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Diameter and Area Estimates for S 2 and P 2 

with N onnegatively Curved Metrics 

Takashi Shioya 

§0. Introduction 

We consider the quantity 

F(M) := Vol(M) 
Diam(M)n 

for any closed Riemannian n-manifold M, which is a homothety invari­
ant, where Vol and Diam denote the volume and the diameter respec­
tively. If the Ricci curvature of M is nonnegative everywhere, Bishop's 
volume comparison theorem implies that F(M) < 1r. A.D. Alexandrov 
conjectured in [A, p.417] (see also [BZ, p.42]) that for any nonnegatively 
curved metric g on the 2-sphere 8 2 , 

2 7T' F(8 ,g) :::"; 2, 

and the equality holds only if g is homothetic to the metric of the double 
of the Euclidean unit disk .B(l) := { x E R 2 I d(x, o) :::"; 1 }, which 
is a singular metric of nonnegative Toponogov curvature. Note that 
Alexandrov deals a class of surfaces containing such a singular space, 
namely surfaces of bounded curvature in the sense of [AZ]. The volume 
and the diameter of any such singular surface can be approximated by 
those of Riemannian 2-manifolds, and thus it suffices to consider only 
regular metrics. 

Alexandrov's conjecture has not been proved as of now. Concerning 
this, there are two known results as follows. 

Theorem (Sakai, [S]). For any nonnegatively curved Riemannian 
metric g on the 2-sphere 8 2 , 

F(82 ,g) < 0.98571'. 
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Theorem (Grove-Petersen, [GPl, Theorem Bl). For any integer 
n ?: 2 there exists an 1:( n) > 0 such that any compact Riemannian n­
manif old M with nonnegative sectional curvature satisfies 

F(M) < V(n) - 1:(n), 

where V(n) is the volume of the n-dimensional Euclidean unit ball. 

In the present paper, we try to extend the above estimates in the 
2-dimensional case, i.e. the estimates for the 2-sphere 8 2 and the real 
projective 2-space P 2 with nonnegatively curved metrics, and the 2-
torus T 2 and the Klein bottle K 2 with flat metrics. We easily observe 
that, when M = (T2 ,g) or (K2,g) for a flat metric g, then F(M) :=:; 2, 
where the equality holds only if g is the canonical flat metric. Sakai's 
proof cannot be extended to the case of P 2 • On the other hand, although 
Grove-Petersen's theorem is more general, their proof gives no calculable 
constant. Accordingly, we develop a proving method independent of the 
topology and have the following finer estimates. 

Main Theorem. (1) For any nonnegatively curved Riemannian 
metric g on the 2-sphere 8 2 , we have 

(2) For any nonnegatively curved Riemannian metric g on the real 
projective 2-space P 2 , we have 

7v'7-10 
F(P2 ,g):::; 9 1r < 0.9477r. 

Different from the case of 8 2 , the maximum of F ( P 2 , g) for all non­
negatively curved metrics g on P 2 seems to be F(P2 ,gc) = 8/1r > 
0.8101r, where gc is the canonical metric on P 2 , namely the metric of 
constant curvature 1. 

§ 1. Preliminaries 

Let M be a (not necessarily closed) complete Riemannian 2-manifold 
without boundary and p a fixed point in M. Consider the metric balls 
B(p, r) := { x E M I d(p, x) < r} and the metric spheres 8(p, r) := 

{ x E M I d(p, x) = r} centered at p for radii r > 0, where d denotes 
the distance function of M induced from the metric. Following }:Iartman 
[H] we define the notion of an exceptional radius as follows (actually, he 
called it an exceptional t-value). 
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Definition [H]. A radius r > 0 is said to be exceptional if and 
only if there exists a cut point q in S (p, r) from p satisfying one of the 
following three conditions. 

(l) q is a first conjugate point of p along some minimal geodesic 
segment joining p and q. 

(2) There exist ~ore than two distinct minimal geodesic segments 
joining p and q. 

(3) There exist exactly two geodesic segments joining p and q, and 
moreover the angle between these segments at q is equal to 7f. 

A radius is said to be nonexceptional if and only if it is not excep­
tional. 

Note that if M is compact, S(p, r) for any sufficiently large radius 
r > 0 is empty and hence any such r is nonexceptional. Hartman has 
proved in [H] that the set of all exceptional radii is a closed and measure 
zero subset of Rand that S(p, r) for each nonexceptional r > 0 consists 
of finitely many simple closed curves of class C 00 except the cut points 
in S(p, r) from p, the number of which is finite. For any nonexceptional 
r > 0 we denote by qr,l, ... , qr,n(r) (0:::; n(r) < +oo) the cut points in 
S(p, r) from p. Then S(p, r) - {qr,1, ... , qr,n(r)} consists of n(r) disjoint 
smooth open arcs ar,1, ... , ar,n(r) · Define a continuous function p: M ---> 

RU {+oo} by 

p(x) := sup d(x, y) 
yEM 

for x EM. 

Clearly, p(x) = +oo if and only if M is open. Denote by Fr,i the 
set of interior points of the minimal segments joining p and all points 
in ar,i for any nonexceptional O < r < p(p) and any 1 :::; i :::; n( r). 
Then, Fr,i is the open disk bounded by the triangle whose sides are ar,i 

and two minimal segments joining p and the endpoints of ar,i provided 
n( r) ~ 1. Denote by 1,,r,i ( u) the integral of the geodesic curvature of the 
arc S(p, u) n Fr,i with respect to B(p, u) for any nonexceptional u and r 
with O < u < r < p(p) and for any i = 1, ... , n(r). Now we will prove 

Indeed, considering the geodesic polar coordinates (0, t) on Fr,i (0 is the 
angle at p and tis the distance from p), the volume of Fr,i is expressed 
as 

r rer,i 11811 Vol(Fr,i) = lo lo 80 d0 dt, 
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where Br,i is the inner angle of Fr,i at p. Moreover, since the geodesic 
curvature of S(p, t) n Fr,i with respect to B(p, t) is equal to 

we have 

{Br,i 11811 t lo 80 d0 = lo Kr,i(u) du. 

This proves ( *). 
In particular, if B(p,r) := B(p,r) U S(p,r) contains no cut points 

from p, we have 

Vol(B(p, r)) = 1r 1t K(B(p, u)) du dt, 

where K(D) denotes the sum of the integral of the geodesic curvature of 
the boundary 8D of D with respect to D and of the exterior angles at 
all vertices of D (we remark that B(p, r) has no vertices in this case). 
Fiala [F] and Hartman [H] have extended this to the case where B(p, r) 
may contain cut points from p as follows. 

Lemma [Fl, [H]. For any O < r s; p(p) we have 

where hp is the nonnegative function defined by 

n(u) 

hp(u) := L (2 tan r.p;,i - '-Pu,i) 
i=l 

and where '-Pu,i for each nonexceptional O < u < p(p) denotes the angle 
at qu,i between the two minimal segments joining p and qu,i. 

Note that Fiala and Hartman deal only with the case where M = 
(R2 , g) (Fiala [F] proved ( **) for manifolds with real analytic metrics 
and Hartman [H] later extended this to the case of manifolds with C 2-

metrics). However, we observe that their discussions are independent of 
the topology of M (see [ST]). 
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§2. Some partial estimates 

Assume that M is a nonnegatively curved Riemannian 2-manifold 
diffeomorphic to either S2 or P 2 the diameter of which is normalized 
as Diam(M) = 1. Every curve in M is assumed to have arclength 
parameter and is often identified with its image. For a while, let p be 
any fixed point in M. 

First we state a basic topological lemma. 

Lemma 1. Let O < r < p(p) be any nonexceptional radius. Then 
the Euler characteristic x(B(p, r)) of B(p, r) satisfies 

x(B(p, r)) :s; 1, 

and the equality holds if and only if B(p, r) is a disk. 

Note that B (p, r) for a nonexceptional r > 0 is a disk if and only if 
it is c6ntractible. 

Proof. Since B(p, r) is not closed, the 2-dimensional homology 
H2 (B(p,r),Z) vanishes, and the first Betti number b1(B(p,r)) is equal 
to zero if and only if B(p, r) is contractible, namely a disk. Moreover we 
have 

x(B(p,r)) = 1- b1(B(p,r)). 

This completes the proof. Q.E.D. 

Remark. It follows from Lemma 1 and the Gauss-Bonnet theorem 
that 

1,,(B(p,r)) = 2nx(B(p,r)) - c(B(p,r)) :s; 2n 

for any nonexceptional O :s; r < p(p), where c(D) denotes the total 
curvature of D, namely the integral JD K dv of Gaussian curvature K 
over D with respect to the volume element dv of M. 

Applying(**) to B(q, inf p) for a point q in M with p(q) = inf p and 
using the above remark, the following consequence is directly proved. 

Proposition 2. We have 

Vol(M) :s; 1r • (inf p )2 . 

Note that this is also obtained from Bishop's volume comparison 
theorem. 

The following two lemmas are needed to prove Propositions 5 and 
6. 
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Lemma 3. Let O < R < p(p) and a 2: 0 be any given constants. 
If K(B(p,r)) ~ a for every nonexceptional r with R < r < p(p), then 

Proof. By ( **) and p(p) ~ 1 we have 

rp(p) t 
Vol(M) ~ Jo Jo K(B(p, u)) dudt 

{R t r(p) ( {R t ) 
~ Jo Jo 21rdudt+ JR Jo 21rdu+ JR adu dt 

Q.E.D. 

Lemma 4. If B(p, r) for a number O < r < p(p) is not con­
tractible, then there exists a geodesic loop with base point p which is 
entirely contained in B (p, r). 

Proof Take a continuous loop "(: [O, l] --+ B(p, r) with base point p 
such that 

L('Y) = inf{ L( c) I c is a loop with base point p which is 

not homotopic to the point p in B (p, r) } . 

If 'Y does not intersect S(p,r), it is a geodesic loop. Thus we consider 
the case where 'Y intersect S(p, r). Then l = L('Y) 2: 2r. Let us first 
prove the following 

Claim. 'Y forms a geodesic biangle consisting of two geodesics with 
length r. 

It suffices to show that 2r = l. Now suppose that 2r < l. For a 
minimal segment rr of M joining panda point ,(t) with r < t < l - r, 
one of the two closed curves 'Y( [O, t]) Ur, and 'Y( [t, l]) Ur, is not homotopic 
to the point pin B(p, r). Denoting this by "(1 we have 

because of L( rr) ~ r. This contradicts the definition of 'Y and completes 
the proof of the claim. 
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We will prove that -y does not break at -y(r). Suppose the contrary. 
For each O :::; t :::; r we take a minimal segment at joining -y(r - t) and 
-y(r + t) and set "ft := -y([O, r - t]) U at U-y([r + t, 2r]). Since -y breaks we 
have 

L("ft) < L("f) = 2r and hence "ft C B(p,r) 

for any O < t :::; r. Moreover, there is a small E > 0 such that [O, E] x 
[0, 1] 3 (t, s) f-----+ "ft(sL("ft)) is a smooth variation entirely contained in 
B(p, r), which is a homotopy with 'Yo= -yin particular. This contradicts 
the definition of -y. Q.E.D. 

Proposition 5. Let O < R < p(p). If there exists a number 
0 < r0 :::; R such that B(p, r0 ) is not contractible, then 

Proof Take any fixed nonexceptional r with R < r < p(p). If 
B(p,r) is not a disk, Lemma 1 implies x(B(p,r)):::; 0 and hence 

,-.,(B(p,r)):::; 0 

by the Gauss-Bonnet theorem. In the case where B(p,r) is a disk, 
Lemma 4 implies that B(p, r0 ) contains a geodesic loop, which bounds 
a disk in B(p,r) whose total curvature greater than 1r, because of the 
Gauss-Bonnet theorem. Therefore we have c( B (p, r)) > 1r and hence by 
Lemma 1 

,-.,(B(p,r)) = 21rx(B(p,r)) - c(B(p,r)) < 1r. 

As a result, in either case we have ,-.,(B(p, r)) < 1r for any nonexceptional 
r with R < r < p(p). Applying Lemma 3 under a := 1r, the proof is 
completed. Q.E.D. 

Proposition 6. Let O < R < p(p). Then we have 

Vol(M) :::; 1r - ~(1 - R) 2 min{ c(B(p, R)), 21r }. 

Proof It follows from the Gauss-Bonnet theorem and Lemma 1 
that ,-.,(B(p, r)) :::; 21r - c(B(p, r)) for all nonexceptional r with R < r < 
p(p). Since the function t f---, c(B(p, t)) is monotone nondecreasing, we 
have 

,-.,(B(p, r)) :::; 21r - c(B(p, R)) 
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for all nonexceptional r with R < r < p(p). Setting 

a:= max{ 21r - c(B(p, R)), 0 }, 

Lemma 3 completes the proof. 

§3. Proof of Main Theorem 

Q.E.D. 

Lemma 7. Let O < R < p(p). If B(p, r) for every O < r ~ R is 
contractible, then 

1 
Vol(B(p, R)) 2:: 2R 2 (21r - c(B(p, R))). 

Proof. In the case where R is exceptional, the above inequality 
for every nonexceptional R' with O < R' < R yields the conclusion 
since the set of nonexceptional radii is dense in [O, +oo). Thus we may 
consider only the case where R is nonexceptional. Under the notations 
as in section 1, it follows from the Gauss-Bonnet theorem that ,.,,R,i(t) = 
BR,i -c(FR,i nB(p, t)) 2:: B R,i -c(FR,i) for all nonexceptional O < t ~ R. 
This and ( *) imply 

and hence by setting FR := ur:(R) FR . and BR := "'n(R) BR . ' z=l ,z L .. .ii=l ,i, 

On the other hand, since B (p, R)-FR is the union of n( R) disks bounded 
by geodesic biangles, the Gauss-Bonnet theorem shows that 

Thus we have 

Vol(B(p,R)) 2".1R 1r(21r - c(B(p,R)))dtdr 

1 = 2R 2 (21r - c(B(p, R))). 

Q.E.D. 
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Lemma 8. For a given constant R > 0 we have 

Vol(M) > c(M) infpEM Vol(B(p, R)). 
- suppEM c(B(p, R)) 

Recall that 

{ 
471" if M 9'! 8 2 

c(M) = 271" if M 9'! P 2 • 

Proof. It suffices to show that 

JM c(B(p, R)) dp = JM K(p) Vol(B(p, R)) dp, 
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where dp is the volume element with respect to a variable p of M. Define 
the function r.p: M x M -t R by 

{ 
1 if d(p, q) < R 

r.p(p, q) := 0 if d(p, q) ~ R 

By Fubini's theorem we have 

for all p,q EM. 

JM c(B(p,R)) dp = JM JM r.p(p,q) K(q) dqdp 

= JM K(q) JM r.p(p, q) dpdq 

= JM K(q) Vol(B(q, R)) dq. 

Q.E.D. 

Proof of Main Theorem. Let us define a constant O < R < 1 by 

R := 4 - ✓4 + 3c(M)/27r = { 2 -v'Io/2 
4 - c(M)/271" (4 - -./7)/3 

In the case where inf p ~ R, Proposition 2 implies 

if M 9'! 8 2 

if M 9'! P 2 . 

( ) 2 { 0.17671" if M 9'! 8 2 

Vol M ~ 7rR < . ~ 2 0.20471" 1f M = P , 

which concludes Main Theorem in particular. Thus assume that inf p > 
R. If there is a point p in M such that c(B(p, R)) ~ 271", then by 
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Proposition 6 we have 

{ 
0.6631r if M ~ 5 2 

Vol(M) S 1r • (2R - R 2 ) < 
0.7001r if M ~ P 2 • 

If there are a point pin Mand a radius O < r0 SR such that B(p, ro) 
is not contractible, then Proposition 5 implies 

1r { 0.8321r if M ~ 5 2 

Vol(M) S -(1 + 2R - R 2 ) < . ~ 2 
2 0.8501r 1f M = P . 

Therefore, it suffices to consider the case where c(B(p, R)) < 21r and 
B(p,r) is contractible for all points pin Mand all O < r SR. Now, 
setting 

c := sup c(B(p, R)), 
pEM 

we have O < c S 21r. Lemmas 7 and 8 show 

On the other hand, we have by Proposition 6 

(#) 
1 

Vol(M) S 1r - 2(1 - R)2c. 

Combining these two formulas, we have the quadratic inequality: 

which gives the estimate of c: 

21r + R2c(M) - v'b 
c>---~~--

- 2(1 - R) 2 ' 

where b is the constant defined by 

b := (21r + R 2c(M))2 - 81rR2 (1- R 2 )c(M). 

By this and ( #) we obtain 

1f 1 IL 
Vol(M) S 2 - 4(R2 c(M) - vb). 

This completes the proof of Main Theorem. Q.E.D. 

Note that R is determined as the last estimate is finest. 
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