On a Theorem of Edmonds

Kaoru Ono

§1. Introduction

For an action of a cyclic group of odd order $m \ge 3$ on a manifold, the normal bundle of the fixed point set is orientable. It is false for actions of the cyclic group of order 2. Edmonds showed the following

Theorem (Edmonds [E]). If \mathbb{Z}_2 acts smoothly on an n dimensional spin manifold M, preserving its orientation and spin structure, then the fixed point set $F = M^{\mathbb{Z}_2}$ is orientable.

Bott and Taubes gave another proof in [B-T]. The purpose of this short note is to give an elementary proof of this theorem and consider the spin^c case.

The author is grateful to Professor A. Hattori for showing him private note [H].

§2. Review on Clifford algebras and spin structures

Let V be a vector space with an positive definite inner product. The Clifford algebra $\operatorname{Cl}(V)$ associated to V is defined as the quotient algebra of the tensor algebra over V by the ideal generated by $v \otimes v + |v|^2$ where $v \in V$. $\operatorname{Cl}(V)$ is not an algebra with \mathbb{Z} -grading, but there is a filtration as follows:

$$Cl(V)^k = linear \ span \ of \ \{v_1 \cdots v_j \in Cl(V); v_i \in V, j \leq k\}.$$

It is easy to see that the associated graded module of filtered module Cl(V) is the exterior algebra $\Lambda(V)$. Cl(V) contains the spin group Spin(V) which is the double covering group of SO(V). More precisely $Spin(V) = Pin(V) \cap Cl(V)_0$, where Pin(V) is the multiplicative group generated by unit vectors in V, and $Cl(V)_0$ is the even part of Cl(V)

Received March 7, 1991.

Partially supported by the Grant-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan

244 K. Ono

with respect to the \mathbb{Z}_2 -grading. The SO(V) action on V extends to the action on Cl(V) as algebra automorphisms.

Let M be a Riemannian manifold. $\operatorname{Cl}(M)$ denotes the Clifford algebra bundle on M associated to the tangent bundle TM. A spin structure on an n-dimensional oriented manifold M is a principal $\operatorname{Spin}(n)$ -bundle \widetilde{P} on M, which is a double covering of the principal SO(n)-bundle P associated to TM. Remark that $\operatorname{Cl}(M)$ contains $\widetilde{P} \times_{\operatorname{Ad}} \operatorname{Spin}(n)$.

§3. Proof

Let τ be an involution on a spin manifold M, preserving orientation and a spin structure \widetilde{P} . Then we have $\tau^*\widetilde{P}\cong\widetilde{P}$, which implies that τ can be lifted to $\widetilde{\tau}:\widetilde{P}\to\widetilde{P}$. As τ is an involution, $\widetilde{\tau}^2$ is a covering transformation of $\widetilde{P}\to P$ and an bundle automorphism of $\widetilde{P}\to M$. Restricted to the fixed point set $F=M^\tau$, $\widetilde{\tau}_F:\widetilde{P}|_F\to\widetilde{P}|_F$ is a bundle automorphism acting trivially on the base space F, i.e. a gauge transformation. It is well known that it can be seen as a section of the adjoint bundle. In our case, $\widetilde{\tau}_F$ defines a section of $\mathrm{Cl}(M)|_F$, where we choose a \mathbb{Z}_2 -invariant Riemannian metric on M. Let $TM|_F=TF\oplus N$ be the decomposition into the tangent bundle TF of F and the normal bundle N. Here we recall the following fact.

Fact. Let $U = V \oplus W$ be a direct sum of vector spaces with positive definite inner products. Only elements in $Cl(V \oplus W)$ which act on V by -1 and on W by 1 are $\pm e_1 \cdot e_2 \cdot \cdots \cdot e_l$, where $\{e_1, e_2, \cdots, e_l\}$ is an orthonormal basis of V.

Let $p \in F$. Then τ acts on N_p by -1 and T_pF by 1. Since τ acts on M preserving orientation, the rank of N is even and $\pm v_1 \cdot v_2 \cdot \cdots \cdot v_l$ is an element of $\mathrm{Spin}(N_p)$, where $\{v_1, v_2, \cdots, v_l\}$ is an orthonormal basis of N_p . Thus $\tilde{\tau}_F(p)$ corresponds to $\pm v_1 \cdot v_2 \cdot \cdots \cdot v_l$. As we have seen in §2, the graded algebra bundle associated to the filtered algebra bundle $\mathrm{Cl}(M)$ is the exterior algebra bundle of TM. $\tilde{\tau}_F$ belongs to $\mathrm{Cl}(M)^l$, and corresponds to $\pm v_1 \wedge v_2 \wedge \cdots \wedge v_l$, therefore it determines the orientation of the normal bundle N, which implies the orientablity of the fixed point set F.

$\S 4. \quad \mathbf{Spin}^c \mathbf{ case}$

Let $\operatorname{Spin}^c(n) = \operatorname{Spin}(n) \times_{\mathbb{Z}_2} S^1$. A spin^c structure on an n-dimensional oriented manifold is a principal $\operatorname{Spin}^c(n)$ -bundle Q such that $Q \times_{\rho} SO(n)$ is the principal SO(n)-bundle associated to TM, and ρ

is the natural homomorphism from $\mathrm{Spin}^c(n)$ to SO(n). We can show the following

Proposition. Let M be a spin^c manifold and Q a spin^c structure on M. If an smooth involution τ on M can be lifted to Q as a periodic mapping, then the fixed point set F is orientable.

Proof. As in §2, N denotes the normal bundle of F, and $\tilde{\tau}_F: Q|_F \to Q|_F$ denotes the lifting of τ restricted to F with period s. $\tilde{\tau}_F$ defines a section of $\mathrm{Cl}(M)|_F \otimes \mathbb{C}$, and a section of $\bigwedge(TM)|_F \otimes \mathbb{C}$. For $p \in F$, $\tilde{\tau}_F$ corresponds to $\exp(\frac{2\pi i m}{s}) \cdot v_1 \wedge v_2 \wedge \cdots \wedge v_l$, where $\{v_1, v_2, \cdots, v_l\}$ is an orthonormal vasis of N_p . Consider $\mathrm{Re}(\tilde{\tau}_F)$ or $\mathrm{Im}(\tilde{\tau}_F)$, it defines an orientation of N, which implies the conclusion.

References

- [B-T] R. Bott and C. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc., 2 (1989), 137–186.
- [E] A. L. Edmonds, Orientability of fixed point sets, Proc. Amer. Math. Soc., 82 (1981), 120–124.
- [H] A. Hattori, private communication.

Department of Mathematics Faculty of Science Ochanomizu University Tokyo, 112 Japan