Minor Summation Formulas of Pfaffians, Survey and A New Identity

Masao Ishikawa ${ }^{1}$ and Masato Wakayama ${ }^{2}$

Abstract

. In this paper we treat the minor summation formulas of pfaffians presented in [IW1] and derive several basic formulas concerning pfaffians from it. We also present a pfaffian version of the Plücker relation and give a new pfaffian identity as its application.

Chapter I. Introduction

In this short note we treat the minor summation formulas of pfaffians presented in [IW1] and derive several basic formulas concerning pfaffians. We also present a pfaffian version of the Plücker relations and give a new pfaffian identity as its application in Chapter III.

The minor summation formula we call here is an identity which involves pfaffians for a weighted sum of minors of a given matrix. The first appearance of this kind of minor sum is when one tries to count the number of the totally symmetric plane partitions (see [O1]). Once we establish the minor summation formula full in general, one gets various applications (see, e.g., [IOW], [KO], [O2]). Indeed, for example, using the minor summation formula we obtained quite a number of generalizations of the Littlewood formulas concerning various generating functions of the Schur polynomials (see [IW2,3,4]).

Though the notion of pfaffians is less familiar than that of determinants it is also known by a square root of the determinant of a skew

Received March 1, 1999.
2000 Mathematics Subjects Classification. Primary 05A15, 15A15; Secondary 22E46, 33C45.
Key words and phrases. Pfaffian, generating function, Schur's polynomial, partition, Pluc̈ker's relation, Lewis-Carroll's formula, Frobenius notation.
${ }^{1}$ Partially supported by Grant-in-Aid for Scientific Research (C) No.09640037, the Ministry of Education, Science, Sports and Culture of Japan.
${ }^{2}$ Partially supported by Grant-in-Aid for Scientific Research (B) No.09440022, the Ministry of Education, Science, Sports and Culture of Japan.
symmetric matrix. We recall now a more combinatorial definition of pfaffians. Let \mathfrak{S}_{n} be the symmetric group on the set of the letters $1,2, \ldots, n$ and, for each permutation $\sigma \in \mathfrak{S}_{n}$, let $\operatorname{sgn} \sigma$ stand for $(-1)^{\ell(\sigma)}$, the sign of σ, where $\ell(\sigma)$ is the number of inversions of σ.

Let $n=2 r$ be even. Let H be the subgroup of \mathfrak{S}_{n} generated by the elements $(2 i-1,2 i)$ for $1 \leq i \leq r$ and $(2 i-1,2 i+1)(2 i, 2 i+2)$ for $1 \leq i<r$. We set a subset \mathfrak{F}_{n} of \mathfrak{S}_{n} to be

$$
\mathfrak{F}_{n}=\left\{\begin{array}{l|l}
\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathfrak{S}_{n} & \begin{array}{l}
\sigma_{2 i-1}<\sigma_{2 i}(1 \leq i \leq r) \\
\sigma_{2 i-1}<\sigma_{2 i+1}(1 \leq i \leq r-1)
\end{array}
\end{array}\right\}
$$

An element of \mathfrak{F}_{n} is called a perfect matching or a 1 -factor. For each $\pi \in \mathfrak{S}_{n}, H \pi \cap \mathfrak{F}_{n}$ has a unique element σ. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$ be an n by n skew-symmetric matrix with entries $b_{i j}$ in a commutative ring. The pfaffian of B is then defined as follows:

$$
\begin{equation*}
\operatorname{pf}(B)=\sum_{\sigma \in \mathfrak{F}_{n}} \operatorname{sgn} \sigma b_{\sigma(1) \sigma(2)} \ldots b_{\sigma(n-1) \sigma(n)} \tag{1.1}
\end{equation*}
$$

Chapter II. Pfaffian Identities

Let us denote by \mathbb{N} the set of nonnegative integers, and by \mathbb{Z} the set of integers. Let $[n]$ denote the subset $\{1,2, \ldots, n\}$ of \mathbb{N} for a positive integer n.

Let n, M and N be positive integers such that $n \leq M, N$ and let T be any M by N matrix. For n-element subsets $I=\left\{i_{1}<\cdots<i_{n}\right\} \subseteq$ $[M]$ and $J=\left\{j_{1}<\cdots<j_{n}\right\} \subseteq[N]$ of row and column indices, let $T_{J}^{I}=T_{j_{1} \ldots j_{n}}^{i_{1} \ldots i_{n}}$ denote the sub-matrix of T obtained by picking up the rows and columns indexed by I and J. In the case that $n=M$ and I contains all row indices, we omit $I=[M]$ from the above expression and simply write $T_{J}=T_{J}^{I}$. Similarly we write T^{I} for T_{J}^{I} if $n=N$ and $J=[N]$.

Let B be an arbitrary N by N skew symmetric matrix; that is, $B=\left(b_{i j}\right)$ satisfies $b_{i j}=-b_{j i}$. In Theorem 1 of the paper [IW1], we obtained a formula concerning a certain summation of minors which we call the minor summation formula of pfaffians:

Theorem 2.1. Let $n \leq N$ and assume n is even. Let $T=$ $\left(t_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq N}$ be any n by N matrix, and let $B=\left(b_{i j}\right)_{1 \leq i, j \leq N}$ be any N by N skew symmetric matrix. Then

$$
\begin{equation*}
\sum_{\substack{I \subset[N] \\ \sharp I=n}} \operatorname{pf}\left(B_{I}^{I}\right) \operatorname{det}\left(T_{I}\right)=\operatorname{pf}(Q) \tag{2.1}
\end{equation*}
$$

where Q is the n by n skew-symmetric matrix defined by $Q=T B^{t} T$, i.e.

$$
\begin{equation*}
Q_{i j}=\sum_{1 \leq k<l \leq N} b_{k l} \operatorname{det}\left(T_{k l}^{i j}\right), \quad(1 \leq i, j \leq n) \tag{2.2}
\end{equation*}
$$

We note that another proof of this minor summation formula and some other extensions using the so-called lattice path methods will be given in the forthcoming paper [IW5].

We now add on one useful formula which relates to the skew symmetric part of a general square matrix. Actually the following type of pfaffians may arise naturally when we consider the imaginary part of a Hermitian form.

Corollary 2.1. Fix positive integers m, n such that $m \leq 2 n$. Let A and B be arbitrary $n \times m$ matrices, and X be an $n \times n$ symmetric matrix. (i.e. ${ }^{t} X=X$). Let P be the skew symmetric matrix defined by $P={ }^{t} A X B-{ }^{t} B X A$. Then we have

$$
\operatorname{pf}(P)=\sum_{\substack{K \subseteq[2 n] \\
\sharp K=m}} \operatorname{pf}\left(\left(\begin{array}{cc}
O_{n} & X \\
-X & O_{n}
\end{array}\right)_{K}^{K}\right) \operatorname{det}\left(\binom{A}{B}^{K}\right) .
$$

In particular, when $m=2 n$ we have

$$
\mathrm{pf}(P)=\operatorname{det}(X) \operatorname{det}\left(\binom{A}{B}\right)
$$

Proof. Apply the above theorem to the $2 n \times 2 n$ skew symmetric $\operatorname{matrix}\left(\begin{array}{cc}O_{n} & X \\ -X & O_{n}\end{array}\right)$ and the $2 n \times m$ matrix $\binom{A}{B}$. Then the elementary identity

$$
t\binom{A}{B}\left(\begin{array}{cc}
O_{n} & X \\
-X & O_{n}
\end{array}\right)\binom{A}{B}={ }^{t} A X B-{ }^{t} B X A
$$

immediately asserts the corollary.
As a corollary of the theorem above we have the following expansion formula (cf. [Ste], [IW1]):

Corollary 2.2. Let A and B be m by m skew symmetric matrices. Put $n=\left[\frac{m}{2}\right]$, the integer part of $\frac{m}{2}$. Then

$$
\begin{equation*}
\operatorname{pf}(A+B)=\sum_{r=0}^{n} \sum_{\substack{I \subseteq[m] \\ \sharp \bar{I}=2 r}}(-1)^{|I|-r} \operatorname{pf}\left(A_{I}^{I}\right) \operatorname{pf}(B \overline{\bar{I}}), \tag{2.3}
\end{equation*}
$$

where we denote by \bar{I} the complement of I in $[m]$ and $|I|$ is the sum of the elements of I (i.e. $|I|=\sum_{i \in I} i$).

In particular, we have the expansion formula of pfaffian with respect to any column (row): For any i,j we have

$$
\begin{align*}
& \delta_{i j} \operatorname{pf}(A)=\sum_{k=1}^{m} a_{k i} \gamma(k, j), \tag{2.4}\\
& \delta_{i j} \operatorname{pf}(A)=\sum_{k=1}^{m} a_{i k} \gamma(j, k), \tag{2.5}
\end{align*}
$$

where

$$
\gamma(i, j)= \begin{cases}(-1)^{i+j-1} \operatorname{pf}\left(A^{[i j]}\right) & \text { if } i<j \tag{2.6}\\ 0 & \text { if } i=j \\ (-1)^{i+j} \operatorname{pf}\left(A^{[i j]}\right) & \text { if } j<i\end{cases}
$$

and $A^{[i j]}$ stands for the $(m-2)$ by $(m-2)$ skew symmetric matrix which is obtained from A by removing both the i, j-th rows and i, j-th columns for $1 \leq i \neq j \leq m$.

We close this chapter by noting the fact that one may give a proof of the fundamental relation; $\operatorname{pf}(A)^{2}=\operatorname{det}(A)$, for a skew symmetric matrix A without any use of a process of the "diagonalization" by employing the expansion formula above and the Lewis-Carroll formula for determinants discussing below.

Chapter III. The Lewis-Carroll formula, etc.

In this chapter we provide a Pfaffian version of Lewis-Carroll's formula and Plücker's relations. The latter relations are also treated in [DW], and in [Kn] it is called the (generalized) basic identity. First of all we recall the so-called Lewis-Carroll formula, or known as the Jacobi formula among minor determinants.

Proposition 3.1. Let A be an n by n matrix and \widetilde{A} be the matrix of its cofactors. Let $r \leq n$ and $I, J \subseteq[n], \sharp I=\sharp J=r$. Then

$$
\begin{equation*}
\operatorname{det} \widetilde{A}_{I}^{J}=(-1)^{r(|I|+|J|)}(\operatorname{det} A)^{r-1} \operatorname{det} A \frac{\bar{I}}{J}, \tag{3.1}
\end{equation*}
$$

where $\bar{I}, \bar{J} \subseteq[n]$ stand for the complementary of I, J, respectively.

Example 1. We give here a few examples of Lewis-Carroll's formula for matrices of small degree.

$$
\left|\begin{array}{ll}
a_{11} & a_{13} \tag{3.2}\\
a_{31} & a_{33}
\end{array}\right|\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|\left|\begin{array}{cc}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|=a_{11}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| .
$$

We give one more;

$$
\begin{align*}
& \left|\begin{array}{ll}
a_{11} & a_{14} \\
a_{21} & a_{24}
\end{array}\right|\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43}
\end{array}\right|-\left|\begin{array}{cc}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{14} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{array}\right| \\
& +\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|\left|\begin{array}{lll}
a_{11} & a_{13} & a_{14} \\
a_{31} & a_{33} & a_{34} \\
a_{41} & a_{43} & a_{44}
\end{array}\right|=a_{11}\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| . \tag{3.3}
\end{align*}
$$

Hereafter we write A_{I} for A_{I}^{I} for short. We hope that it doesn't cause the reader any confusion since we only treat square matrices. Let m be an even integer and A be an m by m skew symmetric matrix. Assume that $\operatorname{pf}(A)$ is nonzero, that is, A is non-singular.

Let $\Delta(i, j)=(-1)^{i+j} \operatorname{det} A^{i j}$ denote the (i, j)-cofactor of A. If we multiply the both sides of (2.6) by $\mathrm{pf}(A)$ and use the fundamental relation between determinants and pfaffians: $\operatorname{det} A=[\operatorname{pf}(A)]^{2}$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i j} \gamma(i, k) \operatorname{pf}(A)=\delta_{j k}[\operatorname{pf}(A)]^{2}=\delta_{j k} \operatorname{det} A \tag{3.4}
\end{equation*}
$$

Comparing this with the cofactor expansion of $\operatorname{det} A$, we obtain the following relation between $\Delta(i, j)$ and $\gamma(i, j)$:

$$
\begin{equation*}
\Delta(i, j)=\gamma(i, j) \operatorname{pf}(A) \tag{3.5}
\end{equation*}
$$

The following relation is considered as a pfaffian version of the LewisCarroll formula.

Theorem 3.1. Let m be an even integer and A be an m by m skew symmetric matrix. Let $\widehat{A}=(\gamma(j, i))$. Then, for any $I \subseteq[m]$ such that $\sharp I=2 r$, we have

$$
\begin{equation*}
\operatorname{pf}\left[(\widehat{A})_{I}\right]=(-1)^{|I|}[\operatorname{pf}(A)]^{r-1} \operatorname{pf}\left(A_{\bar{I}}\right) \tag{3.6}
\end{equation*}
$$

Example 2. Taking $m=6, t=1$ and $I=\{1,2,3,4\}$ in the above theorem, we see

$$
\gamma(1,2) \gamma(3,4)-\gamma(1,3) \gamma(2,4)+\gamma(1,4) \gamma(2,3)=\operatorname{pf}(A) \operatorname{pf}\left(A_{\{5,6\}}\right)
$$

Hence by definition, we see that this turns out to be

$$
\begin{align*}
\operatorname{pf}\left(A_{\{3,4,5,6\}}\right) & \operatorname{pf}\left(A_{\{1,2,5,6\}}\right)-\operatorname{pf}\left(A_{\{2,4,5,6\}}\right) \operatorname{pf}\left(A_{\{1,3,5,6\}}\right) \\
& +\operatorname{pf}\left(A_{\{2,3,5,6\}}\right) \operatorname{pf}\left(A_{\{1,4,5,6\}}\right)=\operatorname{pf}(A) \operatorname{pf}\left(A_{\{5,6\}}\right) \tag{3.7}
\end{align*}
$$

that is, in more familiar form we see

$$
\begin{aligned}
& \operatorname{pf}\left(\begin{array}{cccc}
0 & a_{34} & a_{35} & a_{36} \\
-a_{34} & 0 & a_{45} & a_{46} \\
-a_{35} & -a_{45} & 0 & a_{56} \\
-a_{36} & -a_{46} & -a_{56} & 0
\end{array}\right) \operatorname{pf}\left(\begin{array}{cccc}
0 & a_{12} & a_{15} & a_{16} \\
-a_{12} & 0 & a_{25} & a_{26} \\
-a_{15} & -a_{25} & 0 & a_{56} \\
-a_{16} & -a_{26} & -a_{56} & 0
\end{array}\right) \\
& -\operatorname{pf}\left(\begin{array}{cccc}
0 & a_{24} & a_{25} & a_{26} \\
-a_{24} & 0 & a_{45} & a_{46} \\
-a_{25} & -a_{45} & 0 & a_{56} \\
-a_{26} & -a_{46} & -a_{56} & 0
\end{array}\right) \operatorname{pf}\left(\begin{array}{cccc}
0 & a_{13} & a_{15} & a_{16} \\
-a_{13} & 0 & a_{35} & a_{36} \\
-a_{15} & -a_{35} & 0 & a_{56} \\
-a_{16} & -a_{36} & -a_{56} & 0
\end{array}\right) \\
& +\operatorname{pf}\left(\begin{array}{cccc}
0 & a_{23} & a_{25} & a_{26} \\
-a_{23} & 0 & a_{35} & a_{36} \\
-a_{25} & -a_{35} & 0 & a_{56} \\
-a_{26} & -a_{36} & -a_{56} & 0
\end{array}\right) \operatorname{pf}\left(\begin{array}{cccc}
0 & a_{14} & a_{15} & a_{16} \\
-a_{14} & 0 & a_{45} & a_{46} \\
-a_{15} & -a_{45} & 0 & a_{56} \\
-a_{16} & -a_{46} & -a_{56} & 0
\end{array}\right) \\
& =\operatorname{pf}\left(\begin{array}{cc}
0 & a_{56} \\
-a_{56} & 0
\end{array}\right) \operatorname{pf}\left(\begin{array}{cccccc}
0 & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
-a_{12} & 0 & a_{23} & a_{24} & a_{25} & a_{26} \\
-a_{13} & -a_{23} & 0 & a_{34} & a_{35} & a_{36} \\
-a_{14} & -a_{24} & -a_{34} & 0 & a_{45} & a_{46} \\
-a_{15} & -a_{25} & -a_{35} & -a_{45} & 0 & a_{56} \\
-a_{16} & -a_{26} & -a_{36} & -a_{46} & -a_{56} & 0
\end{array}\right) .
\end{aligned}
$$

We next state a pfaffian version of the Plücker relations (or known as the Grassmann-Plücker relations) for determinants which is a quadratic relations among several subpfaffians. This identity is also proved in the book [Hi] and a recent paper [DW] in the framework of an exterior algebra.

Theorem 3.2. Suppose m, n are odd integers. Let A be an $(m+$ $n) \times(m+n)$ skew symmetric matrices of odd degrees. Fix a sequence of integers $I=\left\{i_{1}<i_{2}<\cdots<i_{m}\right\} \subseteq[m+n]$ such that $\sharp I=m$. Denote the complement of I by $\bar{I}=\left\{k_{1}, k_{2}, \ldots, k_{n}\right\} \subseteq[m+n]$ which has the
cardinality n. Then the following relation holds.

$$
\begin{equation*}
\sum_{j=1}^{m}(-1)^{j-1} \operatorname{pf}\left(A_{I \backslash\left\{i_{j}\right\}}\right) \operatorname{pf}\left(A_{\left\{i_{j}\right\} \cup \bar{I}}\right)=\sum_{j=1}^{n}(-1)^{j-1} \operatorname{pf}\left(A_{I \cup\left\{k_{j}\right\}}\right) \operatorname{pf}\left(A_{\bar{I} \backslash k_{j}}\right) \tag{3.8}
\end{equation*}
$$

The following assertion, which is called by the basic identity in [Kn] is a special consequence of the formula above.

Corollary 3.1. Let A be a skew symmetric matrix of degree N. Fix a subset $I=\left\{i_{1}, i_{2}, \ldots, i_{2 k}\right\} \subseteq[N]$ such that $\sharp I=2 k$. Take an integer l which satisfies $2 k+2 l \leq N$. Then

$$
\begin{align*}
& \operatorname{pf}\left(A_{1,2, \ldots, 2 l}\right) \operatorname{pf}\left(A_{i_{1}, i_{2}, \ldots, i_{2 k}, 1, \ldots, 2 l}\right) \\
= & \sum_{j=1}^{2 k-1}(-1)^{j-1} \operatorname{pf}\left(A_{i_{1}, 1,2, \ldots, 2 l, i_{j+1}}\right) \operatorname{pf}\left(A_{i_{2}, \ldots, \hat{i}_{j+1}, \ldots, i_{2 k}, 1, \ldots, 2 l}\right) . \tag{3.9}
\end{align*}
$$

The theorem stated below is proved by induction using this basic identity. Its proof will be given in the forthcoming paper [IW5].

Theorem 3.3.

$$
\begin{aligned}
& \operatorname{pf}\left(\frac{y_{i}-y_{j}}{a+b\left(x_{i}+x_{j}\right)+c x_{i} x_{j}}\right)_{1 \leq i, j \leq 2 n} \times \prod_{1 \leq i<j \leq 2 n}\left\{a+b\left(x_{i}+x_{j}\right)+c x_{i} x_{j}\right\} \\
& =\left(a c-b^{2}\right)^{\frac{n(n-1)}{2}} \sum_{\substack{I \subseteq[2 n] \\
\sharp \bar{I}=n}}(-1)^{|I|-\frac{n(n+1)}{2}} y_{I} \Delta_{I}(x) \Delta_{\bar{I}}(x) J_{I}(x) J_{\bar{I}}(x)
\end{aligned}
$$

where the sum runs over all n-element subset $I=\left\{i_{1}<\cdots<i_{n}\right\}$ of $[2 n]$ and $\bar{I}=\left\{j_{1}<\cdots<j_{n}\right\}$ is the complementary subset of I in $[2 n]$. Further we write

$$
\begin{aligned}
& \Delta_{I}(x)=\prod_{\substack{i, j \in I \\
i<j}}\left(x_{i}-x_{j}\right) \\
& J_{I}(x)=\prod_{\substack{i, j \in I \\
i<j}}\left\{a+b\left(x_{i}+x_{j}\right)+c x_{i} x_{j}\right\} \\
& y_{I}=\prod_{i \in I} y_{i}
\end{aligned}
$$

As a corollary of this theorem we obtain the following identity in [Su2]. Indeed, if we put $a=c=1, b=0$ in the theorem, then we have the

Corollary 3.2.

$$
\operatorname{pf}\left(\frac{y_{i}-y_{j}}{1+x_{i} x_{j}}\right)_{1 \leq i, j \leq 2 n} \times \prod_{1 \leq i<j \leq 2 n}\left(1+x_{i} x_{j}\right)=\sum_{\lambda, \mu} a_{\lambda+\delta_{n}, \mu+\delta_{n}}(x, y)
$$

where the sums runs over pairs of partitions

$$
\lambda=\left(\alpha_{1}-1, \cdots, \alpha_{p}-1 \mid \alpha_{1}, \cdots, \alpha_{p}\right), \mu=\left(\beta_{1}-1, \cdots, \beta_{p}-1 \mid \beta_{1}, \cdots, \beta_{p}\right)
$$

in Frobenius notation with $\alpha_{1}, \beta_{1}<n-1$. Also, for α and β partitions (compositions, in general) of length n, we put

$$
a_{\alpha, \beta}(x, y)=\sum_{\sigma \in \mathfrak{S}_{2 n}} \epsilon(\sigma) \sigma\left(x_{1}^{\alpha_{1}} y_{1} \cdots x_{n}^{\alpha_{n}} y_{n} x_{n+1}^{\beta_{1}} \cdots x_{2 n}^{\beta_{n}}\right)
$$

where $\sigma \in \mathfrak{S}_{2 n}$ acts on each of two sets of variables $\left\{x_{1}, \cdots, x_{n}\right\}$ and $\left\{y_{1}, \cdots, y_{n}\right\}$ by permuting indices, and $\delta_{n}=(n-1, n-2, \cdots, 0)$.

Proof. Recall that

$$
\begin{equation*}
\sum_{\lambda=\left(\alpha_{1}-1, \cdots, \alpha_{p}-1 \mid \alpha_{1}, \cdots, \alpha_{p}\right)} s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(1+x_{i} x_{j}\right) \tag{3.10}
\end{equation*}
$$

where $s_{\lambda}=s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=a_{\lambda+\delta_{n}} / a_{\delta_{n}}$ and $a_{\alpha}=\operatorname{det}\left(x_{i}^{\alpha_{j}}\right)_{1 \leq i, j \leq n}$ for a composition α. We write $a_{\alpha}(I)=a_{\alpha}\left(x_{i_{1}}, \cdots, x_{i_{n}}\right)$ for $I=\left\{i_{1}<\cdots<\right.$ $\left.i_{n}\right\} \subseteq[2 n]$. By the theorem and (3.10) we see

$$
\begin{aligned}
& \operatorname{pf}\left(\frac{y_{i}-y_{j}}{1+x_{i} x_{j}}\right)_{1 \leq i, j \leq 2 n} \times \prod_{1 \leq i<j \leq 2 n}\left(1+x_{i} x_{j}\right) \\
& =\sum_{\substack{I \subseteq[2 n] \\
\sharp \overline{I=n}}} \sum_{\lambda, \mu}(-1)^{|I|-\frac{n(n+1)}{2}} y_{I} a_{\lambda+\delta_{n}}(I) a_{\mu+\delta_{n}}(\bar{I}) \\
& =\sum_{\lambda, \mu} \sum_{i_{1}<\cdots<i_{n}} \sum_{\sigma, \tau \in \mathfrak{S}_{n}}(-1)^{|I|-\frac{n(n+1)}{2}} \epsilon(\sigma) \epsilon(\tau) \\
& \quad \times \sigma\left(x_{i_{1}}^{\lambda_{1}+n-1} y_{i_{1}} \cdots x_{i_{n}}^{\lambda_{n}} y_{i_{n}}\right) \tau\left(x_{j_{1}}^{\mu_{1}+n-1} \cdots x_{j_{n}}^{\mu_{n}}\right),
\end{aligned}
$$

where $\bar{I}=\left\{j_{1}, \cdots, j_{n}\right\}$. Thus, the last sum is turned to be

$$
\begin{aligned}
& =\sum_{\lambda, \mu} \sum_{\sigma, \tau \in \mathfrak{S}_{2 n}} \epsilon(\sigma) \sigma\left(x_{1}^{\lambda_{1}+n-1} y_{1} \cdots x_{n}^{\lambda_{n}} y_{n} x_{n+1}^{\mu_{1}+n-1} \cdots x_{2 n n}^{\mu_{n}}\right) \\
& =\sum_{\lambda, \mu} a_{\lambda+\delta_{n}, \mu+\delta_{n}}(x, y) .
\end{aligned}
$$

This completes the proof of the corollary.

References

[DW] A.Dress and W.Wenzel, A simple proof of an identity concerning pfaffians of skew symmetric matrices, Adv. Math., 112 (1995), 120-134.
[Hi] R.Hirota, "Mathematical Aspect of Soliton Theory", in Japanese, Iwanami Shoten, 1992.
[IOW]M.Ishikawa, S.Okada and M.Wakayama, Applications of minor summation formulas I, Littlewood's formulas, J. Alg., 183 (1996), 193-216.
[IW1] M.Ishikawa and M.Wakayama, Minor summation formula of Pfaffians, Linear \& Multilinear Alg., 39 (1995), 285-305.
[IW2]__, Minor summation formula of Pfaffians and Schur functions identities, Proc. Japan Acad., Ser.A, 71 (1995), 54-57.
[IW3]__, New Schur function series, J. Alg., 208 (1998), 480-525.
[IW4]___ Applications of minor summation formulas II, Pfaffians and Schur polynomials, J. Combin. Theo. Ser. A, 88 (1999), 136-157.
[IW5]__ Applications of minor summation formulas III, Lattice path methods and Plücker's relations, in preparation.
[Kn] D.Knuth, Overlapping pfaffians, Elect. J. Combin., 3, 151-163.
[KO] C.Krattenthaler and S.Okada, The number of rhombus tilings of a "punctured" hexagon and the minor summation formula, preprint MSRI no. 1997-092.
[Li] D.E.Littlewood, "The Theory of Group Characters and Matrix Representations of Groups, 2nd. ed.", Oxford University Press, 1950.
[Ma] I.G.Macdonald, "Symmetric Functions and Hall Polynomials, 2nd Edition", Oxford University Press, 1995.
[O1] S.Okada, On the generating functions for certain classes of plane partitions, J. Combin. Theo. Ser. A, 51 (1989), 1-23.
$[\mathrm{O} 2]-$, Applications of minor-summation formulas to rectangular-shaped representations of classical groups, J. Alg., 205 (1998), 337-367.
[LP] A.Lascoux and P.Pragacz, S-function series, J. Phys. A : Math. Gen., 21 (1988), 4105-4114.
[Ste] J.Stembridge, Nonintersecting paths,pfaffians and plane partitions, Adv. Math., 83 (1990), 96-131.
[Su1] T.Sundquist, Pfaffians, involutions, and Schur functions, University of Minnesota, Ph.D thesis.
[Su2] T.Sundquist, Two Variable Pfaffian Identities and Symmetric Functions, J. Algebraic Combin., 5 (1996), 135-148.
[Wy] H.Weyl, "The Classical Groups, their Invariants and Representatons, 2nd. Edition.", Princeton University Press, 1946.
[YW] M.Yang and B.G.Wybourne, New S function series and non-compact Lie groups, J. Phys. A : Math. Gen., 19 (1986), 3513-3525.

Masao Ishikawa, Department of Mathematics, Faculty of Education, Tottori University, Tottori 680-8551, Japan ishikawa@fed.tottori-u.ac.jp

Masato Wakayama, Graduate School of Mathematics, Kyushu Unversity, Hakozaki Higashi-ku, Fukuoka 812-8581, Japan wakayama@math.kyushu-u.ac.jp

