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The last proof is based on the idea of [MP2]. See also [MP2] for 
more complicated examples of combinatorial weight multiplicity formu
las in the category O of gl(n, C), which can be deduced from Theorem 
12.4. Indeed the combinatorics is based on semi-infinite Young diagrams. 

14. Application of tilting modules to the symmetric group 
Sn. In this section, we will investigate the representation of the sym
metric group Sn. Let M be an auxiliary vector space of dimension m 
and set G = GL(M). Denote by¢ the natural action of Sn on M®n. 
By Lemma 12.1, the G-module M®n is tilting. As in Section 12, we will 
use that cp(KSn) is the commutant of the G-module M®n. This fact has 
been proved by Weyl in characteristic zero and it has been extended to 
finite characteristics by de Concini and Procesi. See [dP] for the proof 
of the next result: 

Theorem 14.1: (de Concini and Procesi [dP]) We have: 
Enda(M®n) = cp(KSn)-

We can also describe a Young diagram Y by a finite sequence 
( mf1 , m~2 , ••• ) by the following rule: m 1 , m 2 ... are the various lenghts 
of the non-empty lines of Y and ak is the number of lines of Y of lenght 
mk. Therefore m 1 , m2 . . . are disctint positive integers. We do not re
quire that the sequence (m1 , m 2 ... ) is ordered, therefore (m~ 1 , m~2 , ••• ) 

is defined up to permutation. For example, the Young diagram defined 
by the sequence (32 , 11 ) is: 

A Young diagram is called p-regular if ak < p for any k. It is clear 
that Y is p-regular if and only if the weight .X(Y .l) is restricted. This 
usual terminology conflicts with the notion of p-regular weights. An 
element g E Sn is p-regular if its order is not divible by p. 

Lemma 14.2: There is a natural bijection between the p-regular 
conjugacy classes of Sn and the p-regular Young diagrams of degree n. 

Proof: To any conjugacy class [g] of Sn, one associates a finite se
quence ( m~ 1 , m~2 , ••• ) by the following rule: m 1 , m 2 . . . are the various 
lenghts of the cycles of g and ak is the number of cycles of [g] of lenght 
mk- Therefore, there is a bijection between: 

(i) all the p-regular conjugacy classes of Sn, and 
(ii) all the sequences ( m~1 , m~ 2 , ••• ) of degree n, with no parts mk 

divisible by p. 
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Any integer a 2 1 admits a p-adic expansion a = I:r>o brpr, 
where O ~ br < p for any r 2 0. For any one term sequence ~a, set 
'¢(ma) = (mb0 , (pm)b1 , (p2ml2 , ••• ). More precisely, we remove in the 
sequence the trivial parts (prmtr whenever br = 0. For an arbitrary se
quence (m~1 , m~2 , ••• ), set 'lj;((m?, m?, ... )) = ('¢(m~1 ), '¢(m~2 ), ••• ). 

By unicity of the p-adic expansions, 'lj; establishes a bijections between 
(ii) and all the p-regular sequences of degree n. Therefore the lemma is 
proved. Q.E.D. 

As in section 12, we will identify any Young diagram Y of height 
~ m with a dominant polynomial weight of G. Define the Sn-modules: 
Sp(Y) = H 0 (U, M®n)y and S(Y) = Ty(M®n). Indeed Sp(Y) is the 
usual Specht module. The following statement is a tilting module version 
of the classical Schur correspondence, formulated by Green in [G]. 

Proposition 14.3: 
(i) The Sn -module Sp(Y) is independent of the dimension m of M 

(provided that m 2 htY; otherwise Sp(Y) = OJ. 
(ii) If Y is a p-regular and m 2 ht Y, S(Y) is a non-zero simple Sn 

module which is independent of m; otherwise S(Y) = 0. 
(iii) If dimM 2 n, then Y f--+ S(Y) is a bijection from the p-regular 

Young diagmms Y of degree n to the simple K Sn -modules. 
Proof: Under the proviso m 2 ht Y, the weight space (M®n)y is 

independent of m, and therefore Sp(Y) is also independent of the di
mension of M, what proves the first assertion. In order to prove the 
last two assertions, we can assume that m 2 n. By Lemma 11.l(i) and 
Theorem 14.1, the Sn-module S(Y) is simple whenever it is not zero. 

We claim that S(Y) = 0 whenever Y is not p-regular. Set V = Kn, 
M = l\(V 0 M) and E = I:i::;k::=;n Ei. We can identify M®n with the 
E-weight space of the GL(V)-module M. By Lemma 12.3, S(Y) is the 
E-weight space of the simple GL(V)-module Lv(YJ_). The weight YJ_ is 
not restricted, therefore by Steinberg tensor product Theorem 2.4, E is 
not a weight of Lv(YJ_). Thus S(Y) = 0 and the claim is proved. 

Thanks to the additional assumption m 2 n, M®n contains the 
regular representation of Sn. Thus any simple Sn-module occurs as a 
subquotient of M®n. Therefore any Sn-module is isomorphic to S(Y), 
for some p-regular Young diagram Y of degree n. By Brauer's theory 
the number of simple Sn-module equals the number of p-regular con
jugacy classes in Sn. By Lemma 14.2, this number equals the number 
of p-regular Young diagrams Y of degree n. Therefore Y f--+ S(Y) is a 
bijection from the p-regular Young diagrams Y of degree n to the simple 
KSn-modules. In particular S(Y) -IO if Y is p-regular. Q.E.D. 
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Let Y be a Young diagram. Its rim is the set of boxes of Y of 
position (i,j) such that there are no boxes in position (i + 1,j + 1). For 
example the rim of the diagram Y below is the set indexed boxes: 

y~ 

A p-rim of Y is a connected piece Z of the rim of Y of size p such that 
Y \ Z is again a Young diagram. A p-core is a Young diagram Y which 
does not contain any p-rims. In the previous example the p-rims of Y 
for p = 2, 3, 5 are: 

There are no 7-rims, therefore Y is a 7-core. 

3 
5 

Starting with a Young 
diagram Y, we can remove successively p-rims, until we get a p-core Y. 
Although there are usually more than one way to remove p-rims from 
Y, the p-core Y depends only on Y. Therefore Y is called the p-core 
of Y. In our previous example, the 3-core of Y is the one box Young 
diagram. We show below two different ways to obtain the 3-core Y of 
Y by successively removing 3-rims (at each step, the removed 3-rim is 
indicated by the crossed boxes). 

~-Ri ~, ~~~ □ 
r [DXIXIXI [TI] • ----,xx ------, ------,l!I!]------, 
X 

Let Y be a Young diagram Y = ( m 1 , m 2 , ... ) of height S m. Denote 
by Cm(Y) the set of all Young diagram Y' of height s m with the same 
degree and p-core than Y. Set Em(Y) = (-1)1=(Y), where lm(Y) = 

I:i:s;i<j:S::m [(mi -mj + j-i)/p], and where [x] denotes the integral part 
of any x E Q. Assume now m < p. The Young diagram Y is called 
m-small if and only if m 1 - mm S p - m. It should be noted that 
the Specht modules are the reductions modulo p of the simple CSn
modules. Thus their Brauer characters are well-understood. Therefore 
the next statement describes the Brauer character of the simple modular 
representations S(Y) for any m-small Young diagram Y. 
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Theorem 14.4: Let m < p and let Y be a m-small Young diagram 
Y. Then in Ko(Sn), we have: 

[S(Y)] = L Ern(Y') [Sp(Y')]. 
Y'ECm(Y) 

Proof: The following combinatorial observations are easy: 
(i) As Y is m-small, the weight .X = .X(Y) is in the fundamental 

alcove c0 of G. 
(ii) The Young diagrams YE Crn(Y) correspond exactly to all domi

nant and polynomial weights of the form w(.X+p)-p for some w E Waff• 
Moreover lrn(Y) is the lenght of wand therefore Ern(Y) = E(w). 
Hence the theorem follows from Proposition 11.3 (ii).Q.E.D. 

It is also possible to use Proposition 11.3 (iii) to write [S(Y)] as 
a combination of induced modules. However the index set is an affine 
Weyl group (instead of a Weyl group), therefore it is not possible to 
express it in terms of a determinant as in characteristic zero. However, 
one can derive a combinatorial formula for dimS(Y). Let Y be the 
oriented graph whose vertices are the Young diagrams and whose arrows 
are Y ---+ Y' if Y' is obtained by adding one box to Y. For example, 
there are three arrows originating in the Young diagram (3, 22), as shown 
below ( the cross indicates the added box): 

~~~ ~~w ~~w 
Form< p, let Yrn be the set of all m-small Young diagrams. 

Theorem 14.5: ([M3]) Let YE Yrn, Then the dimension of S(Y) 
is the number of oriented paths from 0 to Y entirely contained in Yrn· 

For the proof, see [M3]. 

Let E be the signature representation of Sn, Since the simple rep
resentations of Sn are indexed by the p-regular Young diagram of de
gree n, the tensor product by E induces an involution Y ~ YE on the 
set of p-regular Young diagrams, namely we have S(YE) = S(Y) ® E. 

In characteristic zero, this involution is simply the usual transposition 
Y ~ Y J_. However, in characteristic p, the involution Y i--t YE is given 
by a more complicated rule, which has been conjectured by Mullineux 
and proved by Kleshchev [Kll]. In a unpublished work, Rouquier used 
the Mullineux algorithm, to prove that the set of small Young diagramms 
is stable by this involution. However, this can be proved directly. 

Proposition 14.6: Let m < p. For any Y E Yrn, YE belongs to 
Yv-rn· Moreover the map Y ~ YE induces a bijectionfromYrn to Yv-rn• 
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Proof: For any Sn module X, denote by xx : Sn _____, K be its or
dinary character, namely xx(g) = Trglx for any g E Sn, We have 
xx = I:Y [X : S(Y)] Xs(Y), where Y runs over the set of p-regular 
Young diagrams of degree n and where [X : S(Y)] denotes the multiplic
ity of S(Y) in a composition series of X. As the characters Xs(Y) are lin
early independent, the residues modulo p of the multiplicities [X: S(Y)] 
are completely determined by xx. 

Let M a vector space of dimension m, let N be a vector space of 
dimension m - p and let Y be a p-regular Young diagram of degree n. 
We have XM®n = I:Y dimTM(Y) Xs(Y)· It follows from the lemmas 
10.4 and 12.4 that: 

(i) [M®n : S(Y)] -=fa O modulo p if and only if Y ism-small. 
For g E Sn denotes by L(g) be the number of cycles of g. We have 

XM&n(g) = mL(g), XN&n(g) = (-m)L(g) and Xc(g) = (-l)n+L(g)_ We 

deduce that XM®n = ( -1 rxcXN®n. It follows that: 
(ii) [M®n: S(Y)] = (-l)n[N®n: S(r)] modulo p. 

Thus the proposition follows from the assertions (i) and (ii). Q.E.D. 

In view of the next statement, fix a Young diagram Y of degree n 
and of height ::; m. For any k 2'. 0, denote by Yk the Young diagram 
obtained by adding a rectangle of height m and length k on the left side 
of Y. Here is an example with m = 3 (the added rectangle corresponds 
with the crossed boxes): 

Y~Y, ~ Y, ff Y, l~l~I I 1 

Note that Yk is a Young diagram ( even when ht Y < m) and deg Yk = 
n+km. Consider Sn as a subgroup of Sn+km as usual; henceforth S(Yk) 
can be viewed as Sn-module by restriction. Therefore we can define the 
formal series xr(z) = I:k;:,:o dimS(Yk)g zk, for any p-regular element 

g E Sn, where S(Yk)g is the space of g-invariant vectors of S(Yk), For 
g = 1, the series is simply I:k;:o:o dimS(Yk) zk. 

Assume now that m < p and let Z(m) be the set of complex numbers 
x of the form x = (I:1::;i:=;m (i)m, where (1, ... (m are m distinct p-roots 

of 1 such that fli::;i::;m ~i = 1. 

Theorem 14. 7: Assume Y is a m-small Young diagram. Then 
xr(z) is a rational function with simple poles. More precisely, we have: 

Y( ) _ '°' a;, Xg Z - LnEZ(m) 1-xz' 

for some ai EC. 

Proof: By restriction, each Sn+mk-module S(Yk) can be viewed as 
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an Sn-module. Thus denote by [S(Yk)] its image in K 0 (KSn) and set 
xy (z) = I:k~o [S(Yk)] zk. As g is p-regular, its action on any Sn-module 
X is semisimple. Therefore the map X f----+ dim Xg induces a linear map 
Lg: C ® Ko(KSn)---; C and we have xr(z) = Lg o xY(z). Therefore 
it is enough to prove a similar statement for the K 0 (KSn)-valued series 

Xy (z), namely Xy (z) = I:xEZ(m) 1_'."_;,z, for some a~ E C ® Ko(K Sn), 
As before, let M be an auxiliary vector space of dimension m. Set 

G' = SL(M), M' = M®n, N' = M®m and let >..' be the restriction 
of >..(Y) to the group H' of diagonal matrices of G'. The restriction 
to H' of the weights >..(Yk) are all equal to >..'. Note also that >..' is in 
the fundamental alcove C 0 of G'. Moreover the commutant of the G' -
module M' is again cp(KSn) and the G'-modules M' and N' are tilting. 
Therefore, we can apply Theorem 11.4 to the group G' and to its tilting 
modules M' and N'. 

We claim that Z(N') = Z(m). It is clear that Z 1IP consists of 
conjugacy classes of A E G' with m distinct eigenvalues 6, ... , ~m such 
that TI1<i<m ~i = 1 and ~f = ~r for any i, j. Therefore we can write 
~i = (.(i, where (m = 1 and where the (1, ... , (m are m distinct p

roots of 1 with [11:'oi:'om (i = 1. For such a matrix A, we have chN'(A) 

= (I:1:'oi:'om ~i)m = (I:1:'oi:'om (ir, what proves Z(N') = Z(m). 

It follows from Theorem 11.4 that XY (z) = I:xEZ(m) 1_'."_~z, for some 

a~ EC® Ko(KSn)- Q.E.D. 

Remarks: We can consider similar series xr (z) by using representa
tions over a field of characteristic zero. However, these series are usually 
not rational. Let Y beam-small Young diagram of degree n, and for any 
k denote by Sc(Yk) be the simple CSn+mk associated with the Young 
diagram Yk. When k---; oo, the space S(Yk) is very small compared to 
its caracteristic zero counterpart Sc(Yk). Indeed we have the following 
asymptotic estimates for k ---; oo: 

dimSc(Yk) ~ C k-amkm, and dimS(Yk) ~ C' j8~~n':;~Pjkm, 

for some positive constants C, C', a. The first estimate is an easy corol
lary of the hook formula. The second estimate is based on the fact that 

( 8~!n:;;~P)m is the pole of biggest modulus of the rational series xy (z), 

what follows from Theorem 14. 7. Similar generating functions have been 
considered by Erdmann for m = 2 see [E]. It turns out that for m = 2, 
the series xr ( z) are rational for any Y 12 . 

12E.g. this follows from the fact that any tilting module for SL(2) is outside 
a cofinite tilting ideal. It seems unlikely that the series xr ( z) is rational for 
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Until the end of the section, we will use the following new hypothe
ses: we fix a p-regular Young diagram Y of degree n and M is a vec
tor space of arbitrary dimension m. A partition of n is a sequence 
a = (a1, ... , ak) of positive integers with I:i::;J:Sk aj = n. For such a 

partition a, the group Sa= IL::;J::;k Sa1 is viewed as a subgroup of Sn 

as usual. Following Kleshchev's terminology [Kl2], S(Y) is called com
pletely splittable if it is semisimple as a K Sa-module for any partition a 
of n. 

Lemma 14.8: Assume that dimTM(Y) is not divisible by p, for 
some vector space M. Then S(Y) is completely splittable. 

Proof: Note that dimM 2: ht Y, otherwise TM(Y) would be zero. 
Let a be any partition of n. Set Mj = M®a1 for any j. By Theorem 
14.1, Sa1 generates the commutant of the tilting G-module Mj. By 

definition, S(Y) = TP(<Z>i:::;J:::;k MJ)- Therefore by Proposition 11.2, the 
Sa-module S(Y) is semisimple. Q.E.D. 

Whenever Y is m-small for some m < p, dim TM (Y) is not divisible 
by p by Lemma 10.4. Thus Lemma 14.6 provides a simple proof of the 
following Kleshchev's theorem: 

Theorem 14.9: (Kleshchev [Klll[Kl2]) 
If Y is m-small for some m < p, then S(Y) is completely splittable. 

Remark: The m-small Young diagrams are considered in [We] in 
the context of Hecke representations. 

15. Comparison with the quantum case. Let G be a reductive 
group. Denote by U,,, be the corresponding quantum group at a p-root of 
unity T/· Tilting modules are defined as well for quantum groups. Denote 
by T11 (>.) the tilting U,,,-module with highest weight>.. Although ch T(>.) 
is still unknown, the character of tilting modules T,,,(>.) has been deter
mined by Soergel [So2] [So3]. Therefore one should try to compare the 
tilting module T(>.) with its quantum analog. It follows from Theorem 
16.4 that Ext'c;(T(>.), T(>.)) = 0 fork = 1, 2. By deformation theory, 
the obstruction of a lifting lies in the Ext2-group and its unicity in the 
Ext1-group. Therefore T(>.) can be uniquely lifted to a representation 
of U,,,, and chT(>.) - chT,,,(>.) is a non-negative linear combination of 
chT,,,(µ) for someµ<>. (see [Je]). The following two conjectures are 
closely related: 

Conjecture 15.1: (Andersen [A7]) If(>.+ p)(ho) < p 2 , then: 

all Y when m > 3 
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chT(.X) = chT'l(.X). 

Conjecture 15.2: (G = GL(V)) Let Y be a Young diagram with 
degY < p2 , and set .X = .X(Y). Then chT(.X) = chT'l(.X). 

Let Hn(TJ) be the Hecke C-algebra of Sn evaluated at ry. The simple 
modules Hn(TJ)-modules are denoted by S'1(Y), where Y is a p-regular 
Young diagram of degree n, see [DJ]. The character of S'1(Y) are de
termined [KL][Arl[Gr]. Therefore it is interesting to know when the 
characters of S(Y) and S'l(Y) are equal, or equivalently when their di
mensions are the same. 

Conjecture 15.3: (James) Let Y be a Young diagram with deg Y < 
p2 • Then dim S (Y) = dim S') (Y). 

Andersen Conjecture implies Lustig Conjecture [A 7]. Using the 
methods of [M3] it is easy to show that Conjecture 15.2 is indeed equiv
alent to James Conjecture: they are equivalent to the fact that M®n 

decomposes in the same way as its quantum analog, whenever n < p2 , 

for any vector space M. James conjecture cannot hold for n :2'. p2 • It 
should be noted that the condition n < p2 is exactly the validity do
main of Broue's conjecture: for n < p2 , the p-Sylow subgroups of Sn 
are abelian. These conjectmes are unstable, i.e. for a given p they 
concern only Young diagrams of bounded size. Based on the clever 
SL(3)-computations of [Je], we try the following stable conjecture: 

Conjecture 15.4 Let m be an integer with 3 :::; m :::; p. Let Y = 
(m1, ... , mm) be a Young diagram such that m 1 - mi +.(i - 1) < p or 
mi - mm + ( m - i) < p, for any 1 :S i :S m. Then: 

dim S (Y) = dim S'l (Y). 

For m = 3, the conjecture holds [JM]: 

Theorem 15.4: ([JM] Assume p odd. Let Y = (m1, m2, m3) be a 
Young diagram such that m 1 - m 2 :S p - 2 or m2 - m3 :S p - 2. Then: 

dim S (Y) = dim S'l (Y). 

16. Appendix: Cohomological criterion for good filtrations. 
In section 4, we try to provide the most elementary approach of good 
filtrations. Especially, we only use the the simplest part of the van
ishing theorem of Cline, Parshall, Scott and van der Kallen (Theorem 
A4) to prove Donkin Criterion 4.7. In this appendix, we will connect 
the approach of Section 4 with the usual cohomological description of 
good filtrations [FP]. For a weight µ E Q+, we set ht(µ) = L-iEJ mi 

if µ = L-iEI miai. This is sometimes called the height of µ, but this 
terminology should not be confused with the height of Young diagrams. 
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Lemma 16.1: Let M be a B-module and k 2 0. If v is a weight of 
Hk (U, M) we have v :S µ and ht(µ - v) 2 k for some weight µ of M. 

Proof: Any B-module M admits an injective envelope I(M): we 
have Mc I(M), H 0 (U, M) = H 0 (U, I(M)) and I(M) is injective. Set 
Z = I(M)/M. For any weight v of Z, we have v <µfor some weight 
µ of M. Choose an injective resolution of M: 0 -+ M -+ Io -+ Ii ... , 
such that Io = I(M), I 1 = I(Z) and h is the injective envelope of the 
cokernel of h-2 -+ h-i for any k 2 2. By induction, one proves that 
for any weight v of h we have v :S µ and ht(µ - v) 2 k , for some weight 
µ of M. Any weight v of Hk(U, M) is a weight of h and the lemma 
follows. Q.E.D. 

Recall that D: Mod(B) -+ Mod(G) is the induction functor from 
B to G. The functor D is left exact and we denote by D* its derived 
functor. By definition, we have DM = D 0 M = H 0 (G/B,.C(M)). The 
next two lemmas are well-known and they fit in the framework of Zuck
erman's functors. 

Lemma 16.2: For any B-module M, we have: 
DkM = Hk(G/B,.C(M)), for all k 2 0. 

Proof: As the functor ,C is exact, it is enough to prove that Hk ( G / B, 
.C(M)) = 0, for all k > 0 and any injective B-module M. As any inde
composable injective module is a direct summand of K[B], we only have 
to prove the claim for M = K[B]. Let 7r : G -+ G / B be the natural 
projection. We have .C(K[B]) = n:*Oc. As the variety G and the mor
phism n: are affine, we have Rin:*Oc = 0 and Hi(G, 0 0 ) = 0 for i > 0 
by Serre's vanishing theorem. Thus the vanishing of Hi(G/B,.C(K[B])) 
follows from Leray's spectral sequence. Q.E.D. 

Lemma 16.3: Let M be a G-module. We have: 
Ext~(~(>-.), M) = Hi(U, M)>.., for any,\ E p+. 

Proof: Let N be a B-module. We have H 0 (G, DN) = H 0 (B, N), 
thus the functor H 0 (B, - ) is the composite of the functors D and 
H 0 (G, -). Clearly D maps injective B-modules to injective G-modules. 
So there is a spectral sequence converging to H* ( B, N) whose E:;*-term 
is H*(G, D* N). 

Assume now that N = M@K(->-.). Then Dk N = M@Dk K(-,\) = 
0 for k > 0 by Lemma 16.2 and Kempf's vanishing theorem 3.2. Thus the 
previous spectral sequence degenerates, and we have Hk(G, 'v(w0 ,\) 0 
M) = Hk(B, N) for all k. Thus we get: 
Hk(U, M)>. = Hk(B, M 0 K(->-.)) 

= Hk(G, 'v(wo>-.) 0 M) 
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= Ext~(A(A), M). Q.E.D. 

Theorem 16.4: (Cline-Parshall-Scott-van der Kallen vanishing 
Theorem [CPSV]) For any A, µ E p+, we have: 

Ext~(A(A), "v'(µ)) = 0, for all k > 0. 

Proof: Let A,µ E p+_ We claim that Hk(G, "v'(A)@ "v'(µ)) = 0 
for any k > 0. By symmetry of the roles of A and µ, we can assume 
-woµ f:_ A. By"the Lemma 16.3, Hk(G, "v'(A)@"v'(µ)) = Hk(U, "v'(A))w0 µ 

and this last group is Oby Lemma 16.1. Therefore Ext~(A(A), "v'(µ)) = 
Hk(G, "v'(-w0 A) 0 "v'(µ)) = 0. Q.E.D. 

For any G-module M, A E p+ and k ~ 0, set hk(M, A)= dimHk(U, 
M)>.- For k = 0, l, these numbers have been defined in Section 4, and 
by Lemma 16.3 the two definitions agree. For a given G-module M, 
almost all numbers hk(M, A) are zero (see Lemma A.l) and all of them 
are< oo. 

Theorem 16.5: Let M be a G-module, and let n ~ 0. 
(i) Ifn is even, we have chM::::; L L (-l)khk(M,A) ch"v'(A), 

>.EP+ k~n 
(ii) ifn is odd, we have chM ~ L L (-l)k hk(M,A) ch "v'(A). 

>.EP+ k~n 

Proof: By induction on n. It follows from the proof of Proposition 
4.5 that there exists a short exact sequence O -+ M -+ X -+ N -+ 0, 
where X has a good filtration. From the vanishing theorem 16.4, we get: 

h0 (M, A) - h 1 (M, A)= h0 (X, A) - h0 (N, A), 
hk(M, A) = hk- 1 (N, A), fork~ 2. 

By Lemma 4.2, we have chX = L>.EP+ h0 (X, A) ch "v'(A) and, by induc

tion hypothesis, L>.EP+ Lk<n (-l)k hk(N, A) ch "v'(A) can be compared 
with chN. The inequality iii°volving chM follows. Q.E.D. 

Following Friedlander and Parshall [FP], we say that a G-module 
M has good dimension :::; m if there exists a resolution O -+ M -+ X 0 -+ 

... Xm -+ 0, where all Xi are (finite dimensional) G-modules with a 
good filtration. 

Corollary 16.6: Let m ~ 0 and let M be a G-module. The follow
ing assertions are equivalent: 

(i)chM= L L (-l)khk(M,A)ch"v'(A), 
>.EP+ k~m 

(ii) M has good dimension:::; m, 
(iii) Hm+ 1 (U,M)>. = 0, for any A E p+_ 

Proof: The equivalence (i)~(iii) follows from Theorem 16.5 ( apply 
it for n = m and for n = m + l). Using a short exact sequence O -+ M -+ 
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X ---• N ---• 0, where X has a good filtration, the equivalence (i){:::::::}(ii) 
follows also by induction over m. Q.E.D. 
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