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The last proof is based on the idea of [MP2]. See also [MP2] for
more complicated examples of combinatorial weight multiplicity formu-
las in the category O of gl(n, C), which can be deduced from Theorem
12.4. Indeed the combinatorics is based on semi-infinite Young diagrams.

14. Application of tilting modules to the symmetric group
Sn. In this section, we will investigate the representation of the sym-
metric group S,. Let M be an auxiliary vector space of dimension m
and set G = GL(M). Denote by ¢ the natural action of S, on M®".
By Lemma 12.1, the G-module M®™ is tilting. As in Section 12, we will
use that ¢(K'S,,) is the commutant of the G-module M®". This fact has
been proved by Weyl in characteristic zero and it has been extended to
finite characteristics by de Concini and Procesi. See [dP] for the proof
of the next result:

Theorem 14.1: (de Concini and Procesi [dP]) We have:
Ende(M®) = (K Sy).

We can also describe a Young diagram Y by a finite sequence
(m$*,m3?,...) by the following rule: mj,ms ... are the various lenghts
of the non-empty lines of Y and ay, is the number of lines of Y of lenght
my. Therefore my,mq... are disctint positive integers. We do not re-
quire that the sequence (mi, my ... ) is ordered, therefore (mj*, m3?,...)
is defined up to permutation. For example, the Young diagram defined
by the sequence (32,11) is:

L

A Young diagram is called p-regular if aj, < p for any k. It is clear
that Y is p-regular if and only if the weight A(Y') is restricted. This
usual terminology conflicts with the notion of p-regular weights. An
element g € S, is p-regular if its order is not divible by p.

‘ Lemma 14.2: There is a natural bijection between the p-regular
conjugacy classes of S, and the p-reqular Young diagrams of degree n.

Proof: To any conjugacy class [g] of Sy, one associates a finite se-
quence (mj*,mg?,...) by the following rule: my,my ... are the various
lenghts of the cycles of g and aj is the number of cycles of [g] of lenght
my. Therefore, there is a bijection between:

(i) all the p-regular conjugacy classes of S, and

(i) all the sequences (m{*,m3?,...) of degree n, with no parts my
divisible by p.
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Any integer @ > 1 admits a p-adic expansion a = ) ., bp",
where 0 < b, < p for any r > 0. For any one term sequence m®, set
P(m®) = (mP, (pm)>, (p?>m)’2,...). More precisely, we remove in the

sequence the trivial parts (p’"m)br whenever b, = 0. For an arbitrary se-
quence (m3',m3?,...), set Y((my*,m3?,...)) = (Y(m$*),¥(m32),...).
By unicity of the p-adic expansions, 1 establishes a bijections between
(ii) and all the p-regular sequences of degree n. Therefore the lemma is
proved. Q.E.D.

As in section 12, we will identify any Young diagram Y of height
< m with a dominant polynomial weight of G. Define the S,,-modules:
Sp(Y) = H(U,M®")y and S(Y) = Ty (M®"). Indeed Sp(Y) is the
usual Specht module. The following statement is a tilting module version
of the classical Schur correspondence, formulated by Green in [G].

Proposition 14.3:

(i) The S,-module Sp(Y') is independent of the dimension m of M
(provided that m > htY'; otherwise Sp(Y) = 0).

(1) If Y is a p-reqular and m > htY, S(Y) is a non-zero simple Sy,
module which is independent of m; otherwise S(Y) = 0.

(#2) If dim M > n, then Y — S(Y) is a bijection from the p-regular
Young diagrams 'Y of degree n to the simple K S, -modules.

Proof: Under the proviso m > htY, the weight space (M®")y is
independent of m, and therefore Sp(Y) is also independent of the di-
mension of M, what proves the first assertion. In order to prove the
last two assertions, we can assume that m > n. By Lemma 11.1(i) and
Theorem 14.1, the S,-module S(Y) is simple whenever it is not zero.

We claim that S(Y) = 0 whenever Y is not p-regular. Set V = K™,
M=AVQ®M)and € = Y rc, € We can identify M®" with the
e-weight space of the GL(V)-module M. By Lemma 12.3, S(Y') is the
e-weight space of the simple GL(V)-module Ly (Y+). The weight Y1 is
not restricted, therefore by Steinberg tensor product Theorem 2.4, € is
not a weight of Ly (Y'1). Thus S(Y) = 0 and the claim is proved.

Thanks to the additional assumption m > n, M®" contains the
regular representation of S,. Thus any simple S,-module occurs as a
subquotient of M®". Therefore any S,-module is isomorphic to S(Y),
for some p-regular Young diagram Y of degree n. By Brauer’s theory
the number of simple S,-module equals the number of p-regular con-
jugacy classes in S,,. By Lemma 14.2, this number equals the number
of p-regular Young diagrams Y of degree n. Therefore Y — S(Y) is a
bijection from the p-regular Young diagrams Y of degree n to the simple
K S,-modules. In particular S(Y) # 0 if Y is p-regular. Q.E.D.
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Let Y be a Young diagram. Its rim is the set of boxes of Y of
position (z,7) such that there are no boxes in position (i +1,j+1). For
example the rim of the diagram Y below is the set indexed boxes:

2[1]
413
7|65
18]
A p-rim of Y is a connected piece Z of the rim of Y of size p such that
Y \ Z is again a Young diagram. A p-core is a Young diagram Y which
does not contain any p-rims. In the previous example the p-rims of Y
for p=2, 3, 5 are:

Y:

2[1]
211 413
GE LU TRy

= = 5
There are no 7-rims, therefore Y is a 7-core. Starting with a Young
diagram Y, we can remove successively p-rims, until we get a p-core Y.
Although there are usually more than one way to remove p-rims from
Y, the p-core Y depends only on Y. Therefore Y is called the p-core
of Y. In our previous example, the 3-core of Y is the one box Young
diagram. We show below two different ways to obtain the 3-core Y of
Y by successively removing 3-rims (at each step, the removed 3-rim is
indicated by the crossed boxes).

X[X] X[X]
X X X
— X% —»P— — ——>|:|
XX I Bl X[X[X] X
X XX - - iz — L
|| X

Let Y be a Young diagram Y = (my, ma, ... ) of height < m. Denote
by Cm(Y) the set of all Young diagram Y’ of height < m with the same
degree and p-core than Y. Set €,,(Y) = (—1)"(Y) where 1,,,(Y) =
Y i<icj<m (mi —m;+3j—1)/p], and where [z] denotes the integral part
of any z € Q. Assume now m < p. The Young diagram Y is called
m-small if and only if m; — m,, < p — m. It should be noted that
the Specht modules are the reductions modulo p of the simple CS,,-
modules. Thus their Brauer characters are well-understood. Therefore
the next statement describes the Brauer character of the simple modular
representations S(Y") for any m-small Young diagram Y.
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Theorem 14.4: Let m < p and let Y be a m-small Young diagram
Y. Then in Ko(Sy,), we have:

M= >  en(Y)[Sp(Y').
Y'€Cm (Y)

Proof: The following combinatorial observations are easy:

(i) As Y is m-small, the weight A = A(Y) is in the fundamental
alcove C? of G.

(ii) The Young diagrams Y € C,,,(Y') correspond exactly to all domi-
nant and polynomial weights of the form w(A+p)—p for some w € Woyy.
Moreover [,,,(Y") is the lenght of w and therefore €, (Y) = e(w).

Hence the theorem follows from Proposition 11.3 (ii).Q.E.D.

It is also possible to use Proposition 11.3 (iii) to write [S(Y)] as
a combination of induced modules. However the index set is an affine
Weyl group (instead of a Weyl group), therefore it is not possible to
express it in terms of a determinant as in characteristic zero. However,
one can derive a combinatorial formula for dim S(Y). Let Y be the
oriented graph whose vertices are the Young diagrams and whose arrows
are Y — Y’ if Y’ is obtained by adding one box to Y. For example,
there are three arrows originating in the Young diagram (3, 22), as shown
below (the cross indicates the added box):

| ] | | |

— - X

X
For m < p, let ), be the set of all m-small Young diagramg.—

Theorem 14.5: ([M3]) Let Y € Vp,. Then the dimension of S(Y)
is the number of oriented paths from B to Y entirely contained in Y, .

For the proof, see [M3].

Let € be the signature representation of S,. Since the simple rep-
resentations of S,, are indexed by the p-regular Young diagram of de-
gree n, the tensor product by e induces an involution Y — Y© on the
set of p-regular Young diagrams, namely we have S(Y€) = S(Y) Q e.
In characteristic zero, this involution is simply the usual transposition
Y — Y L. However, in characteristic p, the involution Y — Y is given
by a more complicated rule, which has been conjectured by Mullineux
and proved by Kleshchev [K11]. In a unpublished work, Rouquier used
the Mullineux algorithm, to prove that the set of small Young diagramms
is stable by this involution. However, this can be proved directly.

Proposition 14.6: Let m < p. For any Y € Y, Y belongs to
Vp—m. Moreover the map Y — Y€ induces a bijection from Vi, to Vp_m.
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Proof: For any S, module X, denote by xx : S, — K be its or-
dinary character, namely xx(9) = Trg|x for any g € S,. We have
xx = Yy [X : S(Y)]xs(v), where Y runs over the set of p-regular
Young diagrams of degree n and where [X : S(Y')] denotes the multiplic-
ity of S(Y’) in a composition series of X. As the characters x5y are lin-
early independent, the residues modulo p of the multiplicities [X : S(Y)]
are completely determined by xx-

Let M a vector space of dimension m, let N be a vector space of
dimension m — p and let Y be a p-regular Young diagram of degree n.
We have xpon = Yy dimTa(Y) xg(y). It follows from the lemmas
10.4 and 12.4 that:

(i) [M®" : S(Y)] # 0 modulo p if and only if ¥ is m-small.

For g € S,, denotes by L(g) be the number of cycles of g. We have
Xaen(g) = mM9, xyen(g) = (=m)") and x(g) = (-1)"**9). We
deduce that xpren = (—1)"xexnon. It follows that:

(i) [M®™: S(Y)] = (-1)"[N®™: S(Y¢)] modulo p.

Thus the proposition follows from the assertions (i) and (ii). Q.E.D.

In view of the next statement, fix a Young diagram Y of degree n
and of height < m. For any & > 0, denote by Y) the Young diagram
obtained by adding a rectangle of height m and length k on the left side
of Y. Here is an example with m = 3 (the added rectangle corresponds
with the crossed boxes):

| Xl | ] XIx] [ ]
Y=Y: Y: | X Y, | X|X
] X XX

L
Note that Y} is a Young diagram (even when htY < m) and degYy =
n+km. Consider S, as a subgroup of Sy, 1 m as usual; henceforth S(Y;)
can be viewed as S;,-module by restriction. Therefore we can define the
formal series x7 (2) = Y ps0 dimS(Y;)9 2*, for any p-regular element
g € S,, where S(Y;) is the space of g-invariant vectors of S (Yy). For
g =1, the series is simply Y, ., dim S(Y%) z*.

Assume now that m < p and let Z(m) be the set of complex numbers
z of the form z = (3, <, <,,, i)™, where (1, ... {m are m distinct p-roots
of 1 such that H1<i<m~§,~_= 1.

Theorem 14.7: Assume Y is a m-small Young diagram. Then
X;/(z) s a rational function with simple poles. More precisely, we have:

Y () = ag
Xy (2) = Dzez(m) Tz
for some ag € C.

Proof: By restriction, each Sy, {mr-module S(Y}) can be viewed as
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an Sp-module. Thus denote by [S(Y%)] its image in Ko(K'S,,) and set
xY (2) = 350 [S(Yr)] 2. As g is p-regular, its action on any S,-module
X is semisimple. Therefore the map X — dim X9 induces a linear map
Ly : C® Ko(KS,) — C and we have x} (z) = Lg o x* (2). Therefore
it is enough to prove a similar statement for the Ko(K S,,)-valued series
xY (2), namely x¥ (z) = ZmEZ(m) 722, for some a € C® Ko(KS,).

As before, let M be an auxiliary vector space of dimension m. Set
G' = SL(M), M' = M®", N' = M®™ and let X\’ be the restriction
of A(Y) to the group H’ of diagonal matrices of G’. The restriction
to H' of the weights A(Y%) are all equal to X'. Note also that X is in
the fundamental alcove C° of G’. Moreover the commutant of the G'-
module M’ is again ¢(K S,,) and the G’-modules M’ and N’ are tilting.
Therefore, we can apply Theorem 11.4 to the group G’ and to its tilting
modules M’ and N'.

We claim that Z(N’) = Z(m). It is clear that Z'/? consists of
conjugacy classes of A € G’ with m distinct eigenvalues &1, ..., &, such
that ], ;«,,& =1 and & = E;’ for any i, j. Therefore we can write
& = CC;, “where ¢{™ = 1 and where the (i,...,{, are m distinct p-
roots of 1 with [];,<,, ¢ = 1. For such a matrix A, we have ch N'(A)

= (Xicicm &)™ = (Xi<icm &)™, what proves Z(N') = Z(m).
It follows from Theorem 11.4 that x¥ (2) =3¢ Z(m) Toss, for some
ad € CR Ko(KS,). QE.D.

Remarks: We can consider similar series x};(z) by using representa-
tions over a field of characteristic zero. However, these series are usually
not rational. Let Y be a m-small Young diagram of degree n, and for any
k denote by Sc(Y:) be the simple CS,, 4k associated with the Young
diagram Yi. When k — oo, the space S(Y}) is very small compared to
its caracteristic zero counterpart Sc(Yy). Indeed we have the following
asymptotic estimates for k — oc:

dim Sc(Yy) ~ C k=*m*™ and dim S(Y}) ~ €’ |S0mr/e|km

sinw/p
for some positive constants C, C’, «. The first estimate is an easy corol-
lary of the hook formula. The second estimate is based on the fact that

(Sf;n£7{ 7p)m is the pole of biggest modulus of the rational series x¥ (z),
what follows from Theorem 14.7. Similar generating functions have been
considered by Erdmann for m = 2 see [E]. It turns out that for m = 2,

the series x} (z) are rational for any Y12,

12E.g. this follows from the fact that any tilting module for SL(2) is outside
a cofinite tilting ideal. It seems unlikely that the series x;,(z) is rational for
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Until the end of the section, we will use the following new hypothe-
ses: we fix a p-regular Young diagram Y of degree n and M is a vec-
tor space of arbitrary dimension m. A partition of n is a sequence
a = (ay,...,ax) of positive integers with Zlgjgk a; = n. For such a
partition a, the group Sy = ng i<k Sa, is viewed as a subgroup of S,
as usual. Following Kleshchev’s terminology [K12], S(Y) is called com-
pletely splittable if it is semisimple as a K Sy-module for any partition a
of n.

Lemma 14.8: Assume that dim T (Y) is not divisible by p, for
some wvector space M. Then S(Y') is completely splittable.

Proof: Note that dim M > htY, otherwise Tp,(Y") would be zero.
Let a be any partition of n. Set M; = M®% for any j. By Theorem
14.1, S,, generates the commutant of the tilting G-module M;. By
definition, S(Y) = T (®1<j<k M;). Therefore by Proposition 11.2, the
Sa-module S(Y) is semisimple. Q.E.D.

Whenever Y is m-small for some m < p, dim T/ (Y) is not divisible
by p by Lemma 10.4. Thus Lemma 14.6 provides a simple proof of the
following Kleshchev’s theorem:

Theorem 14.9: (Kleshchev [K11][K12])
If Y is m-small for some m < p, then S(Y') is completely splittable.

Remark: The m-small Young diagrams are considered in [We] in
the context of Hecke representations.

15. Comparison with the quantum case. Let G be a reductive
group. Denote by U,, be the corresponding quantum group at a p-root of
unity 5. Tilting modules are defined as well for quantum groups. Denote
by T,(A) the tilting U,-module with highest weight A. Although ch T'())
is still unknown, the character of tilting modules T;,(A) has been deter-
mined by Soergel [So2][So3]. Therefore one should try to compare the
tilting module T'(X\) with its quantum analog. It follows from Theorem
16.4 that ExtE(T()),T(\)) = 0 for k = 1, 2. By deformation theory,
the obstruction of a lifting lies in the Fxt2-group and its unicity in the
Ext'-group. Therefore T(\) can be uniquely lifted to a representation
of Uy, and chT(A\) — chT,()\) is a non-negative linear combination of
chT,(p) for some p < A (see [Je]). The following two conjectures are
closely related:

Conjecture 15.1: (Andersen [AT7]) If (A + p)(ho) < p?, then:

all Y whenm > 3
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chT(A) = chTy(A).

Conjecture 15.2: (G = GL(V)) Let Y be a Young diagram with
degY < p?, and set A = A\(Y). Then chT()\) = chT,()).

Let H,(n) be the Hecke C-algebra of S,, evaluated at 5. The simple
modules H,(n)-modules are denoted by S,(Y), where Y is a p-regular
Young diagram of degree n, see [DJ]. The character of S, (Y) are de-
termined [KL][Ar][Gr]. Therefore it is interesting to know when the
characters of S(Y) and S, (Y) are equal, or equivalently when their di-
mensions are the same.

Conjecture 15.3: (James) Let Y be a Young diagram with degY <
p?. Then dim S(Y) = dim S, ().

Andersen Conjecture implies Lustig Conjecture [A7]. Using the
methods of [M3] it is easy to show that Conjecture 15.2 is indeed equiv-
alent to James Conjecture: they are equivalent to the fact that M®"
decomposes in the same way as its quantum analog, whenever n < p2,
for any vector space M. James conjecture cannot hold for n > p?. It
should be noted that the condition n < p? is exactly the validity do-
main of Broué’s conjecture: for n < p?, the p-Sylow subgroups of S,
are abelian. These conjectures are unstable, i.e. for a given p they
concern only Young diagrams of bounded size. Based on the clever
S L(3)-computations of [Je], we try the following stable conjecture:

Conjecture 15.4 Let m be an integer with 3 < m < p. LetY =
(m1,...,mp) be a Young diagram such that m; —m; +.(i— 1) < p or
My ~ My + (M — 1) < p, for any 1 <i < m. Then:

dim S(Y) = dim S, (Y).

For m = 3, the conjecture holds [JM]:

Theorem 15.4: ([JM] Assume p odd. LetY = (ml,mQ,M3) be a
Young diagram such that my —ms < p—2 or mg — mg < p—2. Then:
dim S(Y) = dim S,(Y).

16. Appendix: Cohomological criterion for good filtrations.
In section 4, we try to provide the most elementary approach of good
filtrations. Especially, we only use the the simplest part of the van-
ishing theorem of Cline, Parshall, Scott and van der Kallen (Theorem
A4) to prove Ddnkin Criterion 4.7. In this appendix, we will connect
the approach of Section 4 with the usual cohomological description of
good filtrations [FP]. For a weight u € QT, we set ht(u) = >, ;m;
if u = ) ,c;msa;. This is sometimes called the height of u, but this
terminology should not be confused with the height of Young diagrams.
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Lemma 16.1: Let M be a B-module and k > 0. If v is a weight of
H*(U, M) we have v < p and ht(u — v) > k for some weight p of M.

Proof: Any B-module M admits an injective envelope I(M): we
have M C I(M), H*(U, M) = H°(U,I(M)) and I(M) is injective. Set
Z = I(M)/M. For any weight v of Z, we have v < u for some weight
u of M. Choose an injective resolution of M: 0 - M — Iy — I ...,
such that Iy = I(M), I; = I(Z) and I} is the injective envelope of the
cokernel of Iy_o — Iy_; for any k£ > 2. By induction, one proves that
for any weight v of I we have v < p and ht(p—v) > k , for some weight
p of M. Any weight v of H*(U, M) is a weight of I; and the lemma
follows. Q.E.D.

Recall that D : Mod(B) — Mod(G) is the induction functor from
B to G. The functor D is left exact and we denote by D* its derived
functor. By definition, we have DM = D°M = H°(G/B,L(M)). The
next two lemmas are well-known and they fit in the framework of Zuck-
erman’s functors.

Lemma 16.2: For any B-module M, we have:
D*M = H*(G/B, L(M)), for all k > 0.

Proof: As the functor £ is exact, it is enough to prove that H*(G/B,
L(M)) =0, for all k > 0 and any injective B-module M. As any inde-
composable injective module is a direct summand of K[B], we only have
to prove the claim for M = K[B|. Let 7 : G — G/B be the natural
projection. We have £L(K[B]) = 7,.Og. As the variety G and the mor-
phism 7 are affine, we have R'1,Og = 0 and H(G,0g) = 0 for i > 0
by Serre’s vanishing theorem. Thus the vanishing of H*(G/B, L(K[B]))
follows from Leray’s spectral sequence. Q.E.D.

Lemma 16.3: Let M be a G-module. We have:
Exti,(A(N), M) = H{(U, M), for any X € Pt.

Proof: Let N be a B-module. We have H°(G,DN) = H°(B, N),
thus the functor H°(B,—) is the composite of the functors D and
HY(G,-). Clearly D maps injective B-modules to injective G-modules.
So there is a spectral sequence converging to H*(B, N) whose E3*-term
is H*(G,D*N). ,

Assume now that N = M®K (—)). Then D* N = M®@D* K(-)\) =
0 for k£ > 0 by Lemma 16.2 and Kempf’s vanishing theorem 3.2. Thus the
previous spectral sequence degenerates, and we have H*(G, V(wo)) ®
M) = H¥(B, N) for all k. Thus we get:

HRU, M)\ = H*(B,M ® K(-)))
= H*(G, V(woX) ® M)
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= Ext&(A(N), M). Q.E.D.

Theorem 16.4: (Cline-Parshall-Scott-van der Kallen vanishing
Theorem [CPSV]) For any A\, p € PT, we have:
Extk,(AN), V() =0, for all k > 0.

Proof: Let A\, u € Pt. We claim that H*(G,V(\) ® V(u)) = 0
for any £ > 0. By symmetry of the roles of A and u, we can assume
—wop £ A. By'the Lemma 16.3, H*(G, V(A\)®@V (1)) = H*(U, V(A\))wop
and this last group is 0 by Lemma 16.1. Therefore Extf(A(M), V(u)) =
H*(G,V(~wo)) ® V() = 0. Q.E.D.

For any G-module M, A € P* and k > 0, set h*(M, \) = dim H*(U,
M)y. For k = 0,1, these numbers have been defined in Section 4, and
by Lemma 16.3 the two definitions agree. For a given G-module M,
almost all numbers h*(M, \) are zero (see Lemma A.1) and all of them
are < o0.

Theorem 16.5: Let M be a G-module, and let n > 0.

(i) If n is even, we have ch M < 3> 5 (=1)¥h*(M, ) ch V(N),
AEP k<n

(i) if n is odd, we have ch M > 3 3" (=1)kh*¥(M,)) ch V()).
AeP+ k<n

Proof: By induction on n. It follows from the proof of Proposition
4.5 that there exists a short exact sequence 0 - M — X — N — 0,
where X has a good filtration. From the vanishing theorem 16.4, we get:

hO(Mv )‘) - hl(My )‘) = hO(Xv )‘) - hO(N7 >‘)7

hE(M, ) = h*~1(N, N), for k > 2.
By Lemma 4.2, we have ch X = 3, . p1 h%(X, A) ch V(}) and, by induc-
tion hypothesis, 3y cp+ 2 k<n (—=1)* R¥(N, ) ch V()) can be compared
with ch N. The inequality involving ch M follows. Q.E.D.

Following Friedlander and Parshall [FP], we say that a G-module
M has good dimension < m if there exists a resolution 0 - M — Xy —
... Xm — 0, where all X; are (finite dimensional) G-modules with a
good filtration.

Corollary 16.6: Let m > 0 and let M be a G-module. The follow-
ing assertions are equivalent:
(i) chM = 3 3 (=1)*R¥(M,X) chV(}),
AEP+ k<m
(%)) M has good dimension < m,
(#it) H™ (U, M) = 0, for any A € P+.

Proof: The equivalence (i)<=(iii) follows from Theorem 16.5 (apply
it for n = m and for n = m+1). Using a short exact sequence 0 — M —
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X — N — 0, where X has a good filtration, the equivalence (i)<=>(ii)
follows also by induction over m. Q.E.D.
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