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On A g for a Semisimple Lie Algebra g, as an Equi-
variant Module over the Symmetric Algebra S(g)

Bertram Kostant

81. Imtroduction

1.1. Let g be a complex semisimple Lie algebra and let C be the set of
all commutative Lie subalgebras a of g. If a € C and k = dima let [a] =
AFa. Regard [a] as a 1-dimensional subspace of AFg and let C C Ag
be the span of all [a] for all a € C. The exterior algebra Ag is a g-module
with respect to the extension, 8, of the adjoint representation, defined so
that 6(z) is a derivation for any z € g. It is obvious that C = Y7_, C¥ is
a graded g-submodule of Ag. Of course C* = 0 for k > ngpe; Where ngpe;
is the maximal dimension of an abelian Lie subalgebra of g. The paper
[4] initiated a study of the g-module C. It was motivated by a result of
Malcev giving the value of ngpe; for all complex simple Lie subalgebras.
For example, for the exceptional Lie algebras Gs, Fy, Fg, E7 and Ejg, the
value of ngper, respectively, is 3,9, 16,27 and 36. See [10].

One of the results in [4] is that C' (denoted by A in [4]) is a mul-
tiplicity free g-module. Let b be a Borel subalgebra of g. If = is an
index set for the set of all abelian ideals {a¢}, £ € E, of b, then the
irreducible components of C may also be indexed by Z. The irreducible
components, written as C¢, { € E, are characterized by the property
that [a;] is the highest weight space of C¢. One therefore has the unique

decomposition
C=>C¢
£eE

into irreducible components. Sometime after [4] was published, Dale
Peterson established the striking result that the cardinality of = was
2!. His ingenious proof, using the affine Weyl group, sets up a natural
bijection between = and the set of elements of order 2 (and the iden-
tity) in a maximal torus of a simply-connected Lie group G with Lie
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algebra g. An outline of Peterson’s theory is given in [8]. Peterson’s
result suggested to us that there should be some interesting connection
between the set of abelian ideals {as} of b and the theory of symmetric
spaces of inner type (i.e. where the corresponding Cartan involution is
an inner automorphism). By Harish-Chandra theory, the correspond-
ing inner real forms Gr of G are exactly the real forms which admit
discrete series representations. In fact we have obtained results giving
a construction of the abelian ideals a¢ in terms of the Cartan decom-
positions corresponding to such real forms. In addition we have set up
natural bijections between the families of discrete series for such groups
and the 2'-element set {a¢} of abelian ideals in b. In fact, using W.
Schmid’s construction of the discrete series (see [11]), we establish a di-
rect connection between, on the one hand, minimal “K-types” and the
cohomological degree in which the discrete series appears and, on the
other hand, the dimension of the corresponding abelian ideal {a¢} and
the highest weight of C¢.

A summary of the above results (for g simple) will appear in [8].
Another result, stated as Theorem 1.5 in [8], is a theorem on the role
C plays in the full structure of Ag. The present paper is an elaboration
and proof of this result.

In more detail let By be the Killing form on g and let By be its
natural extension to Ag. Identify g with its dual space g* so that Ag has
the structure of a cochain complex with respect to the usual, degree 1,
Lie algebra coboundary operator. The coboundary operator is denoted
by d. In particular dg C A?%g. The subspace dg is a g-submodule and,
as such, is equivalent to g itself. For any u € Ag, let +(u) be the operator
on Ag of interior product by u. Let A be the ideal in Ag generated by the
subspace dg. One of the main results in the present paper is the following
completely different characterization of the submodule C C Ag.

Theorem A. One has
C={ueAng]|idz)u=0,Vzeg}
Moreover Bpg is non-singular on C and
Ng=AsdC

is a Bag-orthogonal direct sum.

Fix a non-zero element € A”g. For any v € Ag, let v = +(v)p and

= {¥ | v € C}. Tt is immediate that C — C, v — ¥ is a g-module
1somorph1sm. An easy consequence of Theorem A is
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Theorem B. One has

C={veng|dcAv=0,Vz € g}

1.2. We will express Theorems A and B in a “functorial” way. Con-
sider the symmetric algebra S(g) over g. Since the elements of AZg
commute with each other, there exists a unique homomorphism

5:S(g) — Ag

where s(z) = dz for x € g. The homomorphism s of course defines the
structure of an S(g) module on Ag. Furthermore since s is a g-map with
respect to the adjoint action, this S(g)-module structure is equivariant
with respect to the adjoint action.

The homomorphism s arises in a number of contexts. For example,
if K is a compact Lie group corresponding to the compact form & of
g and P is a principal K-bundle, with connection, then s arises from
Chern-Weil theory if one considers the fiber instead of the base. Along
these lines the map s is the main tool used in Chevalley’s well known
construction of the “transgression” map, of invariants, S(g)? — (Ag)?.
See e.g. [2] and in more detail §6 in [7]. The map s also plays a key
role in the Lie algebra generalization of the Amitsur-Levitski theorem
as formulated in [6].

The functors Eactfs. ©) (C, Ag) clearly have the structure of g-modules.

Considering only the two extreme values of j, one has g-module maps

(a) Ewtg(g)((c, Ag) — Ag
and

Recalling the definitions of Ezt at these two extremes, Theorems A and
B immediately translate to

Theorem C. The map (a) defines a g-module isomorphism
E:ctg(g)((c, Ng) — C
and the map (b) restricts to a g-module isomorphism

C — Ext},)(C, Ag)
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1.3. An element u € Ag is called totally exact if it is the sum of
products of elements of the form dz, x € g. Let A be the image of s so
that A is the algebra of all totally exact elements in Ag. See Theorem
1.4 in [6] for a characterization of A. Some features of the g-module
structure of A were studied and used in [7]. See Theorem 69 in [7].
Of course the S(g)-module structure on Ag can be regarded as defining
an A-module structure on Ag. Consider the question of determining
generators for this module. A subspace C, C A g will be said to be
A-generating if C, is a graded g-submodule of Ag such that Ag = AAC,.

Theorem D. The subspace C is A-generating so that
ANg=AANC

Moreover it is minimal among all A-generating subspaces in Ag. In fact
if C, is any graded g-submodule of Ng, then C, is A-generating if and
only if C C C,.

Note that Theorem D implies that the set of elements of the form
yi A-- Ayg Adzy A--- Ndz,, spans Ag, where z;,y; € g and the {y;}
pairwise commute.

§2. V, and the “spin” of the adjoint representation

2.1. Let V be a complex finite dimensional vector space endowed
with some fixed non-singular symmetric bilinear form By. Let n =
dim V. The bilinear form By extends to a non-singular symmetric bi-
linear form B,y on the exterior algebra AV where APV is orthogonal
to ATV for p # q and for z;,y; €V, 4,5 =1,...,k,

(L A ANTry Y1 A - A yx) = det (z4,y5)

where (u, v) denotes the value of the Boy on u,v € AV. For any u € AV
let €(u) € End AV be the operator of left exterior multiplication by u
and let «(u) € End AV be the transpose of e(u) with respect to By .
Regarding AV as a Z-graded super commutative associative algebra, let
Der AV = 37"1, Deri AV be the Z-graded super Lie algebra of all
super derivations of AV. If y € V one has «(y) € Der~* AV and if also
z € V then

(2.1) e(z)i(y) + t(y)e(x) = (z,y)I

where I is the identity operator on AV.
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Let Lie SO(V) C EndV be the Lie algebra of all skew-symmetric
operators on V with respect to By. One defines a linear isomorphism
7 : A’V — Lie SO(V) so that if w € A2V and z € V, then 7(w)z =
—2u(z)w. (See §2.3 in [7].) The introduction of the factor —2 is mo-
tivated by Clifford algebra considerations.) Let w € A2V be arbitrary.
Proposition 2.1 below gives a formula for the commutator [e(w), ¢(w)].
In the special case where V is the complexified tangent space at a point
p of a Kahler manifold and w is the Kahler form at p one knows, e.g.
from Hodge theory, that the Lie algebra generated by e(w) and ¢(w) is
isomorphic to Lie SI(2,C). See Chapter 1 in Weil’s book [12] for for-
mulas involving the action of this Lie algebra on AV. See [9] for other
recent results in this area.

Returning to the general case, for any o € EndV let D, be the
unique element in Der® A V such that D,|V = a.

Proposition 2.1. Letw € A’V. Let a = —;7(w)?. Then

(2.2) [e(@), e(w)] = Do — tlzgl

Proof. We may assume n > 2. Let z,y € V be such that (z,z) =
(y,y) =1 and (z,y) = 0. It follows immediately from (2.1) that

[e(z Ay), ez Ay)l = e(z)u(z) + e(y)ely) — 1

However if W = Cx + Cy and 7 : V' — W is the By -orthogonal projec-
tion then one readily has that e(z)c(z) + e(y)i(y) = Dr. Thus

(2.3) [e(x Ay),clzAy)=Dr—1TI

Assume that w is such that 7(w) is a semisimple element of Lie SO(V).
Then from the normal form of such elements there exists a subset
{z1,..-,Zk,Y1,---,Yrt of an orthonormal basis of V' and scalars pu; €

C,i=1,...,ksuch that w = Zle w; where w; = p;x; Ay;. But clearly
[e(w;), l(w;)] =0 for i # j by (2.1) so that

k
[e(w), uw)] = Z[e(wi), Uws)]
But then

k k
(24) @), o) = (3 H2Dr) = (3 )
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by (2.3) where W; is the span of z; and y; and m; : V. — W; is the
orthogonal projection. Now let 3; = %T(wi). One notes that the 2-plane
W; is stable under 3; and that 3; vanishes on the By orthocomplement
of W; in V. Clearly then 3;8; = 0 for ¢ # j so that

k

2

o= —Zﬂi
i=1

But it is also immediate that —3? = pZm;. Hence

k
i=1

But since tr m; = 2 the equality (2.2) follows from (2.4) and (2.5). Thus
the proposition has been established for any w € U where U is the set
of all w € A%V such that 7(w) is semisimple. But then note that, by
continuity, (2.2) follows for all elements in A2V since U is Zariski open
and dense in A2V. QED

2.2. We now consider the case V = g where g is a complex semisim-
ple Lie algebra and By is the Killing form on g. Let h be a Cartan
subalgebra of g and let h* be the dual space to . Let | = dimb and
let A C b* be the set of roots for the pair {h,g}. Let b be a Borel
subalgebra of g which contains §. Let A, be the set of roots for {h, b}
sothat AL C A is a choice of a system of positive roots. Let AL C b*
be the semigroup of integral linear forms on § which are dominant with
respect to b. In particular p € Ay where, as usual, p = %Z¢€A+ P.
The restriction Byl induces a symmetric non-singular bilinear form on
h*. Its value on u,v € h* is denoted by (u,v). This bilinear form is
positive definite on the real span b of Ay and we put |v| = +/(v,v) for
v € bg.

For any A € A, let my : g — EndV) be some fixed irreducible
representation with highest weight A. Let U(g) be the enveloping algebra
of g. If M is a g-module with respect to a representation 7 of g we will
also use 7 to denote the extension U{g) — End M of the representation
to U(g). Let Q € CentU(g) be the Casimir element corresponding to
the Killing form By. Thus if {z;} and {y,;} are dual bases of g with
respect to By and 7 is a representation of g then

n

(2.6) (@) = 3 wle:)m(y)

i=1
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Let A € A and let 7 : g — End M be a finite dimensional represen-
tation. The representation 7 is said to be primary of type m if every
irreducible component of 7 is equivalent to m. One knows that 7 (Q)
is a scalar operator where the scalar is |\ + p|% — [p|2. It follows therefore
that if 7 is primary of type 7, then

(2.7) m(Q) = (IA+pl* — |p|*) I

where I here is the identity operator on M.

2.3. The adjoint representation of g on itself will be denoted by ad,.
Let
0:9— End ANg

be the representation of g on Ag defined so that (x) = Dgg, . for any
x € g. Identify g with its dual g* using the Killing form By. Then (Ag, d)
is a cochain complex with respect to the usual Lie algebra coboundary
operator d. We recall that explicitly,

[

(2.8) - Z e(x;)0(y;)

1

N

n
i=

using notation in (2.6). One readily establishes that d € Der! A g and
d? = 0. In particular

d:g— /\zg
and one notes that d is equivariant with the action defined by 6. The

derived cohomology is Lie algebra cohomology H*(g). The following
result was implicitly established in [7].

Theorem 2.2. For any x € g let 7(z) € End A g be defined by
putting

(2.9) m(z) = -;—(e(dx) —i(dz) + 0(x))

Then
m:g— End Ag, x> m(x)

is representation of g. Furthermore 7 is primary of type m,.
Proof. The Clifford algebra over g is denoted by C(g) in [7]. Follow-

ing Chevalley in his treatment of Clifford algebras, the underlying vector
spaces of C(g) and Ag are identified in [7]. Consequently there are two
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multiplicative structures on Ag. If u,v € Ag then uv € Ag denotes the
Clifford product and u A v € Ag is the original exterior product. Using
Clifford commutation, an operator adu on Ag was defined in §2.3 of [7].
If u € A?g (or more generally if u is even) then (adu)(w) = uw — wu for
any w € Ag. By (71) and (106) in [7] one has

dx
(2.10) 0(z) = ad >

for any = € g. But then if v(u) € End A g, for u € Ag, is the operator
of left Clifford multiplication by wu, it follows from (19) in [7] that

(2.11) WG = (@)

where m(z) is defined by (2.9) above. On the other hand by (66) and
(106) in [7] the map & : g — A%g, = — idz is a Lie algebra homomor-
phism, using Clifford commutation in A%2g. But then 7 is a representation
by (2.11) (above). Furthermore = is primary of type 7, by Theorem 39
in [7], recalling the definitions at the beginning of §5.2 in [7]. QED

83. The operators [0 and [’

3.1. We now introduce two operators [ and [0 on Ag, both of degree
0. Let {z;} be a basis of g and let {y;} be the By-dual basis. Put

O= Ze(dzi)a(dyi)

and reversing the order of multiplication,

n

0= Z (dz;)e(dy;)

i=1

It is clear that the definitions are independent of the choice of basis {z; }.
Recall that the identity operator on Ag is denoted by I.

Theorem 3.1. One has

(3.1) o I = 7(0(Q) -0~ D)
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Proof. Obviously |p+ p|? —|p|?> = 3|p|?. Using the notation of (2.6)
it then follows from (2.7) and Theorem 2.2 that

(32) 3ol T= {(6Q) ~O~ D)+ fat B+ B+ s

where
n

Z e(dz;)e(dy;)

Boyg = %zz: o(dz;)e(dy;)
B = § D(clde)od) + Odmi)ed)
Bz = — D (dw)0(dys) + 0(di)uldy:)

But now both sides of (3.1) are operators of degree 0. On the other hand
B;, for i € {4,2,—2,—4}, is an operator of degree 3. Thus all 8; vanish
by (3.2). But then (3.1) follows from (3.2). QED

3.2. We can further simplify (3.1) by applying the “strange formula”

o2 = dimg
24
of Freudental-de Vries. See p. 243 in [1]. But in fact (3.1) yields a proof

of the “strange formula” (3.3). Indeed first note that for any z,y € g
one has

(34) (d,dy) = —3 (@)

(3.3)

To establish (3.4) let & be the negative transpose of d with respect to
Bpg. Then L = dO + Od is the “Hodge” Laplacian. But it is an easy
consequence of (2.8) that L = 36(Q). See e.g. (2.1.7) in [4]. But, by
definition of the Killing form, 8(Q) reduces to the identity on g. Thus
(dz,dy) = —(z, Ly) = 3(z,y) proving (3.4). Now apply both sides of
(3.1) to 1 € A%y. Then by (3.4)

n

1
Blpf* = =5 D_(dwi, dys)

=1

n
8
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But this proves the “strange formula” (3.3) of Freudental-de Vries. Ap-
plying the formula to (3.1) one has the refinement

(3.5) gl =0(Q) -D-0O

3.3. Now by applying the commutation formula (2.2) we can sepa-
rate out the terms and solve individually for [0 and [0'. We first make
a better choice of basis for g. Let £ be a compact real form of g and let
q = €. Then By is positive definite on q. Let {z;} be an orthonormal
basis of q. Then in the definition of [0 and [ we can choose

(3.6) T =Y; = 2;

Let £ be the identity operator on g so that the derivation D, is the Euler
operator on Ag. That is

(3.1 D.=kon AFg

Theorem 3.2. One has
1

(3.8) :
O = 5(6(Q) — (nI - D.))

Proof. For = € g note that (see §2.1)
d
(3.9) 7(7””) = adyz
Indeed (3.9) is implied by (18), (71) and (106) in [7]. Let {2;} be as in

(3.6) and let a; = —(ady2;)? € Endg. By definition of the Kllhng form,
one has tr a; = —1. Thus

(3.10) €(dz;)u(dz;) — 1(dz;)e(dz;) = Dg, + %I

by (2.2) and (3.9). But 6(Q) reduces to the identity € on g so that
> iy @ = —¢. Hence, by linearity, > | D,, = —D,. Thus

= Z(e(déi)L(dZi) — t(dzi)e(dz;))
(3.11) i=1

n
:EI—Da
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But
(3.12) O+0 =06Q) — -’231

by (3.5). But then adding and subtracting (3.11) and (3.12) yields (3.8).
QED

3.4. We define a Hilbert space structure H in Ag. The inner product
of u,v € Ag will be denoted by {u,v}. This structure has been defined
in §3.2 of [3] and we refer to that reference for a more comprehensive
treatment of H. The discussion here will be limited to what will be
needed in this paper. The real exterior algebra Arq is a real form of g.
Furthermore B, is positive definite on Arq. One defines a *-operation
in Ag by defining (v + iv)* = v — iv for u,v € Agq. Then H is given
by defining {u,v} = (u,v*) for u,v € Ag. For any 8 € End A g, let
B* € End A g be the Hermitian adjoint of 3 with respect to H. By
(3.9.3) in [3] one has

(3.13) v(u)* =e(u*)
for any u € Ag. But for z € q one has
(3.14) dz* = —dz

Indeed since [q,q] C € = iq, the equation (3.14) clearly follows from
(2.8) when we make the choice given in (3.6).

Proposition 3.3. Let {z;} be the basis of g defined as in (5.6).
Then the operators €(dz;)i(dz;) and 1(dz;)e(dz;) are negative semidefinite
with respect to H for all i. In particular O = Y7 | e(dz;)i(dz;) and
O =", u(dzi)e(dz;) are negative semidefinite with respect to H.

Proof. This is immediate from (3.13) and (3.14). QED

§4. The main results

4.1. Let C be the set of all commutative Lie subalgebras a of g.
If a € C and k = dima let [a] = A*a. Regard [a] as a 1-dimensional
subspace of AFg and let C C A g be the span of all [a] for all a € C.
It is obvious that C = }__, C* is a graded g-submodule (with respect
to 8) of Ag. Of course C* = 0 for k > ngpe; Where ngpe; is the maximal
dimension of an abelian Lie subalgebra of g.
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One of the results in [4] is that C (denoted by A in [4]) is a multi-
plicity free g-module. See Theorem (8) in [4]. If E is an index set for the
set of all abelian ideals {a¢}, £ € Z, of b then the irreducible components
of C may also be indexed by =. The irreducible components, written
as C¢, € € E, are characterized by the property that [a¢] is the highest
~ weight space of C;. One therefore has the unique decomposition

(4.1) C=> C;

(eE

into irreducible components. For Peterson’s results and our subsequent
new results about C, see [8].

For k= 0,...,n, let m; be the maximal eigenvalue of the Casimir
operator 8(Q) on A*g. The following result is a restatement of Theorem
(5) in [4] (noting that my in [4] is one half its value here).

Theorem 4.1. For k=0,...,n, one has
(4.2) mr <k

Furthermore one has equality my = k if and only if there exists an
abelian subalgebra a C g such that dima = k, that is, if and only if
k < ngper- Moveover in such a case the eigenspace for the eigenvalue
k of 0(Q) in A*g is exactly C*. In particular 6(Q) has integral (and
consecutive) eigenvalues on C.

As an example, illustrating the first part of Theorem 4.1, if g ~ Fg,
then, since mgpe; = 36, one has my = k for £ < 36. But my < k for
k > 37.

Remark 4.2. Note that (4.2) also follows from Theorem 3.2, using
Proposition 3.3, since the Proposition 3.3 implies that the spectrum of
O is non-negative.

4.2. We can now establish one of the main results of the paper. Let
A be the ideal in Ag generated by all dz € A?g for = € g. Corollary
(5.1) in [4] asserts that

(4.3) /\Zg = dg b C2

is a direct sum. Note that (4.5) below in Theorem 4.3 is a generalization
of (4.3). Recall the definition O in §3.
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Theorem 4.3. One has C = Ker . In addition
(4.4) C ={ueAg|dr)u=0,Vz € g}
Moreover B,y is non-singular on C and
(4.5) Ng=A®C
s a Bag-orthogonal direct sum.

Proof. The statement that C' = Ker[ is an immediate conse-
quence of Theorem 4.1 and (3.8) in Theorem 3.2. On the one hand
since, using the notation of Proposition 3.3, the operators €(dz;)i(dz;)
are negative semidefinite with respect to H, one has

(4.6) KerO= ﬁ Ker e(dz;)u(dz;)

i=1
On the other hand e(dz;) = —u(dz;)* by (3.13) and (3.14). Hence
(4.7) Kere(dz;)u(dz;) = Ker1(dz;)

This establishes (4.4). Of course By, is non-singular on AFg for any
k=0,...,n4pe;. But then since O is diagonalizable and symmetric with
respect to B,y it follows that the restriction of B,, to the eigenspace
C) of O in A*g is non-singular. Hence B Ag 18 non-singular on C. But
then (4.5) follows immediately from (4.4) and the equality (dz A v,u) =
(v, t{dz)u) for any u,v € Ag and z € g. QED

4.3. Fix an element p € A™g where (u,u) = 1. For any v € Ag let
v=1(v)p. Alsoif M C Agisasubspacelet M ={7|ve M}. Itisa
simple fact that if M C A g is a graded subspace, then

—

(4.8) M=M

Furthermore since (g) annihilates y it is clear that if M is a g submodule
(with respect to ) then M — M, v — ¥ is a g-module isomorphism. In

particular Cis isomorphic to C as a g-module.

Corollary 4.4. One has C = Ker . In addition

(4.9) C={venrg|dcAv=0,Vzcg}
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Proof. If v € Ag and = € g note that
(4.10) dz A v = o(dz)v

But then (4.9) follows from (4.4) and (4.8). The argument in the proof
of Theorem 4.3 establishing the equivalence of the equation C = Ker O
with (4.4) likewise, upon interchanging e(dz;) with ¢(dz;), clearly estab-
lishes the equivalence of the equation C = KerO' with (4.9). QED

4.4. We will express (4.4) and (4.9) in a “functorial” way. Consider
the symmetric algebra S(g) over g. Since the elements of A%2g commute
with each other there exists a unique homomorphism

(4.11) s:5(g) — Mg

where s(z) = dz for z € g. The homomorphism s of course defines the
structure of an S(g) module on Ag. Furthermore since s is a g-map with
respect to the adjoint action, this S(g)-module structure is equivariant
with respect to the adjoint action.

The functors E'xtf9 @) (C, Ag) clearly have the structure of g-modules.

Considering only the two extreme values of j, one has g-module maps

(4.12) Extg, (C,Ag) — Ag
and
(4.13) Ng — Ext§,(C, Ag)

Recalling the definitions of Ext at these two extremes, (4.4) and (4.9)
immediately translate to

Theorem 4.10. The map (4.12) defines a g-module isomorphism
and the map (4.13) restricts to a g-module isomorphism

(4.15) C — Extl(C, Ag)

4.5. An element u € Ag is called totally exact if it is the sum of
products of elements of the form dz, x € g. Let A be the image of s so
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that A is the algebra of all totally exact elements in Ag. See Theorem
1.4 in [6] for a characterization of A. Some features of the g-module
structure of A were studied and used in [7]. See Theorem 69 in [7].
Of course the S(g) module structure on Ag can be regarded as defining
an A-module structure on Ag. Consider the question of determining
generators for this module. A subspace C, C A g will be said to be
A-generating if C, is a graded g-submodule (with respect to 8) of Ag
such that Ag = A A C,,.

Theorem 4.6. The subspace C is A-generating so that
(4.16) ANg=AANC

Moreover it is minimal among all A-generating subspaces in Ng. In fact
if Co is any graded g-submodule (with respect to 0) of Ng then C, is
A-generating if and only if C C C,.

Proof. The proof that C is A-generating is a standard exercise using
(4.5). Assume inductively that for k > 1, A’lg € AAC for all j < k.
Obviously A =C° ¢ AACand Alg=C' C AAC. Let u € AF*Hlg.
By (4.5) we may write u = v + w where v € A**! and w € C*¥*1. Then
w € AAC. But v € dgA (AF1g). But AF~lg C A A C by induction.
Hence v € AAC. Thus C is A-generating.

Obviously if C C C, one has Ag= AAC,. Now for k =0,...,n,
let py : A¥g — C* be the projection defined by (4.5). Obviously py, is a
g-map. Assume C, C Agis A-generating. Then clearly the restriction
pr : C® — C* is a surjective g-map. However by Theorem 4.1 the
irreducible representations g occurring in C* do not occur in A*. Thus
one must have C* ¢ C¥. Hence C, C C. QED

Remark 4.7. Note that (4.15) implies that the set of elements of
the form y3 A--- Ayg Adx1 A--- A dzy, span Ag, where z;,y; € g and
the {y;} pairwise commute. QED

References

[1] H. Freudenthal and H. de Vries, Linear Lie Groups, Academic Press,
1969.

[2] C. Chevalley, The Betti numbers of the exceptional Lie groups, Pro-
ceedings of the International Congress of Mathematicians, 1950, Vol.
I1, 21-24.



144
3]
(4]
[5]
[6]

[7]

B. Kostant

B. Kostant, Lie algebra cohomology and the generalized Borel-Weil
theorem, Ann. of Math., Vol. 74(1961), No. 2, 329-387.

B. Kostant, Eigenvalues of a Laplacian and commutative Lie subal-
gebras, Topology, Vol. 3(1965), Suppl. 2, 147-159.

B. Kostant, On MacDonald’s n-function formula, the Laplacian, and
generalized exponents, Adv. in Math., Vol. 20(1976), No. 2, 179-212.
B. Kostant, A Lie algebra generalization of the Amitsur-Levitski
theorem, Adv. in Math., Vol. 40(1981), No. 2.

B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson
theorem, the p-decomposition C(g) = EndV, ® C(P), and the g-
module structure of Ag, Adv. in Math., Vol. 125(1997), No. 2, 275-
350.

B. Kostant, The set of abelian ideals of a Borel subalgebra, Cartan
decompositions, and discrete series representations, IMRN, 5(1998),
225-252.

E. Looijenga and and V. A. Lunts, A Lie algebra attached to a
projective variety, Inventiones Mathematica, Vol. 129(1997), 361-
412.

A. 1. Malcev, Commutative subalgebras of semisimple Lie algebras,
Izv. Akad. Nauk SSR, Ser. Mat., Vol. 9(1945), 291-300 (Russian);
Translation, No. 40, Series 1, American Mathematics Society (En-
glish).

W. Schmid, L?- cohomology and the discrete series, Ann. of Math.,
Vol. 103(1976), 375-394.

A. Weil, variétés kahlériennes, Actualités scientifiques et industrielles
1267, Institut de Math. de I'Univ. de Nancago.

Bertram Kostant

Dept. of Math.

MIT

Cambridge, MA 02139

FE-mail kostant@math.mit.edu





