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Recent progress of intersection theory 
for twisted ( co )homology groups 

Keiji Matsumoto and Masaaki Yoshida 

§1. Introduction 

Maybe you have ever seen at least one of the following formulae: 

21ri(p + q) 1 - e 27ri(p+q) 

B(p, q)B(-p, -q) = pq (l - e27l'iP)(l - e27l'iq)' 

r(p)r(l - p) = si:np' (J_: e-t 2 12dt) 
2 

= 2n, 

where 

( ) ·-11 P( )q dt B p, q .- t 1 - t ( ) , 
o t 1 - t 

are the Gamma and the Beta functions. 
In this paper, we give a geometric meaning for these formulae: If 

one regards such an integral as the dual pairing between a (kind of) 
cycle and a (kind of) differential form, then the value given in the right 
hand side of each formula is the product of the intersection numbers of 
the two cycles and that of the two forms appeared in the left-hand side. 

Of course the intersection theory is not made only to explain these 
well known formulae; for applications, see [CM], [KM], [Yl]. 

§2. Twisted (co)homology groups 

Let li, ... , ln+l be polynomials of degree 1 in ti, ... , tk, (n 2": k 2": 1) 
and a 1, ... , an+l be complex numbers satisfying 
Assumption 1. aj (/. Z, ao := -a1 - · · · - an+l {/. Z. 
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Lj = hyperplane defined by lj, j = 1, ... , n + 1, 

T = Ck - U'J:!;f Lj 

= IP'k - U'J!l L1, L 0 : hyperplane at infinity, 

n+l 

u = IT l? : multi-valued function on T, 
j=l 

£, £ : local systems caused by u- 1 and u, respectively, 

n dl 
w = L arf· : single-valued 1-form on T, 

j=l J 

v' = d + w/\, 'v' = d - w/\ : derivations. 

Assumption 2. No k + 1 hyperplanes in { Lj }';!J intersect in JP>k. 
Denoting the k-dimensional cohomology groups (with compact sup­

port) and the (locally finite) homology groups by the usual symbols, we 
have the three natural dual parings (explained below): 

H~(T, £) 
1 

Hk1 (T,£) 

....-. Hk (T, £) 

1 
Hk(T,£). 

All other dimensional (co)homology groups vanish. By de Rham's the­
orem, cohomology classes can be represented by smooth global forms: 

where £P and £[ are spaces of smooth p-forms on T and those with com­
pact support. Through these isomorphisms, the columns in the above 
diagram can be realized by the integration 

(<p, 8) := 1 <pu, or ('1/J, 1 ) := !, 'ljJu- 1 

of k-forms along k-cycles, where 

k lf - k -<p E He (T, £), 8 E Hk (T, £), or 'ljJ EH (T, £), 1 E Hk(T, £), 

respectively. Such an integration is often called a hypergeometric integral 
(HG integral for short) because if one let the hyperplanes Lj move then 
the integral defines a hypergeometric function of type (k + 1, n + 2). 
When k = 1, n = 2 this is indeed the Gauss hypergeometric function. 
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The first row is the intersection form for cohomology groups, and 
can be represented by the integral 

'P . 'ljJ : = h ( cpu) /\ ( 'I/Ju -1) = h 'P I\ 'ljJ 

of 2k-forms over T, where cp E Hk(t:;, v'), 'ljJ E Hk([•, V). (N.B. In 
[KYl], 'ljJ I\ cp is used in place of cp I\ 'ljJ.) 

Now these three pairings induce the Poincare isomorphisms: 

k - ~ lf -H (T, C) = Hk (T, C). 

Thus through these two isomorphisms the intersection form for coho­
molog groups induces the dual pairing, called the intersection form for 
homology groups, of the two homology groups. In this way we have the 
four compatible pairings: 

Ht(T,£) -
1 

Hff(T,£) -

HG integral 

Let us take bases as 

Hk(T,£) 

1 
Hk(T,C) 

HG integral 

. k cp' E He (T, C), 
lf -8i E Hk (T, £), 

intersection form • for coh. 

intersection form • for horn. 

'I/Ji E Hk(T, £), 
"/i E Hk(T, £). 

Denoting the matrix ( (cpi, 8J) )ij by ( (cp, 8)) and (8i • "/j kJ by (8 • 'Y), we 
have 

(cp. '1/J) = ( (cp, 8) )('Y. 8)-1 t( ('1/J, 'Y) ), 

which gives quadratic relations among the HG integrals. 
Note that up to now we presented abstract nonsense which is valid 

for any complex manifold and for any local system. Our task is, for the 
special T and ,C given above, to pick a suitable basis of each ( co )homology 
group and evaluate the intersection numbers. 

§3. Intersection form for cohomology groups 

To pick an explicit basis of the cohomology groups, holomorphic 
forms or possibly algebraic forms are better. Recall the isomorphisms, 
due to comparison theorems, 

Hk(T,C) ~ Hk(t:·, v') ~ Hk(rt,•, v') 

~ Hk(rt,•(*L), v') ~ Hk(rt,•(logL), v'), 
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where f!P, f!P{*L) and f!P{logL) are spaces of holomorphic forms on T, 
algebraic forms and logarithmic forms with poles only along uj,!J Lj, 
respectively. 

For a multi-index I = {io, ... , ik), 0 $ io < · · · < ik $ n + 1, we 
define a logarithmic k-form 

For example, the following(~) forms give a basis of Hk(n•(logL), "v): 

'PI, io=O<i1<···<ik'.'.Sn. 

It is known (e.g. [DM)) and easy to prove, under Assumption 1, the 
isomorphism 

H~(T, C) 9:( Hk(T, £). 

Thus together with the isomorphism Hk(T, £)9:(Hk(n•(log L), "v) above, 
we can let 'PI represent also an element of H~(T, £). We wish to evaluate 
the intersection numbers of these forms. The key point is to represent 
the isomorphism 

explicit enough so that the 2k-dimensional integral 

J l('PI) /\ 'PJ 

is computable. This can be done and we get 

Theorem 1. The intersection number cp I · cp J of 

'PI E H~(T, £) and 'PJ E Hk(T, £), 

where I= {io, ... ,ik}, 0 $ io < ··· < ik $ n + 1, J = {jo, ... ,jk}, 
0 $ jo < · · · < jk $ n + 1, is equal to the (I, J)-minor of the tri-diagonal 
symmetric matrix 

l/01 
l/01 + l/02 

l/02 ···i . . 
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Actual value of 'PI· 'PJ is given as follows: 

(27r\,l-l)k I:iEJ O'.i if I = J, 
ILE/ O'.i 
( I)µ+v 

(27rH)k - if #(In J) = k, 
f1iEJnJ O'.i 
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0, otherwise, whereµ and II are determined by { iµ} = J - J and {Jv} = 
J-I. 

Though there are technical difficulties for general k, the essential 
idea of the proof can be seen from that of the case k = 1. So we prove 
this theorem only when k = 1, and when k ~ 2 we describe where the 
difficulty lies and how we can manage. 

3.1. Proof of Theorem 1 when k = 1. We express the image 
t( <p I) explicitly. We find a smooth function f on T such that <p I - v' f 
is compactly supported. This means that <p I - v' f represents the class 
t(<p1) of HJ(T,.C). 

We can find a convergent power series f p centered at the point Lp 
satisfying v' f P = <p I. Let hp be a smooth real function on IP'1 such that 
hp(t) = 0 (t ¢:. Up), 0 < hp(t) < 1 (t E Up\ Vp), hp(t) = 1 (t E Vp), 
where Lp E Vp C Up, and Up is a small neighborhood of Lp. Regarding 
f := I:;!t hpf p as defined on T, we have 

n+l n+l 

'PI -v'f = 'PI - I)hpv'(fp) + fpdhp] = 1)(1- hp)'PI - fpdhp], 
p=O p=O 

which is of compact support on T. The Stokes theorem and the residue 
theorem yields 

n+l J t(<p1) I\ 'PJ = L J [(1- hp)'PI - fpdhp] I\ 'PJ 
T p=O T 

n+l n+l 

L 1 -fpdhp I\ 'PJ = L r -hpfp'PJ 
p=O Up\Vp p=O lacu,,\Vp) 

n+l n+l 

L 1 fp'PJ = 27rHL ResLp(fp<pJ). 
p=O 8Vv p=O 

Completion of the proof is now immediate. 
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3.2. Strategy for k ~ 2. We prepare some notation. Let Lp,, 
be the intersection of Lp1 , Lp2 , ••• , Lp", and let UP• be a small tubular 
neighborhood of Lp,, in IP'k, where pq is a multi-index with cardinality 
q, say, 

pq = {p1, P2 ... , Pq}, 0 ~ P1 < P2 < · · · < Pq ~ n + l. 

For multi-indices pq-I and Pq, if pq-I C Pq, then we put 

Step 1. Construct a system of holomorphic (k-q)-forms f pq on UP• nT 
such that 

'\!(!pi) 

'\l(fp.) 

<{JI' 

L iS(Pq-1; Pq)fpq-1 (2 ~ q ~ k); 
p,,- 1 cP• 

these can be obtained as convergent power series. Complexity lies on 
the fact that the singularities ULp=j are not isolated. 
Step 2. By patching f P• inductively by the help of partition of the unity 
on U1;!JUj, we get a smooth (k - 1)-form f on T such that 

rlf . un+l U v = <{JI Ill j=O j· 

Since <p I - '7 f is of compact support on T and is cohomologous to <p I 
in Hk(£, '7), it represents l(<pI)-
Step 3. Repeated use of the Stokes theorem and the residue theorem 
leads to 

which will imply the theorem. 

Ir -df I\ <fJJ 

(21rHl LResLpk(fpk<pJ), 
pk 

§4. Intersection form for homology groups 

Since we assumed that our hyperplane arrangement is in general 
position (Assumption 2), we can continuously deform the arrangement, 
keeping its intersection pattern, into a real arrangement, by which we 
mean all the linear forms lj are defined over the real numbers. So we 
assume that our arrangement is real. 
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Note that there are many arrangements not in general position that 
one can not deform into a real one. 

Let TIR be the real locus of T. G) bounded chambers support cycles 

forming a basis of H!1 (T, £). One can load any branch of u on the cham­
bers; too much freedom annoys us. In order to make it in a systematic 
way, we further deform the arrangement and put the hypersurfaces in a 
specially nice way. Then the k-dimensional cases can be reduced to the 
simplest case k = 1. 

Loaded cycles: We represent elements of Hv(T, £) by loaded p­
cycles, which is convenient here and will be indispensable in §8.2. A 
loaded p-chain is a formal sum of loaded p-simplexes. A loaded p-simplex 
is a topological simplex on which a branch of u is assigned. The bound­
ary operator is naturally defined. For example, the boundary of a loaded 
path (I-chain) is given by 

(ending point loaded with the value of the function there) 

-(starting point loaded with the value of the function there). 

The boundary of a higher dimensional loaded chain is defined in an 
obvious way. A loaded p-chain is called a loaded p-cycle if its boundary 
vanishes. 

4.1. Case k = 1. Let x1, .. . , Xn+l be distinct real points on IP'1 

satisfying x 1 < • • • < Xn+1 · Then the multi-valued function 

n 

u = II l°'j 
J ' 

j=l 

is defined on T = IP'1 - { x1, ... , Xn+1, xo = oo}. On each oriented interval 
(xv, Xp+l), we load a branch of the function u determined by 

arg(t - Xj) = {Q 
-7( 

j ~p, 

p+ 1 ~ j, 

and call this loaded path iv· Note that if you analytically continue the 
branch of u corresponding to some loaded path ij through the lower 
half part of the t-plane T, then you get the branches of u corresponding 
to other loaded paths ii. But if you do the same starting from a point 
in (xj,XJ+1), passing through the upper part and ending at a point in 
(Xj-1,xj), you get 

C . ·- e21ria,; 
J .-

times the branch u corresponding to the loaded paths Jj- l. 
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Anyway, ii represent elements of Hf! (T, £). For example, n non­
compact loaded cycles 11, ... , In form a basis. Loading u-1 in place of 
u, we get non-compact loaded cycles Ij; for example, Ii, ... , In form a 
basis of H~f (T, £.). 

As we did in §3, to define intersection numbers, we must make a 
compact counterpart reglj, regularization of Ii. This can be done by 
attaching two circles at the ends: 

Cj ci ( ) Cj+i ci+i 
--d < + Xj +E,Xj+1-E +-d- -<' 

j j+l 

where ct is the positively oriented circle of radius E > 0 center at Xj 

starting at Xj ± E (see Figure 1), and by loading u-1 along the three 
paths, where the branch of u-1 at each starting point is that of Ij. Note 

that reglj is homologous to Ij in Hf! (T, £.). regli, ... , regln form a 
basis of H1(T,£.). 

Let us evaluate the intersection number regli • ii. As is explained in 
§2, the definition is made through the intersection number of cohomology 
groups; it is a, so to speak, indirect analytic definition. In the following, 
we give a direct it topological definition, by which one can evaluate 
intersection numbers explicitly. These two definitions agree (see [KYl]); 
this fact will be referred to the compatibility of intersection forms for 
homology and cohomology groups. 

Deform the support of ii so that it intersects transversally with 
that of regli; any deformation will do. At each intersection point of the 
two supports, multiply the values of the two functions loaded to make 
the local intersection number at this point. Then sum up all the local 
intersection numbers, and finally change the sign to get regli • Ji (see 
Figure 1). Here is an actual computation: 

FIG 1. Intersection of reglj and Ij 



Intersection theory 225 

0, otherwise, where dij = CiCj - l. Therefore the intersection matrix 
Inthom(a) = (regli · lj)ij is given by the following tri-diagonal matrix 

d12/d1d2 -c2/d2 0 

Inthom(a) = -
-l/d2 d23/d2d3 -c3/d3 

0 -l/d3 d34/d3d4 

(N.B. The intersection matrix in (KYl] is given by _t Inthom(a) 
Inthom(-a) according to the definition of the intersection form for co­
homology groups made there (cf. §2).) 

4.2. Case k ~ 2. For given n + I real points on C 

X1 < · · · < Xj < · · · < Xn+l, Xo = 00, 

we define n + I real hyperplanes L1, ... , Ln int= (t1, ... , tk)-space by 

lj :=tr+ (-xj)tr-1 + · · · + (-xjt- 1ti + (-xjt, 1 ~ j ~ n, 

and Lo the hyperplane at infinity. This arrangent { Lo, ... , Ln} is called 
a Veronese arrangement, since an embedding of JP>1 into JP>k by 

to= sk, ti = sk-l, ... , tk-1 = s, tk = 1 

is called the Veronese embedding. When k = 2 and n = 4, the arrange­
ment is illustrated in Figure 2. Set 

n 

U = II lj(t)ai, 
j=l 

where lj(t) is the linear form int just defined above. For a multi-index, 

I= (i1, ... , ik), 1 ~ i1 < · · · < ik ~ n, 

lf • lf • 
we define loaded cycles D1 E Hk (T, £) and D1 E Hk (T, £) with sup-
port on the chamber (see Figure 2) 

ID1I = {t E TIR I (-1tUlzj(t) > 0, 1 ~ j ~ n}, 

loaded with u-1 and U, respectively, with 

argli = -P(j)rr, 1 ~ j ~ n, 

where P(j) denotes the cardinality of {p I ip < j}. Since each loaded 
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FIG 2. A Veronese arrangement (k = 2, n = 4) and the chambers 

cycle is locally a direct product of 1-dimensional cycles, the regulariza­
tions regD1 E Hk(T, .C) are naturally defined. We now state the result, 
which is very similar to Theorem 1. 

Theorem 2. For multi-indices I= (i 1 .. . ik), 1 :S: ii<•••< ik :S: 
n, J = (j1 .. -Jk), 1 :S: J1 < · · · < Jk :S: n, the intersection number 
regD1 · D1 is equal to the (I, J)-minor of the matrix Inthom(o:). 

For rigorous proofs, see [KY2]. This theorem can be naturally un­
derstood if you write 

which is justified in [IK2]. 
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§5. Quadratic relations 

As we pointed out at the end of §2 (see also the middle of §4.1), 
the compatibility of the intersection forms for homology groups and 
cohomology groups, which is a general, universal and abstract equality, 
produces explicit quadratic relations among hypergeometric integrals -
twisted analogues of the Riemann equality for periods. 

The simplest example is the one in §1 

21ri(p + q) 1 - e2 ,ri(p+q) 

B(p, q)B(-p, -q) = pq . (l - e2,rip)(l - e2,riq). 

Now we know the meaning of the right-hand side: It is the product of 
the intersection number of the forms 

(/~ t) E H 1(n•(log L), V) and 

dt 1 -
t(l-t) EH (n•(logL),V), L={0,1,oo} 

and that of the cycles 

Here is another example due to Gauss: 

F(a,b,c;x)F(l - a, 1- b,2 -c;x) 

F(a + l - c, b + l - c, 2 - c; x)F(c - a, c - b, c; x), 

where Fis the hypergeometric function (cf. [CM], [Matl]). 

Twisted analogues of Riemann inequality. When O'.j E JR, we 
can speak about the Hodge structure on the cohomology groups, and 
get twisted analogues of Riemann inequality. [HY] studies these when 
k = l. 

§6. Further study 

So far, we worked on the projective spaces IP'k, linear forms t1, func­
tion u = fl z;;, 1-form w = du/u, etc, under Assumption 1: a1 ff. Z, and 
Assumption 2: no k + l hyperplanes in { L 1} intersect. 

For a general arrangement, without Assumption 2 but with a gener­
icity for a1 corresponding to Assumption 1, the structure of the coho­
mology group can be described in terms of the so-called Orlik-Solomon 
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algebra, and an explicit basis of the homology group is known, if the 
arrangement is real. By successive blowing-up one can make the proper 
transform of the arrangement normally crossing - there is a systematic 
way to do this - then one can, in principle, evaluate the intersection 
numbers (cf. (KY2], (Yos2]). We expect that these intersection numbers 
can be expressed combinatorially in a closed form. 

For imaginary arrangements, k 2". 2, or non-linear arrangements ( cf. 
(KY2]), little is known about explicit cycles. 

Motivated by an integral whose integrand involves hypergeometric 
functions, Hanamura, Ohara and Takayama study intersection theory 
when the rank of the local system £ is larger than 1 (cf. (Ohal,2], 
(OT]). They use hyperplane-section method, which is expected to be 
effective also to the previous problem. 

Recall the famous limit formula: 

(1 + >..t) 1f>. - et, as >.. - 0 

and a less famous one 

(1 + >..t) 1f>.(µ->.)(I + µt) 1fµ(>.-µ) - et2
/ 2 , as >.., µ - 0. 

In §1, starting from the Beta integral you find two 'limit' integrals, one of 
them is the Gamma function. These formulae suggest another direction 
of generalization of the theories stated above, that is, to consider for 
example 

m 

u = IT (t-xi)'"; expf, 
j=l 

m dt 
w = dlogu = '°' O'.j--+df, w t-x· 

j=l J 

V=d+w/\, 

where f is a polynomial int. The corresponding hypergeometric inte­
grals represent various confluent hypergeometric functions; the extreme 
ones are those without lj; such integrals are called generalized Airy in­
tegrals, because 

j exp(-t3 /3 + xt)dt 

represents the Airy function. 

In the following sections we study the confluent cases. Since the 
above limit formulae are delicate, if you know what I mean, the above 
theories in §§2 - 5 do not directly imply those for confluent cases; we 
must establish it independently. Of course you can expect some limit 
relations among them (see (KHT2], (Ha2]). 
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§7. Confluent cases, general frame 

Let n1 2:'. · • · 2:'. nm be natural numbers and Lj (1 :S j S m) be 
hyperplanes in JP>k defined by linear forms lj of ti, ... , tk; put T = JP>k \ 
U1J=1Lj, We define a rational exact I-form w.i with nrfold poles along 
Li; this is explicitly given in §9. Put 

v' = d+w/\ 

and consider the following complex 

We want to define the intersection pairing between Hk(n•(*L), v') 
and Hk(n•(*L), 'v') as we did in non-confluent cases. However, we can 
easily see that 

in general. So we need to introduce a reasonable cohomology theory on 
which a perfect pairing can be naturally defined. We also want to have a 
suitable homology theory and Poincare isomorphisms to get intersection 
numbers for homology groups. Up to now only two extreme cases are 
studied: 

Case k = I, 
Case T = (Ck, i.e. w admites poles only along the hyperplane at 

infinity. 

§8. Confluent cases k = 1 

8.1. Twisted de Rham cohomology groups. 
A smooth function f defined in a neighborhood U of the point xis 

said to be rapidly decreasing at x if f satisfies 

ap+q 
----f(x) = 0, p, q = 0, I, 2, .... 
8tP8tq 

Let SP be the vector space of smooth p-forms on JP>1 which are rapidly 
decreasing at Xi ( = Li) for every i. A smooth function f defined in U\ { x} 
is said to be polynomially growing at x if there exists r E N such that 
(t -x? f is smooth on U. Let PP be the vector space of smooth p-forms 
f on T which are polynomially growing at Xi for every i. 
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We consider two complexes with differential v' : 

(s·, v') 

(P•' v') 

s0 ~S1 ~S2 ~o, 
pO ~ pl ~ p2 ~ 0. 

The cohomology groups Hk(s•, v') and Hk(p•, v') are called rapidly de­
creasing and polynomially growing twisted de Rham cohomology groups 
with respect to v', respectively. The inclusions 

of complexes induce the following isomorphisms among twisted de Rham 
cohomology groups. 

Theorem 3. HP(O,•(*L),v') '.:::'. HP(P•,v') '.:::'. HP(S•,v'), p = 
0, 1,2. 

The first isomorphism can be proved by the help of 8-calculus. Since 
the injectivity of the natural map HP ( s•, v') ---t · HP (P•, v') is easy, we 
mention briefly its surjectivity when p = 1. For a v'-closed form <p E 

0 1 (*£), there exists a unique formal meromorphic Laurent series Fi 

around Xi satisfying v' Fi = <p. If ni ~ 2, Fi is divergent in general, 
however, there exists a polynomially growing smooth function /i with 
the same expansion as Fi. Thus the form 

m 

<p - L, v'(hdi) 
i=O 

is in S1, where hi is a smooth function defined in §3.1. This implies the 
surjectivity. 

8.2. Twisted homology groups. Let t::,. be a singular p-simplex 
in T, define a function U.t. on t::,. by 

u.t.(t) = exp (ft w), 
where the path of the integration is in t::,. . We consider only chains p 
such that if Xi belongs to the closure of p = Ei bi t::,.i in JP>1 then 

lim (t - xitup(t) = 0, r = 0, 1, 2, ... , 
t-+x;, tEp 

where up(t) = U.t.;(t) (t Et::,.j)- Let Cp(T,w) be the space of loaded p­
chains Ei bi t::,.i ®U.t.; for all suchp-chains p = Ei bi t::,.i. The boundary 
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operator aw on C. (T, w) is naturally defined, and we get the p-th homol­
ogy group Hp(C.(T,w), 8w) as we did in §4. There is a natural pairing 
between H 1(S•, v') and H1 (C.(T, w), aw) through the (confluent) hyper­
geometric integral 

where cp E S1,,y = Ej bj 6j 0u6 ;(t) E C1(T,w). 

Theorem 4. The pairing between H 1 ( s•, v') and H 1 ( c. (T, w), aw) 
is perfect. 

8.3. Intersection pairings. 
There is a natural pairing between S 1 and P 1 by 

{ cp A '1/J, cp E S1, 'ljJ E P 1 . 
J.ft>l 

This pairing descends to the perfect pairing • between H 1(S•, v') and 
H 1(P•, '\?). Theorem 3 yields the isomorphism l : H 1 (n•(*L), v') _, 
H 1(S•(*L), v'), which induces the intersection pairing of H 1(0-(*L), v') 
and H 1 (0•(*L), '\?) by 

Theorem 5. The intersection numbercp·'I/J of cp E H 1(n•(*L), v') 
and 'ljJ E H 1(0•(*L), '\?) is given by 

m 

cp · 'ljJ = 2ni L Rest=x; (Fj'I/J), 
j=O 

where Fi is the meromorphic formal Laurent series around Xj satisfying 
v'Fj = cp. 

Note that we can evaluate the intersection number cp • 'ljJ by this 
theorem; see examples in the next subsection. 

So far in this section, we defined three pairings: 

H 1 (n·(*L), v') ~ H 1(s·, v') 
1 

H1(C.(T,w),aw) 

These pairings define a pairing between the two homology groups. 
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Theorem 6. Suppose for two loaded cycles 

and 

t:,.; and 6-; meet transversally at finitely many points. Then the inter­
section number p+ • p- is equal to 

where Iv ( 6;, 6-;) is the topological intersection number of 6i and 6-; 
at v ET. 

8.4. Examples. The compatibility of the parings yields quadratic 
relations among confluent hypergeometric functions. 

Letw = -tdt, so u(t) = e-t2
/ 2 . The (co)homology groups in question 

are I-dimensional. Put 

Let us compute the intersection number dt • dt applying Theorem 5. 
Since the pole of w is at oo only, we solve the equation v' F = dt at oo. 
By a straightforward calculation, we have 

F = -s + s3 - 2s5 + 2 · 4s7 - 2 • 4 • 6s9 + • • • , s = 1/t. 

Since Ress=o(F(s)(-ds/s2 )) = 1, dt • dt equals 21ri. One can easily see 
that Theorem 6 implies p+ • p- = 1. Since 

we have the formula announced in §1: 

We present two more examples: the inversion formula for the gamma 
function 

7f 
f(a:)f(l - a)=-. -

sm 1r0: 
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and Lommel's formula 

2sin(1ra) 
Ja(z)J_a+i(z) + Ja-1(z)J_a(z) = ---, 

1TZ 

which holds for the Bessel function with parameter a E C \ Z 

( z)a 00 (-l)k (z)k 
Ja(z) = 2 ~ k!r(a + k + 1) 2 ' 
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where zE{z E (CI Re(z) > O} and the argument of z is in (-1r/2,1r/2). 
For details including proofs, refer to [MMT]. 

[Ha2] shows that such quadratic relations are indeed obtained from 
these in §5 by confluence process. 

§9. Confluent cases, generalized Airy k ~ 2 

Let w be an exact I-form on T = (Ck, with parameters o:1, ... ,o:n, 
defined as 

n 

W = dBn+i(t) + LO:jd0j(t), 
j=l 

where Bj are polynomials int= (ti, ... , tk) of degree j defined by 

log{l + t1X + t2X2 + · · · + tkXk) = L Bj(t)Xi; 
j~l 

for example, B1(t) = ti, B2(t) = t2 - tV2, 03(t) = t3 - t1t2 + tV3. 
Note that the form w has poles of order n + 2 along the hyperplane L at 
infinity. Let HP(Q•, v1) be the p-th cohomology group of the complex 

where QP the vector space of polynomial p-forms. In [Kim2], it is shown 
that only Hk(n•, V) survives and is (~)-dimensional, further it is conjec­
tured that there exists a basis expressed in terms of Schur polynomials. 
This conjecture is established in [IM]. In order to state this, we consider 
the map 

</>: Ck 3 s = {s1, ... , sk) f-+ t ={ti, ... , tk) = (e1(s), ... , ek(s)) Eck, 

where ej{s) is the elementary symmetric polynomial of degree j. 
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Theorem 7. Hk(n•, v') can be spanned by 

81=d0i1 /\···/\d0ik, l=(i1, ... ,ik), 1:::;ii<··•<ik:::;n. 

The pull buck ¢,* ( 81) of 81 by ¢, is given by 

¢,*(81) = Sc>,(s)~(s)dsi I\··· I\ dsk, 

where Sc>.(s) is the Schur polynomial attached to the Young digram>.= 
(ik - k, ... , i1 - 1) and ~(s) is the difference product of si, ... , Sk-

Let us define the intersection pairing Hk(n•, v') and Hk(n•, 'v'). 
Note that the map ¢, induces the biholomorphic map from the quotient 
variety (JP'1 )k / Sk to pk. We can easily see that 

k 

¢,*(d0i(ti, ... , tk)) = L d0i(Sj, 0, ... , 0). 
j=l 

We regard ¢,*(w) as a meromorphic 1-form on (JP'1 )k / Sk. We can deform 
¢,*(81) into a Bk-invariant rapidly decreasing k-form t(</>*(81)) on Ck by 
adding dF + ¢,*(w) I\ F, where Fis a Bk-invariant polynomially growing 
(k - 1)-form on Ck. Since (JP'1 )k is the k!-fold covering of (JP'1 l / Sk, 
we define the intersection number el . e J for 8 l E Hk ( n·' v') and 
8J E Hk(O•, 'v') as 

(81, 8J) = k1, f t(</>*(81)) I\ ¢,*(8J) . . lck 
Theorem 8. The intersection number (81, 8J) is equal to the 

skew Schur polynomial Sc>.;;;,(a) with elementary symmetric polyno­
mials as variables, where jl is the complement of the Young diagram 
µ = (jk - k, ... ,j1 -1) in the k x (n - k) rectangle, and>./µ is the skew 
Young diagram of>.= (ik - k, ... , i1 - 1) and jl. 

The cohomology theory introduced in this section will be presented 
in full in [IM]. The homological counter part is still unsettled. 
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