a-b+\delta} \leq p / 2$. Then we have

$$
\begin{aligned}
\sharp\left\{\alpha=e_{i}^{(m p-b+\delta)}\right. & \left.-e_{j}^{(b)} \in \Omega_{l}^{\prime \prime} \mid w(\alpha)<0\right\} \\
& =\sharp\{\alpha \mid 0<a-b+\delta \leq p / 2,0 \leq k<d, 2 \leq j \leq m\} \\
& = \begin{cases}d(m-1) a & \text { if } p \text { is even }, \\
d(m-1)(a-1) & \text { if } p \text { is odd. }\end{cases}
\end{aligned}
$$

It follows that $\tilde{n}_{l}^{\prime \prime}(w)=d(m-1)(2 a-1)$.
Next assume that $-p / 2<a \leq 0$. Then $w=s_{m} \cdots s_{2} t^{a} s_{2} \cdots s_{m}$. First take $\alpha=e_{i}^{(b)}-e_{j}^{(k p-b)}$, where $i>j$ and $-p / 2<b<0$. Then $w(\alpha)$ is positive unless $i=m$. In that case, $w(\alpha)=e_{m}^{(a+b)}-e_{j}^{(k p-b)}$ and $w(\alpha)<0$ if and only if $0<\overline{a+b} \leq p / 2$. This implies that $-p<a+b \leq$ $-p / 2$, and we have

$$
\begin{aligned}
& \sharp\left\{\alpha=e_{i}^{(b)}-e_{j}^{(k p-a)} \in \Omega_{l}^{\prime \prime} \mid w(\alpha)<0\right\} \\
& \\
& \quad=\sharp\{\alpha \mid-p<a+b \leq-p / 2,0 \leq k<d, 1 \leq j<m\} \\
& \\
& \quad=d(m-1)(-a) .
\end{aligned}
$$

Next take $\alpha=e_{i}^{(k p-b+\delta)}-e_{j}^{(b)}$, where $i<j$ and $0<b \leq p / 2$. Then $w(\alpha)$ is positive unless $j=m$. In that case $w(\alpha)=e_{i}^{(k p-b+\delta)}-e_{m}^{(a+b)}$, and $w(\alpha)<0$ if and only if $-p / 2<\overline{a+b} \leq 0$. Hence we have

$$
\begin{aligned}
\sharp\{\alpha= & \left.e_{i}^{(k p-b+\delta)}-e_{j}^{(b)} \in \Omega_{l}^{\prime \prime} \mid w(\alpha)<0\right\} \\
& =\{\alpha \mid-p / 2<a+b \leq 0,0 \leq k<d, 1 \leq i<m\} \\
& =d(m-1)(-a)
\end{aligned}
$$

It follows that $\tilde{n}_{l}^{\prime \prime}(w)=(m-1) d(-2 a)$, and we get (i).
Next we show (ii). Take $\alpha=e_{i}^{(b)}-e_{j}^{(m p-b)} \in \Omega_{l}^{\prime \prime}$, with $i>j$, and assume that $w(\alpha)<0$. Now $w(\alpha)$ can be written as $w(\alpha)=e_{k}^{\left(b+a_{k}\right)}-$ $e_{l}^{\left(m p-b+a_{l}\right)}$ for some k, l. First consider the case where $k>l$. Let $w^{\prime}=w\left(a_{k+1}, k+1\right) \cdots w\left(a_{n}, n\right)$. Then $w^{\prime}(\alpha)$ can be written as $w^{\prime}(\alpha)=$ $e_{k}^{(b)}-e_{j^{\prime}}^{(m p-b)}$ for some $j^{\prime}<k$. It follows that $\beta=w^{\prime}(\alpha) \in \Omega_{l}^{\prime \prime}$ and $w\left(a_{k}, k\right) \beta<0$. If $k<l$, we consider $w^{\prime \prime}=w\left(a_{l+1}, l+1\right) \cdots w\left(a_{n}, n\right)$ instead of w^{\prime}. Then $w^{\prime \prime}(\alpha)$ can be written as $w^{\prime \prime}(\alpha)=e_{i^{\prime}}^{(b)}-e_{1}^{(m p-b)}$ for some $i^{\prime}>1$. Hence $\beta=w^{\prime \prime}(\alpha) \in \Omega_{l}^{\prime \prime}$ and $w\left(a_{l}, l\right) \beta<0$. Conversely, we take $\beta=e_{i^{\prime}}^{(b)}-e_{j^{\prime}}^{(m p-b)} \in \Omega_{l}^{\prime \prime}$ with $i^{\prime}>j^{\prime}$, and assume that $w\left(a_{k}, k\right) \beta<$ 0 . Then $i^{\prime}=k$ or $j^{\prime}=1$. If we set $\alpha=w^{-1}(\beta)$, then we see that $\alpha=e_{i}^{(b)}-e_{j}^{(m p-b)} \in \Omega_{l}^{\prime \prime}$ with $i>j$, and that $w(\alpha)<0$.

A similar fact as above also holds for $\alpha=e_{i}^{(m p-b+\delta)}-e_{j}^{(b)} \in \Omega_{l}^{\prime \prime}$. (Here, $\beta=e_{i^{\prime}}^{(m p-b+\delta)}-e_{k}^{(b)}$ with $i^{\prime}<k$, or $\beta=e_{1}^{(m p-b+\delta)}-e_{j^{\prime}}^{(b)}$ with $1<j^{\prime}$, and so $\beta \in \Omega_{l}^{\prime \prime}$). This proves (2.10.1).

Finally, assume that $w \in \mathcal{N}^{\prime}$. Then $n(w)=\tilde{n}_{l}^{\prime \prime}(w)$ by (2.7.1). Hence (2.10.1) gives the value $n(w)$.
Q.E.D.

Remark 2.12. If $p \geq 3$ or $d=1$, then $s_{1}=w(-1,1) w(1,2) \in \mathcal{N}^{\prime}$. While if $p=2, d \neq 1$, we have $s_{1}=w w^{\prime}$ with $w=w(1,1) w(1,2) \in \mathcal{N}^{\prime}$
and $w^{\prime}=s_{2} t^{-2} s_{2} \in W_{J}$. Here $n(w)=d$ and $n\left(w^{\prime}\right)=n_{J}\left(w^{\prime}\right)=2 d-1$. So, in this case we have $n\left(s_{1}\right)=3 d-1$ by Lemma 2.7. This justifies (2.6.1).
2.13. For a complex reflection group G, we denote by $P_{G}(q)$ the Poincaré polynomial associated to the coinvariant algebra of G. The Poincaré polynomial $P_{W}(q)$ for $W=G(r, p, n)$ is given as

$$
\begin{equation*}
P_{W}(q)=\prod_{i=1}^{n-1} \frac{q^{r i}-1}{q-1} \cdot \frac{q^{d n}-1}{q-1} \tag{2.13.1}
\end{equation*}
$$

Then the following proposition holds.
Proposition 2.14. We have

$$
\frac{1}{p} \sum_{w \in \widetilde{W}} q^{\tilde{n}(w)}=\sum_{w \in W} q^{n(w)}=P_{W}(q)
$$

Proof. We show the second equality. By Lemma 2.7 and Proposition 2.9, we have

$$
\begin{equation*}
\sum_{w \in W} q^{n(w)}=\sum_{w \in \mathcal{N}^{\prime}} q^{(n(w)} \sum_{w \in W_{J}} q^{n(w)} \tag{2.14.1}
\end{equation*}
$$

Now W_{J} is isomorphic to $G(d, 1, n)$ and the restriction of n on W_{J} coincides with n_{J} by Lemma 2.5. Hence by [BM1, Prop. 2.12] we have

$$
\begin{equation*}
\sum_{w \in W_{J}} q^{n(w)}=P_{G(d, 1, n)}(q)=\prod_{i=1}^{n} \frac{q^{d i}-1}{q-1} \tag{2.14.2}
\end{equation*}
$$

On the other hand, in the expression $w=\sum_{i} w\left(a_{i}, i\right) \in \mathcal{N}^{\prime}$, we can choose a_{2}, \ldots, a_{n} freely, and a_{1} is determined uniquely by a_{2}, \ldots, a_{n}. Moreover, we have $\tilde{n}_{l}^{\prime \prime}(w(a, 1))=0$ by Lemma 2.11 . Hence again by using Lemma 2.10, we have

$$
\begin{equation*}
\sum_{w \in \mathcal{N}^{\prime}} q^{n(w)}=\prod_{i=2}^{n} \sum_{k=0}^{p-1} q^{d k(i-1)}=\prod_{i=1}^{n-1} \frac{q^{r i}-1}{q^{d i}-1} \tag{2.14.3}
\end{equation*}
$$

Substituting (2.14.2) and (2.14.3) into (2.14.1), we get the second equality. The formula $\frac{1}{p} \sum_{w \in \widetilde{W}} q^{\tilde{n}(w)}=P_{W}(q)$ can be proved in a similar way if one notices that

$$
\sum_{w \in \mathcal{N}} q^{\tilde{n}(w)}=\prod_{i=1}^{n} \sum_{k=0}^{p-1} q^{d k(i-1)}
$$

Q.E.D.

§3. A characterization of the function \tilde{n}

3.1. In this section we shall characterize the length function \tilde{n} in terms of a certain length function on \widetilde{W}, which is defined independent of the root system. We use the same notation as in Remark 2.10.

Let $\widetilde{W}_{0}=G(2,1, n)$ be the Weyl group of type B_{n}. We define a $\operatorname{map} \varphi: \widetilde{W} \rightarrow \widetilde{W}_{0}$ by $\varphi(w)=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, where $w=\sigma\left(z_{1}, \ldots, z_{n}\right)$ is as above, and ε_{i} is determined by

$$
\varepsilon_{i}= \begin{cases}1 & \text { if } \bar{z}_{i}>0 \\ 0 & \text { if } \bar{z}_{i} \leq 0\end{cases}
$$

(Here we use the same notation for \widetilde{W}_{0} as the special case $r=2$ for $G(r, 1, n))$. Let us define a length function $\ell_{1}: \widetilde{W} \rightarrow \mathbf{N}$ as follows. For $w=\sigma z$, we put $\ell_{1}(w)=\ell_{0}(\varphi(w))$, where ℓ_{0} is the length function on \widetilde{W}_{0} with respect to the long roots. (More precisely, using the basis e_{1}, \ldots, e_{n} of V, the set of long roots $\Phi_{l} \subset V$ associated to \widetilde{W}_{0} is given as $\Phi_{l}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i, j \leq n, i \neq j\right\}$, on which \widetilde{W}_{0} acts naturally. Now the set Φ_{l}^{+}of positive roots is given as $\Phi_{l}^{+}=\left\{e_{i} \pm e_{j} \mid i>j\right\}$. For $w^{\prime} \in \widetilde{W}_{0}$, we put $\left.\ell_{0}\left(w^{\prime}\right)=\left|\Phi_{l}^{+} \cap-w^{\prime}\left(\Phi_{l}^{+}\right)\right|\right)$. Next we define a function $\ell_{2}: \widetilde{W} \rightarrow \mathbf{N}$ by $\ell_{2}(w)=\sum_{i=1}^{n} \hat{z}_{i}$, where

$$
\hat{z}_{i}= \begin{cases}2 z_{i}-1 & \text { if } z_{i}>0 \\ -2 z_{i} & \text { if } z_{i} \leq 0\end{cases}
$$

Then we define a length function ℓ by $\ell=\ell_{1}+\ell_{2}$. It is clear from the definition that if $r=2, \ell_{2}$ coincides with the length function of W_{0} with respect to short roots, and so the function ℓ coincides with the usual length function of the Weyl group of type B_{n}.
3.2. Let $w=w\left(a_{1}, 1\right) \cdots w\left(a_{n}, n\right)$ be an element in \mathcal{N}. The expression $w=\sigma z$ of w as in 3.1 can be described as follows. Let $I=\left\{1 \leq i \leq n \mid a_{i}>0\right\}$, and J the complement of I in $\{1,2, \ldots, n\}$. We write $I=\left\{i_{1}>i_{2}>\cdots>i_{k}\right\}$ with $k=|I|$, and $J=\left\{j_{1}<j_{2}<\cdots<j_{l}\right\}$ with $l=|J|$. Set

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & \cdots & k & k+1 & \ldots & n \tag{3.2.1}\\
i_{1} & i_{2} & \cdots & i_{k} & j_{1} & \cdots & j_{l}
\end{array}\right) .
$$

and

$$
\begin{equation*}
z=\left(a_{i_{1}}, \ldots, a_{i_{k}}, a_{j_{1}}, \ldots, a_{j_{l}}\right) \in \mathbf{Z}_{>0}^{k} \times \mathbf{Z}_{\leq 0}^{l} \tag{3.2.2}
\end{equation*}
$$

Then we have $w=\sigma z$. Conversely, any element $w=\sigma z$ with σ, z defined as above in terms of I, J, together with the condition that $-p / 2<a_{i} \leq$ $p / 2$, gives an element of \mathcal{N}. These facts can be checked by using the induction on n.

Now $\varphi(w) \in \widetilde{W}_{0}$ can be expressed as a signed permutation,

$$
\varphi(w)=\left(\begin{array}{ccccccc}
1 & 2 & \cdots & k & k+1 & \ldots & n \tag{3.2.3}\\
-i_{1} & -i_{2} & \cdots & -i_{k} & j_{1} & \cdots & j_{l}
\end{array}\right) .
$$

From this we see that the set $\{\varphi(w) \mid w \in \widetilde{W}\}$ coincides with the set of distinguished representatives for the set $\widetilde{W}_{0} / S_{n}$.

We have the following lemma.
Lemma 3.3. Let \mathcal{N} and W_{J} be as before. Then for each $w \in \mathcal{N}, w$ is the unique minimal length element in the coset $w W_{J}$ with respect to ℓ. In other words,

$$
\mathcal{N}=\left\{w \in \widetilde{W} \mid \ell(w) \leq \ell\left(w w^{\prime}\right) \text { for any } w^{\prime} \in W_{J}\right\}
$$

Proof. Let $w=\sigma z \in \mathcal{N}$. To prove the lemma, it is enough to show $\ell(w)<\ell\left(w w^{\prime}\right)$ for any $w^{\prime} \in W_{J}-\{1\}$. Since $w^{\prime} \in W_{J}$, one can write $w^{\prime}=\sigma^{\prime} z^{\prime}$ with $\sigma^{\prime} \in S_{n}$ and $z^{\prime}=\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)$ such that $z_{i}^{\prime} \equiv 0(\bmod p)$. Here $\sigma^{\prime} \neq 1$ or $z^{\prime} \neq 0$. Then $w w^{\prime}=\sigma \sigma^{\prime} \sigma^{\prime-1}(z) z^{\prime}$, and ${\sigma^{\prime}}^{-1}(z)_{i}=z_{\sigma^{\prime}(i)}$. Since $z_{i}^{\prime} \equiv 0(\bmod p)$, we have $\overline{z_{\sigma^{\prime}(i)}+z_{i}^{\prime}}=\bar{z}_{\sigma^{\prime}(i)}$. Hence $\varphi\left(w w^{\prime}\right)=$ $\varphi(w) \sigma^{\prime}$. But since $\varphi(w)$ is a distinguished representative for the cosets $\widetilde{W}_{0} / S_{n}$, we see that $\ell_{1}(w)<\ell_{1}\left(w w^{\prime}\right)$ if $\sigma^{\prime} \neq 1$.

Next we show that $\ell_{2}(w)<\ell_{2}\left(w w^{\prime}\right)$ if $z^{\prime} \neq 0$. We may assume that $r \neq p$. By our assumption, we have $-p / 2<z_{\sigma^{\prime}(i)} \leq p / 2$, and $z_{i}^{\prime} \equiv 0$ $(\bmod p)$. If $z_{\sigma^{\prime}(i)}$ and z_{i}^{\prime} have the same sign, clearly $\left|z_{\sigma^{\prime}(i)}+z_{i}^{\prime}\right|>\left|z_{\sigma^{\prime}(i)}\right|$. (In this case, if $\left|z_{\sigma^{\prime}(i)}+z_{i}^{\prime}\right|>r / 2$, one has to replace $z_{\sigma^{\prime}(i)}+z_{i}^{\prime}$ by $z_{\sigma^{\prime}(i)}+z_{i}^{\prime} \pm r$. But since $r \neq p$, still the inequality holds). Now assume that $z_{\sigma^{\prime}(i)}$ and z_{i}^{\prime} have the distinct sign. Then we have $\left|p-z_{\sigma^{\prime}(i)}\right| \geq$ $\left|z_{\sigma^{\prime}(i)}\right|$, and the equality holds only when $z_{\sigma^{\prime}(i)}=p / 2$. So the only case we have to care about is the case that $z_{\sigma^{\prime}(i)}=p / 2$ and $z_{i}^{\prime}=-p$. But in this case, $\left(z_{\sigma^{\prime}(i)}+z_{i}^{\prime}\right)^{\wedge}=p>\hat{z}_{\sigma^{\prime}(i)}=p-1$. This shows that $\ell_{2}(w)<\ell_{2}\left(w w^{\prime}\right)$ if $z^{\prime} \neq 0$. Hence we have $\ell(w)<\ell\left(w w^{\prime}\right)$ if $w^{\prime} \neq 1$ as asserted.
Q.E.D.
3.4. Let $I=\left\{t^{p}, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ be a subset of S, and we consider the subgroup \widetilde{W}_{I} of \widetilde{W} generated by I. Hence \widetilde{W}_{I} is isomorphic to $G(r, p, n-1)$. We set $\mathcal{D}=\{w(a, n) \mid-p / 2<a \leq p / 2\}$. Then we have the following lemma.

Lemma 3.5. (i) The set \mathcal{D} is a set of complete representatives of the double cosets $\widetilde{W}_{I} \backslash \widetilde{W} / W_{J}$.
(ii) For $w=w\left(a_{1}, 1\right) \cdots w\left(a_{n}, n\right) \in \mathcal{N}$, we have $\ell(w)=\sum_{i} \ell\left(w\left(a_{i}, i\right)\right)$.
(iii) The set \mathcal{D} is characterized as the set of elements $w \in \widetilde{W}$ such that w is the unique minimal length element in $\widetilde{W}_{I} w W_{J}$ with respect to ℓ.

Proof. We know already by Remark 2.10 that $\widetilde{W}=\widetilde{W}_{I} \mathcal{D} W_{J}$. On the other hand, let $x=w(a, n) \in \mathcal{D}$. Then any element $y \in \widetilde{W}_{I} x W_{J}$ has the property that y maps some $e_{i}^{(0)}$ to $e_{n}^{\left(a^{\prime}\right)}$ with $a^{\prime} \equiv a(\bmod p)$. This implies that the double cosets are disjoint for distinct elements in \mathcal{D}, and we get (i).

We show (ii). Let $w \in \mathcal{N}$. Then by using (3.2.3), one can check that $\varphi(w)=\varphi\left(w\left(a_{1}, 1\right)\right) \cdots \varphi\left(w\left(a_{n}, n\right)\right)$, and that $\varphi\left(w\left(a_{n}, n\right)\right)$ is a distinguished representatives for the cosets $\left(\widetilde{W}_{I}\right)_{0} \backslash \widetilde{W}_{0}$. (Here $\left(\widetilde{W}_{I}\right)_{0}$ denotes the subgroup of \widetilde{W}_{0} of type B_{n-1} obtained from \widetilde{W}_{I}). Hence the function ℓ_{0} is additive with respect to the decomposition of $\varphi(w)$, and so we have $\ell_{1}(w)=\sum_{i} \ell\left(w\left(a_{i}, i\right)\right)$. On the other hand, if we write $w=\sigma z$ as in 3.2, z is given as in (3.2.2). This implies that $\ell_{2}(w)=\sum_{i} \ell_{2}\left(w\left(a_{i}, i\right)\right)$, and the assertion follows.

Finally we show (iii). Take $x=w(a, n) \in \mathcal{D}$. Then by Remark 2.10, any element $y \in \widetilde{W}_{I} x W_{J}$ can be written uniquely as $y=w_{1} x w_{2}$ with $w_{1} \in \mathcal{N}_{I}$ and $w_{2} \in W_{J}$. (Here $\mathcal{N}_{I}=\mathcal{N} \cap \widetilde{W}_{I}$). Then by Lemma 3.3, $\ell\left(w_{1} x\right) \leq \ell\left(w_{1} x w_{2}\right)$, where the equality holds only when $w_{2}=1$. On the other hand, by (ii), we have $\ell\left(w_{1} x\right)=\ell\left(w_{1}\right)+\ell(x)$. Hence (iii) holds.
Q.E.D.

Remark 3.6. The set \mathcal{N} (resp. \mathcal{D}) is also characterized as the set of minimal length elements in each coset in \widetilde{W} / W_{J} (resp. $\widetilde{W}_{I} \backslash \widetilde{W} / W_{J}$) by Proposition 2.9 and Lemma 2.11.
3.7. We now give a characterization of the function \tilde{n} in terms of the function ℓ. In some sense this gives a characterization of the function n on W since $\left.\tilde{n}\right|_{W}=n$. Note that by Lemma 3.3 and Lemma 3.5, the sets \mathcal{N} and \mathcal{D} are determined by the function ℓ independently of the choice of the root system.

Theorem 3.8. Assume that $d \neq 1$. Then the function $\tilde{n}: \widetilde{W} \rightarrow \mathbf{N}$ is the unique function satisfying the following properties.
(i) The restriction of \tilde{n} on W_{J} (resp. on \widetilde{W}_{I}) coincides with n_{J} (resp. \tilde{n}_{I}), where \tilde{n}_{I} denotes the function on $\widetilde{W}_{I}=G(r, 1, n-1)$ defined in a similar way as \tilde{n} on \widetilde{W}.
(ii) For $w \in \mathcal{N}, w^{\prime} \in W_{J}$, we have $\tilde{n}\left(w w^{\prime}\right)=\tilde{n}(w)+\tilde{n}\left(w^{\prime}\right)$. For $w \in \mathcal{N}_{I}, w^{\prime} \in \mathcal{D}$, we have $\tilde{n}\left(w w^{\prime}\right)=\tilde{n}(w)+\tilde{n}\left(w^{\prime}\right)$.
(iii) Let g be an element in \widetilde{W} which is conjugate to t, with $g \neq t$. Set $\alpha=p / 2$ if p is even, and $\alpha=-(p-1) / 2$ if p is odd. Then we have

$$
0<\tilde{n}(g)<\tilde{n}\left(g^{-1}\right)<\tilde{n}\left(g^{2}\right)<\tilde{n}\left(g^{-2}\right)<\cdots<\tilde{n}\left(g^{\alpha}\right)
$$

(iv) $\frac{1}{p} \sum_{w \in \widetilde{W}} q^{\tilde{n}(w)}=P_{W}(q)$.

Proof. We have already seen in section 2 that \tilde{n} satisfies the condition (i), (ii) and (iv). We show that \tilde{n} satisfies (iii). Take $g \in \widetilde{W}$ as in (iii). Then g can be written as $g=s_{i} s_{i-1} \cdots s_{2} t s_{2} \cdots s_{i-1} s_{i}$ for some $i \geq 2$. Hence we have

$$
g^{a}= \begin{cases}w(a, i) s_{i} \cdots s_{2} & \text { if } 0<a \leq p / 2 \tag{3.8.1}\\ w(a, i) & \text { if }-p / 2<a \leq 0\end{cases}
$$

Since $s_{i} \cdots s_{2} \in W_{J}$, the length $\tilde{n}\left(g^{a}\right)$ can be computed by Lemma 2.7 and Lemma 2.11, as follows.

$$
\tilde{n}\left(g^{a}\right)= \begin{cases}(i-1)\{d(2 a-1)+1\} & \text { if } 0<a \leq p / 2 \\ (i-1)(-2 a d) & \text { if }-p / 2<a \leq 0\end{cases}
$$

Since $d \neq 1$, the condition (iii) is verified by using the above formula.
Next we show the uniqueness of \tilde{n}. If $n=1, \widetilde{W}$ is the cyclic group generated by t and W_{J} is the subgroup of \widetilde{W} generated by t^{p}. Hence it is determined by the conditions (i) and (ii). So we assume that $n>1$. By (i) and (ii), it is enough to see that $\tilde{n}(w)$ is determined uniquely for $w \in \mathcal{D}$. Let $w=w(a, n) \in \mathcal{D}$ and set $c(a)=\tilde{n}(w) /(n-1)$. Then by (iv), we have

$$
\begin{equation*}
\{c(a) \mid-p / 2<a \leq p / 2\}=\{0, d, 2 d, \ldots,(p-1) d\} \tag{3.8.2}
\end{equation*}
$$

Since $|\mathcal{D}|=p, c(a)$ are all distinct. On the other hand, let $g=$ $s_{n} \cdots s_{2} t s_{2} \cdots s_{n}$. Then by (3.8.1) and (ii), we have

$$
\tilde{n}\left(g^{a}\right)= \begin{cases}(n-1)(c(a)+1) & \text { if } 0<a \leq p / 2 \\ (n-1) c(a) & \text { if }-p / 2<a \leq 0\end{cases}
$$

Hence by using (iii), we have

$$
c(i)+1<c(-i)<c(i+1)+1
$$

for $i=1,2, \ldots$ Since $c(a) \equiv 0(\bmod d)$, and $d \neq 1$, we have $c(i)<$ $c(-i)<c(i+1)$. It follows, by (3.8.2), that we have

$$
c(a)= \begin{cases}(2 a-1) d & \text { if } a>0 \\ (-2 a) d & \text { if } a \leq 0\end{cases}
$$

The function \tilde{n} is now determined on \mathcal{D}, and so the theorem follows.

> Q.E.D.

Remark 3.9. In the case where $d=1$, the property (iii) in the theorem does not hold. Instead, we have the following relation.

$$
\begin{equation*}
0<\tilde{n}(g)=\tilde{n}\left(g^{-1}\right)<\tilde{n}\left(g^{2}\right)=\tilde{n}\left(g^{-2}\right)<\cdots \leq \tilde{n}\left(g^{\alpha}\right) \tag{iii'}
\end{equation*}
$$

Then the function \tilde{n} is characterized by the properties (i) \sim (iv), but replacing (iii) by (iii'). In fact, by a similar argument as above, we have

$$
c(i)+1=c(-i)<c(i+1)+1
$$

for $i=1,2, \ldots$ Thus $c(i)$ is the smallest integer among all the $c(a)$ such that $|a| \geq i$. Since the set $\{c(a) \mid-p / 2<a \leq p / 2\}$ coincides with the set $\{0,1, \ldots, p-1\}$, this determines $c(i)$ and so $c(-i)$ successively for $i=1,2, \ldots$ Hence the function \tilde{n} is determined uniquely.

References

[BM1] K. Bremke and G. Malle; Reduced words and a length function for $G(e, 1, n)$. Indag. Math., 8, (1997), 453-469.
[BM2] K. Bremke and G. Malle; Root systems and length functions. Geometriae Dedicata 72, (1998), 83-97.
[BMR] M. Broué, G. Malle and R. Rouquier; On complex reflection groups and their associated braid groups, Representations of groups (B. N. Allison and G. H. Cliff, eds), CMS Conference Proceedings, vol. 16, AMS, Providence, 1995, pp. 1-13.
[RS] K. Rampetas and T. Shoji; Length functions and Demazure operators for $G(e, 1, n)$, I. Indag. Math., 9, (1998), 563-580. II. ibid., 9, (1998), 581-594.

Toshiaki Shoji
Department of Mathematics
Science University of Tokyo
Noda, Chiba 278-8510, JAPAN

