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A Uniqueness Result for Minimal Surfaces in S3

Miyuki Koiso

§1. Introduction

In the study of minimal surfaces, the uniqueness for minimal surfaces
bounded by a given contour is an important problem which is not yet
solved completely.

The first uniqueness result was proved by Radé [4] for minimal sur-
faces in R3. He proved that if a Jordan curve I" has a one-to-one parallel
or central projection onto a convex plane Jordan curve, then I" bounds a
unique minimal disk. The second result is due to Nitsche [3] and states
that if the total curvature of an analytic Jordan curve I' does not exceed
47, then I' bounds a unique minimal disk. The third result is due to
Tromba [6] and states that if a C2-Jordan curve I is sufficiently closed
to a C%-plane Jordan curve in the C?-topology, then I" bounds a unique
minimal disk.

For minimal surfaces in other Riemannian manifolds, uniqueness
theorems in the three dimensional hemisphere of S3 were proved by
Sakaki [5] and Koiso [2]. Sakaki’s result is an analogy of Tromba’s
uniqueness theorem, and Koiso’s is an analogy of Radé’s theorem.

In this paper we restrict ourselves to minimal surfaces in S which
are “graphs” in some sense (Definition 1.1).

Set S* = {x € R*;|x| = 1}. Let X be a 2-plane in R* containing
the origin of R*. We denote by B the two dimensional unit open disk
in X which is bounded by ¥ n S3.

Definition 1.1. Let D be a subset of the closed disk B. A subset
M of 82 is called a “graph” over D if M intersects with each 2-plane
containing a point of D which is orthogonal to ¥ in R* at precisely one
point.

Definition 1.2. (1) A minimal surface M in S is a continuous
mapping ® of a two dimensional compact C*°-manifold R with boundary
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IR into S* which is of class C? in the interior of R and which is a critical
point of the area functional for every variation preserving the boundary
values @|sr.

(2) We sometimes call the image ®(R) of a minimal surface & :
R — S? to be a minimal surface. On such an occasion we call ®(OR)
to be the boundary of the minimal surface ®(R), and denote ®(OR) by
0P(R).

(3) When we mention the uniqueness for minimal surfaces, we mean
the uniqueness for the images of minimal surfaces.

Now we can state our uniqueness result:

Theorem 1.3. Let D be a simply-connected domain whose closure
D is contained in B. If M is a minimal surface which is a “C?-graph”
over D, then M is the unique minimal surface bounded by OM which is
a “C?-graph” over D.

For the proof, we represent each “graph” over D in terms of a sin-
gle real-valued function ¢ defined on D. We prove that the considered
“graph” is a minimal surface if and only if the function ¢ satisfies a
certain quasilinear elliptic partial differential equation (Lemma 2.4). A
uniqueness theorem for the Dirichlet problem for quasilinear elliptic op-
erators assures the uniqueness of our minimal surface.

We conjecture that under the assumption of Theorem 1.3, the
uniqueness of the area-minimizing surface bounded by M is valid.

§2. Proof of Theorem 1.3

Throughout this section, we assume that D is a simply-connected
domain whose closure is contained in B.

We introduce the orthogonal coordinates (z, vy, z,w) in R*. Without
loss of generality, we set X the (z, y)-plane. For simplicity we denote a
point (z,y,0,0) in X by (z,y). If f is a differentiable function of z and
y, we denote Of /8, 8f /0y, 02f /0? b fu, fy, fae, ete.

A “graph” over D is represented as follows:

(2'1) ('T>y7 V 1—22— y2 COS(p(.T,y), V 1- $2 - y2 singo(x,y)) )

(z,y) € D,

where ¢(z,y) is a real-valued function defined on D.
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Definition 2.1. A “graph” ever D represented by (2-1) is called

a “C™-graph” over D if ¢ can be chosen to be of class C™ on D.

Remark 2.2. If M is a “C™-graph” represented by (2-1), then

OM = {(w,y,\/l — 22 —y2cosp, /1 — 22 —yZSiw) i (z,y) € BD}

is a Jordan curve of class C".

Remark 2.3. Since D is contained in B, 2% + 3? < 1 for any point
(z,y) in D.

Lemma 2.4. Let ¢ be of class C?*(D,R).

M= {(w,y, V1—-22 —y2cosp(z,y), /1 —2? —y? sinw(w,y)) ;

(z,y) € D}

18 a minimal surface if and only if
Lo=0 inD,
where L is a quasilinear elliptic operator of the form
(2-2)
Lo={1-2"+(1-2* - 4*)’0,*} us
-2 {:Ey + (1 - :122 - y2)24pz4py} Py
+{1-*+ (1 -2 - ") 0"} oy
— 4z, — dypy
+2(1 — 2% = y?) (~z + %),
+ (1 - :L,Z - y2)(_2y + 6x2y)‘Pz2§0y
+ (1 - 2% — y*)(—2z + 62y°) a0y
+2(1 -2 - ) (—y+y°)p,’,  (z,9) €D

Proof. Set
(I>((E,y) = (QT, Y, v 1—z2—~ y2 COS(p(Zl?,y), V 1—2?— y2 Slﬂ(p(.’l?,y)) 3

(z,y) € D.
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Then & € C?(D, S%). The area A of M is represented as

1/2
A:// (12,1218, - (@.,2,)°} " dody,
D

where (®,,®,) is the usual inner product in R* and |®,|* = (®,, ®),
|(I>y|2 = (®,, ®,). By easy calculations we get

a= [ {a-2 =)+ (-2 97) (o7 + 007)
D
1/2
+(wy—y<ﬁz)2} dz dy.

Let f = f(z,y) be a real-valued C?-function on D which vanishes
on the boundary 8D. Then we get 1-parameter family of surfaces M;
represented as follows.

(-T,y, v1—$2—y2COS((p+tf), V 1_m2_y28in((p+tf))v

(z,y) € D, teR.

Denote the area of M; by A(¢). Then M = Mj is a minimal surface if
and only if

d
—A(t =0
dt ()t:O

for any f.
We observe that

d
EA(t)

t=0
// {(1—w2)wm—my<ﬂy}f25{(1—y2) ©y — TYPs } fy dzdy,
D

where

W=

1
Q= {m + (1 —a? - yz) (‘Pzz + ‘Pyz) + (zpy — y‘ﬁz)z}

By virtue of the Stokes’ formula and the assumption f|sp = 0, we see
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that

d
aA(t)

t=0

_//Df {(l—xz)gm—xywy}z+{(1—y2)2y—wycpx}y dndy.

By lengthy but easy calculations we get

= —// f(1—2*- yz)_1 Q 3Ly dzdy,
=0 D

where Ly is given by the equality (2-2) in the statement of Lemma 2.4.
If (d/dt)A(t)|t=0 = O for any f € C%*(D,R) with f|,, = 0, then Ly
must vanish in D, and vice versa.

To see the ellipticity of L, we regard Ly as a function of z, y, ¢, .,

Pyy Prxy Pzys Pyys and we set p = ¢ , ¢ = Py, T = Pzxy S = Py, and
t = @yy. Then

d

aA(t)

t

L, =0,
L,L; ~ (L./2)*
—1—2%—y?
2
Lma? =) (1= ) (F + ) + (op - 00}
>0
for any point (z,y) € D, which implies that L is elliptic Q.E.D.

Proof of Theorem 1.3. If two functions ¢ € C?(D,R) and ¢ €
C?(D,R) define minimal surfaces

‘I’(-Tyy) = (xaya V 1-— 7'2 - y2 COS(p(xay)v V 1—22 — y2 Sin@(x7 y)) )

(z,y) € D,
and
‘I’(%,y) = (:L‘?y’ V 1—22— y2 COST/’(%?J), V 1—22 — y2 Sinw(mvy)) )
(z,y) € D,

and if these two minimal surfaces have the same boundary, then we can
assume that ¢ = 1 on 8D. Moreover, by Lemma 2.4, we see that Ly =0
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and Ly = 0 in D. Therefore by virtue of the uniqueness theorem for the
Dirichlet problem for quasilinear elliptic operators ([1, p.208, Theorem
9.3]), v and 1 must coincide in D. Q.E.D.

§3. The final remark

Remark 3.1. The assumption that D is contained in B is essential
in the following sense. Set

D =B ={(z,y,0,0) € R% 2% +4% < 1}.
Then the uniqueness result does not hold. In fact,
ay/1—22—y? by/1—22—y?
B(a,y) = (2,9, VIZ Y WY ,
Va2 + b? Va2 + b2
(a7 b) € R2 - (070)’ (37,3/) € b

is a half of a geodesic 2-sphere bounded by the geodesic circle 8D, hence
® is a minimal surface bounded by dD. Therefore we obtain 2-parameter
family of minimal surfaces bounded by the same contour 0D which are
“C>_graphs” over D and all of which are area-minimizing.
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