










198 0. Mathieu 

The last proof is based on the idea of [MP2]. See also [MP2] for 
more complicated examples of combinatorial weight multiplicity formu­
las in the category O of gl(n, C), which can be deduced from Theorem 
12.4. Indeed the combinatorics is based on semi-infinite Young diagrams. 

14. Application of tilting modules to the symmetric group 
Sn. In this section, we will investigate the representation of the sym­
metric group Sn. Let M be an auxiliary vector space of dimension m 
and set G = GL(M). Denote by¢ the natural action of Sn on M®n. 
By Lemma 12.1, the G-module M®n is tilting. As in Section 12, we will 
use that cp(KSn) is the commutant of the G-module M®n. This fact has 
been proved by Weyl in characteristic zero and it has been extended to 
finite characteristics by de Concini and Procesi. See [dP] for the proof 
of the next result: 

Theorem 14.1: (de Concini and Procesi [dP]) We have: 
Enda(M®n) = cp(KSn)-

We can also describe a Young diagram Y by a finite sequence 
( mf1 , m~2 , ••• ) by the following rule: m 1 , m 2 ... are the various lenghts 
of the non-empty lines of Y and ak is the number of lines of Y of lenght 
mk. Therefore m 1 , m2 . . . are disctint positive integers. We do not re­
quire that the sequence (m1 , m 2 ... ) is ordered, therefore (m~ 1 , m~2 , ••• ) 

is defined up to permutation. For example, the Young diagram defined 
by the sequence (32 , 11 ) is: 

A Young diagram is called p-regular if ak < p for any k. It is clear 
that Y is p-regular if and only if the weight .X(Y .l) is restricted. This 
usual terminology conflicts with the notion of p-regular weights. An 
element g E Sn is p-regular if its order is not divible by p. 

Lemma 14.2: There is a natural bijection between the p-regular 
conjugacy classes of Sn and the p-regular Young diagrams of degree n. 

Proof: To any conjugacy class [g] of Sn, one associates a finite se­
quence ( m~ 1 , m~2 , ••• ) by the following rule: m 1 , m 2 . . . are the various 
lenghts of the cycles of g and ak is the number of cycles of [g] of lenght 
mk- Therefore, there is a bijection between: 

(i) all the p-regular conjugacy classes of Sn, and 
(ii) all the sequences ( m~1 , m~ 2 , ••• ) of degree n, with no parts mk 

divisible by p. 
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Any integer a 2 1 admits a p-adic expansion a = I:r>o brpr, 
where O ~ br < p for any r 2 0. For any one term sequence ~a, set 
'¢(ma) = (mb0 , (pm)b1 , (p2ml2 , ••• ). More precisely, we remove in the 
sequence the trivial parts (prmtr whenever br = 0. For an arbitrary se­
quence (m~1 , m~2 , ••• ), set 'lj;((m?, m?, ... )) = ('¢(m~1 ), '¢(m~2 ), ••• ). 

By unicity of the p-adic expansions, 'lj; establishes a bijections between 
(ii) and all the p-regular sequences of degree n. Therefore the lemma is 
proved. Q.E.D. 

As in section 12, we will identify any Young diagram Y of height 
~ m with a dominant polynomial weight of G. Define the Sn-modules: 
Sp(Y) = H 0 (U, M®n)y and S(Y) = Ty(M®n). Indeed Sp(Y) is the 
usual Specht module. The following statement is a tilting module version 
of the classical Schur correspondence, formulated by Green in [G]. 

Proposition 14.3: 
(i) The Sn -module Sp(Y) is independent of the dimension m of M 

(provided that m 2 htY; otherwise Sp(Y) = OJ. 
(ii) If Y is a p-regular and m 2 ht Y, S(Y) is a non-zero simple Sn 

module which is independent of m; otherwise S(Y) = 0. 
(iii) If dimM 2 n, then Y f--+ S(Y) is a bijection from the p-regular 

Young diagmms Y of degree n to the simple K Sn -modules. 
Proof: Under the proviso m 2 ht Y, the weight space (M®n)y is 

independent of m, and therefore Sp(Y) is also independent of the di­
mension of M, what proves the first assertion. In order to prove the 
last two assertions, we can assume that m 2 n. By Lemma 11.l(i) and 
Theorem 14.1, the Sn-module S(Y) is simple whenever it is not zero. 

We claim that S(Y) = 0 whenever Y is not p-regular. Set V = Kn, 
M = l\(V 0 M) and E = I:i::;k::=;n Ei. We can identify M®n with the 
E-weight space of the GL(V)-module M. By Lemma 12.3, S(Y) is the 
E-weight space of the simple GL(V)-module Lv(YJ_). The weight YJ_ is 
not restricted, therefore by Steinberg tensor product Theorem 2.4, E is 
not a weight of Lv(YJ_). Thus S(Y) = 0 and the claim is proved. 

Thanks to the additional assumption m 2 n, M®n contains the 
regular representation of Sn. Thus any simple Sn-module occurs as a 
subquotient of M®n. Therefore any Sn-module is isomorphic to S(Y), 
for some p-regular Young diagram Y of degree n. By Brauer's theory 
the number of simple Sn-module equals the number of p-regular con­
jugacy classes in Sn. By Lemma 14.2, this number equals the number 
of p-regular Young diagrams Y of degree n. Therefore Y f--+ S(Y) is a 
bijection from the p-regular Young diagrams Y of degree n to the simple 
KSn-modules. In particular S(Y) -IO if Y is p-regular. Q.E.D. 
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Let Y be a Young diagram. Its rim is the set of boxes of Y of 
position (i,j) such that there are no boxes in position (i + 1,j + 1). For 
example the rim of the diagram Y below is the set indexed boxes: 

y~ 

A p-rim of Y is a connected piece Z of the rim of Y of size p such that 
Y \ Z is again a Young diagram. A p-core is a Young diagram Y which 
does not contain any p-rims. In the previous example the p-rims of Y 
for p = 2, 3, 5 are: 

There are no 7-rims, therefore Y is a 7-core. 

3 
5 

Starting with a Young 
diagram Y, we can remove successively p-rims, until we get a p-core Y. 
Although there are usually more than one way to remove p-rims from 
Y, the p-core Y depends only on Y. Therefore Y is called the p-core 
of Y. In our previous example, the 3-core of Y is the one box Young 
diagram. We show below two different ways to obtain the 3-core Y of 
Y by successively removing 3-rims (at each step, the removed 3-rim is 
indicated by the crossed boxes). 

~-Ri ~, ~~~ □ 
r [DXIXIXI [TI] • ----,xx ------, ------,l!I!]------, 
X 

Let Y be a Young diagram Y = ( m 1 , m 2 , ... ) of height S m. Denote 
by Cm(Y) the set of all Young diagram Y' of height s m with the same 
degree and p-core than Y. Set Em(Y) = (-1)1=(Y), where lm(Y) = 

I:i:s;i<j:S::m [(mi -mj + j-i)/p], and where [x] denotes the integral part 
of any x E Q. Assume now m < p. The Young diagram Y is called 
m-small if and only if m 1 - mm S p - m. It should be noted that 
the Specht modules are the reductions modulo p of the simple CSn­
modules. Thus their Brauer characters are well-understood. Therefore 
the next statement describes the Brauer character of the simple modular 
representations S(Y) for any m-small Young diagram Y. 
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Theorem 14.4: Let m < p and let Y be a m-small Young diagram 
Y. Then in Ko(Sn), we have: 

[S(Y)] = L Ern(Y') [Sp(Y')]. 
Y'ECm(Y) 

Proof: The following combinatorial observations are easy: 
(i) As Y is m-small, the weight .X = .X(Y) is in the fundamental 

alcove c0 of G. 
(ii) The Young diagrams YE Crn(Y) correspond exactly to all domi­

nant and polynomial weights of the form w(.X+p)-p for some w E Waff• 
Moreover lrn(Y) is the lenght of wand therefore Ern(Y) = E(w). 
Hence the theorem follows from Proposition 11.3 (ii).Q.E.D. 

It is also possible to use Proposition 11.3 (iii) to write [S(Y)] as 
a combination of induced modules. However the index set is an affine 
Weyl group (instead of a Weyl group), therefore it is not possible to 
express it in terms of a determinant as in characteristic zero. However, 
one can derive a combinatorial formula for dimS(Y). Let Y be the 
oriented graph whose vertices are the Young diagrams and whose arrows 
are Y ---+ Y' if Y' is obtained by adding one box to Y. For example, 
there are three arrows originating in the Young diagram (3, 22), as shown 
below ( the cross indicates the added box): 

~~~ ~~w ~~w 
Form< p, let Yrn be the set of all m-small Young diagrams. 

Theorem 14.5: ([M3]) Let YE Yrn, Then the dimension of S(Y) 
is the number of oriented paths from 0 to Y entirely contained in Yrn· 

For the proof, see [M3]. 

Let E be the signature representation of Sn, Since the simple rep­
resentations of Sn are indexed by the p-regular Young diagram of de­
gree n, the tensor product by E induces an involution Y ~ YE on the 
set of p-regular Young diagrams, namely we have S(YE) = S(Y) ® E. 

In characteristic zero, this involution is simply the usual transposition 
Y ~ Y J_. However, in characteristic p, the involution Y i--t YE is given 
by a more complicated rule, which has been conjectured by Mullineux 
and proved by Kleshchev [Kll]. In a unpublished work, Rouquier used 
the Mullineux algorithm, to prove that the set of small Young diagramms 
is stable by this involution. However, this can be proved directly. 

Proposition 14.6: Let m < p. For any Y E Yrn, YE belongs to 
Yv-rn· Moreover the map Y ~ YE induces a bijectionfromYrn to Yv-rn• 
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Proof: For any Sn module X, denote by xx : Sn _____, K be its or­
dinary character, namely xx(g) = Trglx for any g E Sn, We have 
xx = I:Y [X : S(Y)] Xs(Y), where Y runs over the set of p-regular 
Young diagrams of degree n and where [X : S(Y)] denotes the multiplic­
ity of S(Y) in a composition series of X. As the characters Xs(Y) are lin­
early independent, the residues modulo p of the multiplicities [X: S(Y)] 
are completely determined by xx. 

Let M a vector space of dimension m, let N be a vector space of 
dimension m - p and let Y be a p-regular Young diagram of degree n. 
We have XM®n = I:Y dimTM(Y) Xs(Y)· It follows from the lemmas 
10.4 and 12.4 that: 

(i) [M®n : S(Y)] -=fa O modulo p if and only if Y ism-small. 
For g E Sn denotes by L(g) be the number of cycles of g. We have 

XM&n(g) = mL(g), XN&n(g) = (-m)L(g) and Xc(g) = (-l)n+L(g)_ We 

deduce that XM®n = ( -1 rxcXN®n. It follows that: 
(ii) [M®n: S(Y)] = (-l)n[N®n: S(r)] modulo p. 

Thus the proposition follows from the assertions (i) and (ii). Q.E.D. 

In view of the next statement, fix a Young diagram Y of degree n 
and of height ::; m. For any k 2'. 0, denote by Yk the Young diagram 
obtained by adding a rectangle of height m and length k on the left side 
of Y. Here is an example with m = 3 (the added rectangle corresponds 
with the crossed boxes): 

Y~Y, ~ Y, ff Y, l~l~I I 1 

Note that Yk is a Young diagram ( even when ht Y < m) and deg Yk = 
n+km. Consider Sn as a subgroup of Sn+km as usual; henceforth S(Yk) 
can be viewed as Sn-module by restriction. Therefore we can define the 
formal series xr(z) = I:k;:,:o dimS(Yk)g zk, for any p-regular element 

g E Sn, where S(Yk)g is the space of g-invariant vectors of S(Yk), For 
g = 1, the series is simply I:k;:o:o dimS(Yk) zk. 

Assume now that m < p and let Z(m) be the set of complex numbers 
x of the form x = (I:1::;i:=;m (i)m, where (1, ... (m are m distinct p-roots 

of 1 such that fli::;i::;m ~i = 1. 

Theorem 14. 7: Assume Y is a m-small Young diagram. Then 
xr(z) is a rational function with simple poles. More precisely, we have: 

Y( ) _ '°' a;, Xg Z - LnEZ(m) 1-xz' 

for some ai EC. 

Proof: By restriction, each Sn+mk-module S(Yk) can be viewed as 
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an Sn-module. Thus denote by [S(Yk)] its image in K 0 (KSn) and set 
xy (z) = I:k~o [S(Yk)] zk. As g is p-regular, its action on any Sn-module 
X is semisimple. Therefore the map X f----+ dim Xg induces a linear map 
Lg: C ® Ko(KSn)---; C and we have xr(z) = Lg o xY(z). Therefore 
it is enough to prove a similar statement for the K 0 (KSn)-valued series 

Xy (z), namely Xy (z) = I:xEZ(m) 1_'."_;,z, for some a~ E C ® Ko(K Sn), 
As before, let M be an auxiliary vector space of dimension m. Set 

G' = SL(M), M' = M®n, N' = M®m and let >..' be the restriction 
of >..(Y) to the group H' of diagonal matrices of G'. The restriction 
to H' of the weights >..(Yk) are all equal to >..'. Note also that >..' is in 
the fundamental alcove C 0 of G'. Moreover the commutant of the G' -
module M' is again cp(KSn) and the G'-modules M' and N' are tilting. 
Therefore, we can apply Theorem 11.4 to the group G' and to its tilting 
modules M' and N'. 

We claim that Z(N') = Z(m). It is clear that Z 1IP consists of 
conjugacy classes of A E G' with m distinct eigenvalues 6, ... , ~m such 
that TI1<i<m ~i = 1 and ~f = ~r for any i, j. Therefore we can write 
~i = (.(i, where (m = 1 and where the (1, ... , (m are m distinct p­

roots of 1 with [11:'oi:'om (i = 1. For such a matrix A, we have chN'(A) 

= (I:1:'oi:'om ~i)m = (I:1:'oi:'om (ir, what proves Z(N') = Z(m). 

It follows from Theorem 11.4 that XY (z) = I:xEZ(m) 1_'."_~z, for some 

a~ EC® Ko(KSn)- Q.E.D. 

Remarks: We can consider similar series xr (z) by using representa­
tions over a field of characteristic zero. However, these series are usually 
not rational. Let Y beam-small Young diagram of degree n, and for any 
k denote by Sc(Yk) be the simple CSn+mk associated with the Young 
diagram Yk. When k---; oo, the space S(Yk) is very small compared to 
its caracteristic zero counterpart Sc(Yk). Indeed we have the following 
asymptotic estimates for k ---; oo: 

dimSc(Yk) ~ C k-amkm, and dimS(Yk) ~ C' j8~~n':;~Pjkm, 

for some positive constants C, C', a. The first estimate is an easy corol­
lary of the hook formula. The second estimate is based on the fact that 

( 8~!n:;;~P)m is the pole of biggest modulus of the rational series xy (z), 

what follows from Theorem 14. 7. Similar generating functions have been 
considered by Erdmann for m = 2 see [E]. It turns out that for m = 2, 
the series xr ( z) are rational for any Y 12 . 

12E.g. this follows from the fact that any tilting module for SL(2) is outside 
a cofinite tilting ideal. It seems unlikely that the series xr ( z) is rational for 
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Until the end of the section, we will use the following new hypothe­
ses: we fix a p-regular Young diagram Y of degree n and M is a vec­
tor space of arbitrary dimension m. A partition of n is a sequence 
a = (a1, ... , ak) of positive integers with I:i::;J:Sk aj = n. For such a 

partition a, the group Sa= IL::;J::;k Sa1 is viewed as a subgroup of Sn 

as usual. Following Kleshchev's terminology [Kl2], S(Y) is called com­
pletely splittable if it is semisimple as a K Sa-module for any partition a 
of n. 

Lemma 14.8: Assume that dimTM(Y) is not divisible by p, for 
some vector space M. Then S(Y) is completely splittable. 

Proof: Note that dimM 2: ht Y, otherwise TM(Y) would be zero. 
Let a be any partition of n. Set Mj = M®a1 for any j. By Theorem 
14.1, Sa1 generates the commutant of the tilting G-module Mj. By 

definition, S(Y) = TP(<Z>i:::;J:::;k MJ)- Therefore by Proposition 11.2, the 
Sa-module S(Y) is semisimple. Q.E.D. 

Whenever Y is m-small for some m < p, dim TM (Y) is not divisible 
by p by Lemma 10.4. Thus Lemma 14.6 provides a simple proof of the 
following Kleshchev's theorem: 

Theorem 14.9: (Kleshchev [Klll[Kl2]) 
If Y is m-small for some m < p, then S(Y) is completely splittable. 

Remark: The m-small Young diagrams are considered in [We] in 
the context of Hecke representations. 

15. Comparison with the quantum case. Let G be a reductive 
group. Denote by U,,, be the corresponding quantum group at a p-root of 
unity T/· Tilting modules are defined as well for quantum groups. Denote 
by T11 (>.) the tilting U,,,-module with highest weight>.. Although ch T(>.) 
is still unknown, the character of tilting modules T,,,(>.) has been deter­
mined by Soergel [So2] [So3]. Therefore one should try to compare the 
tilting module T(>.) with its quantum analog. It follows from Theorem 
16.4 that Ext'c;(T(>.), T(>.)) = 0 fork = 1, 2. By deformation theory, 
the obstruction of a lifting lies in the Ext2-group and its unicity in the 
Ext1-group. Therefore T(>.) can be uniquely lifted to a representation 
of U,,,, and chT(>.) - chT,,,(>.) is a non-negative linear combination of 
chT,,,(µ) for someµ<>. (see [Je]). The following two conjectures are 
closely related: 

Conjecture 15.1: (Andersen [A7]) If(>.+ p)(ho) < p 2 , then: 

all Y when m > 3 
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chT(.X) = chT'l(.X). 

Conjecture 15.2: (G = GL(V)) Let Y be a Young diagram with 
degY < p2 , and set .X = .X(Y). Then chT(.X) = chT'l(.X). 

Let Hn(TJ) be the Hecke C-algebra of Sn evaluated at ry. The simple 
modules Hn(TJ)-modules are denoted by S'1(Y), where Y is a p-regular 
Young diagram of degree n, see [DJ]. The character of S'1(Y) are de­
termined [KL][Arl[Gr]. Therefore it is interesting to know when the 
characters of S(Y) and S'l(Y) are equal, or equivalently when their di­
mensions are the same. 

Conjecture 15.3: (James) Let Y be a Young diagram with deg Y < 
p2 • Then dim S (Y) = dim S') (Y). 

Andersen Conjecture implies Lustig Conjecture [A 7]. Using the 
methods of [M3] it is easy to show that Conjecture 15.2 is indeed equiv­
alent to James Conjecture: they are equivalent to the fact that M®n 

decomposes in the same way as its quantum analog, whenever n < p2 , 

for any vector space M. James conjecture cannot hold for n :2'. p2 • It 
should be noted that the condition n < p2 is exactly the validity do­
main of Broue's conjecture: for n < p2 , the p-Sylow subgroups of Sn 
are abelian. These conjectmes are unstable, i.e. for a given p they 
concern only Young diagrams of bounded size. Based on the clever 
SL(3)-computations of [Je], we try the following stable conjecture: 

Conjecture 15.4 Let m be an integer with 3 :::; m :::; p. Let Y = 
(m1, ... , mm) be a Young diagram such that m 1 - mi +.(i - 1) < p or 
mi - mm + ( m - i) < p, for any 1 :S i :S m. Then: 

dim S (Y) = dim S'l (Y). 

For m = 3, the conjecture holds [JM]: 

Theorem 15.4: ([JM] Assume p odd. Let Y = (m1, m2, m3) be a 
Young diagram such that m 1 - m 2 :S p - 2 or m2 - m3 :S p - 2. Then: 

dim S (Y) = dim S'l (Y). 

16. Appendix: Cohomological criterion for good filtrations. 
In section 4, we try to provide the most elementary approach of good 
filtrations. Especially, we only use the the simplest part of the van­
ishing theorem of Cline, Parshall, Scott and van der Kallen (Theorem 
A4) to prove Donkin Criterion 4.7. In this appendix, we will connect 
the approach of Section 4 with the usual cohomological description of 
good filtrations [FP]. For a weight µ E Q+, we set ht(µ) = L-iEJ mi 

if µ = L-iEI miai. This is sometimes called the height of µ, but this 
terminology should not be confused with the height of Young diagrams. 
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Lemma 16.1: Let M be a B-module and k 2 0. If v is a weight of 
Hk (U, M) we have v :S µ and ht(µ - v) 2 k for some weight µ of M. 

Proof: Any B-module M admits an injective envelope I(M): we 
have Mc I(M), H 0 (U, M) = H 0 (U, I(M)) and I(M) is injective. Set 
Z = I(M)/M. For any weight v of Z, we have v <µfor some weight 
µ of M. Choose an injective resolution of M: 0 -+ M -+ Io -+ Ii ... , 
such that Io = I(M), I 1 = I(Z) and h is the injective envelope of the 
cokernel of h-2 -+ h-i for any k 2 2. By induction, one proves that 
for any weight v of h we have v :S µ and ht(µ - v) 2 k , for some weight 
µ of M. Any weight v of Hk(U, M) is a weight of h and the lemma 
follows. Q.E.D. 

Recall that D: Mod(B) -+ Mod(G) is the induction functor from 
B to G. The functor D is left exact and we denote by D* its derived 
functor. By definition, we have DM = D 0 M = H 0 (G/B,.C(M)). The 
next two lemmas are well-known and they fit in the framework of Zuck­
erman's functors. 

Lemma 16.2: For any B-module M, we have: 
DkM = Hk(G/B,.C(M)), for all k 2 0. 

Proof: As the functor ,C is exact, it is enough to prove that Hk ( G / B, 
.C(M)) = 0, for all k > 0 and any injective B-module M. As any inde­
composable injective module is a direct summand of K[B], we only have 
to prove the claim for M = K[B]. Let 7r : G -+ G / B be the natural 
projection. We have .C(K[B]) = n:*Oc. As the variety G and the mor­
phism n: are affine, we have Rin:*Oc = 0 and Hi(G, 0 0 ) = 0 for i > 0 
by Serre's vanishing theorem. Thus the vanishing of Hi(G/B,.C(K[B])) 
follows from Leray's spectral sequence. Q.E.D. 

Lemma 16.3: Let M be a G-module. We have: 
Ext~(~(>-.), M) = Hi(U, M)>.., for any,\ E p+. 

Proof: Let N be a B-module. We have H 0 (G, DN) = H 0 (B, N), 
thus the functor H 0 (B, - ) is the composite of the functors D and 
H 0 (G, -). Clearly D maps injective B-modules to injective G-modules. 
So there is a spectral sequence converging to H* ( B, N) whose E:;*-term 
is H*(G, D* N). 

Assume now that N = M@K(->-.). Then Dk N = M@Dk K(-,\) = 
0 for k > 0 by Lemma 16.2 and Kempf's vanishing theorem 3.2. Thus the 
previous spectral sequence degenerates, and we have Hk(G, 'v(w0 ,\) 0 
M) = Hk(B, N) for all k. Thus we get: 
Hk(U, M)>. = Hk(B, M 0 K(->-.)) 

= Hk(G, 'v(wo>-.) 0 M) 
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= Ext~(A(A), M). Q.E.D. 

Theorem 16.4: (Cline-Parshall-Scott-van der Kallen vanishing 
Theorem [CPSV]) For any A, µ E p+, we have: 

Ext~(A(A), "v'(µ)) = 0, for all k > 0. 

Proof: Let A,µ E p+_ We claim that Hk(G, "v'(A)@ "v'(µ)) = 0 
for any k > 0. By symmetry of the roles of A and µ, we can assume 
-woµ f:_ A. By"the Lemma 16.3, Hk(G, "v'(A)@"v'(µ)) = Hk(U, "v'(A))w0 µ 

and this last group is Oby Lemma 16.1. Therefore Ext~(A(A), "v'(µ)) = 
Hk(G, "v'(-w0 A) 0 "v'(µ)) = 0. Q.E.D. 

For any G-module M, A E p+ and k ~ 0, set hk(M, A)= dimHk(U, 
M)>.- For k = 0, l, these numbers have been defined in Section 4, and 
by Lemma 16.3 the two definitions agree. For a given G-module M, 
almost all numbers hk(M, A) are zero (see Lemma A.l) and all of them 
are< oo. 

Theorem 16.5: Let M be a G-module, and let n ~ 0. 
(i) Ifn is even, we have chM::::; L L (-l)khk(M,A) ch"v'(A), 

>.EP+ k~n 
(ii) ifn is odd, we have chM ~ L L (-l)k hk(M,A) ch "v'(A). 

>.EP+ k~n 

Proof: By induction on n. It follows from the proof of Proposition 
4.5 that there exists a short exact sequence O -+ M -+ X -+ N -+ 0, 
where X has a good filtration. From the vanishing theorem 16.4, we get: 

h0 (M, A) - h 1 (M, A)= h0 (X, A) - h0 (N, A), 
hk(M, A) = hk- 1 (N, A), fork~ 2. 

By Lemma 4.2, we have chX = L>.EP+ h0 (X, A) ch "v'(A) and, by induc­

tion hypothesis, L>.EP+ Lk<n (-l)k hk(N, A) ch "v'(A) can be compared 
with chN. The inequality iii°volving chM follows. Q.E.D. 

Following Friedlander and Parshall [FP], we say that a G-module 
M has good dimension :::; m if there exists a resolution O -+ M -+ X 0 -+ 

... Xm -+ 0, where all Xi are (finite dimensional) G-modules with a 
good filtration. 

Corollary 16.6: Let m ~ 0 and let M be a G-module. The follow­
ing assertions are equivalent: 

(i)chM= L L (-l)khk(M,A)ch"v'(A), 
>.EP+ k~m 

(ii) M has good dimension:::; m, 
(iii) Hm+ 1 (U,M)>. = 0, for any A E p+_ 

Proof: The equivalence (i)~(iii) follows from Theorem 16.5 ( apply 
it for n = m and for n = m + l). Using a short exact sequence O -+ M -+ 
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X ---• N ---• 0, where X has a good filtration, the equivalence (i){:::::::}(ii) 
follows also by induction over m. Q.E.D. 
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