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Spectral Zeta Functions 

Andre Voros* 

Abstract. 

This article gives a survey of various generalizations of Riemann's 
(-function, associated with operator spectra and which may be gener
ically called spectral zeta functions. Areas of application include 
Riemannian geometry (the spectrum of the Laplacian) and quantum 
mechanics. We review one example of each class in concrete detail: 
the Laplacian on a compact surface of constant negative curvature, 
and the Schrodinger operator on the real line with a homogeneous 
potential q2 M (M a positive integer). 

§1. Introduction 

This review is concerned with spectral theory for linear operators of 
the following specific type: partial differential operators on a ( complex) 
Hilbert space, which are moreover positive (as operators) and have a 
compact resolvent. The spectrum of such an operator has the form 

(1.1) 

( eigenvalues being counted with their multiplicities). 
Examples include the Laplacian (-~) on a compact Riemannian 

manifold, and the Schrodinger operator of a bound system in quantum 
mechanics (in this case, the spectrum gives the set of discrete, or quan
tized, energy values allowed to the system). 

Like the roots of an algebraic equation, the eigenvalues are more 
easily approached through symmetric functions associated with them, 
or spectral functions. 

Several such generating functions are built for dynamical systems 
by borrowing specific features from the Riemann zeta function ( ( s). All 
such functions tend to be indistinctly called zeta functions, although 
they ultimately have nothing in common. 
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- an Euler product defines the Ruelle zeta function of a classical 
(i.e., non-quantal) dynamical system, 

(1.2) R(cr) = IT (1 - e-,n(p)) 

{p} 

(product over the primitive periodic orbits p, r(p) being the length of 
p); Euler products do not directly appear in spectral theory, but the zeta 
function (1.2) can emerge in the limit of classical mechanics for quantum 
eigenvalue problems (see Section 4); 

- the Hadamard product form of ((s) (over the Riemann zeros) is 
copied in the definition of functional determinants (Section 3); 

- the Dirichlet series inspires the Minakshisundarnm-Pleijel (M-P) 
zeta function, 

CXJ 

(1.3) Z(s) = L .Xk8, 
k=O 

which is the spectral zeta function par excellence. 
Our main concern will be to examine how the classical properties 

of Riemann's zeta function ((s) carry over (or not) to the various spec
tral functions modelled upon ((s); or: what is the spectral (rather than 
purely arithmetical) content of Riemann's function? 

For the purpose of the discussion, we shall divide the elementary 
properties of ( ( s) into three classes of (mildly) increasing difficulty: 

a) the meromorphic structure of ((s) and the values ((-n), n = 
o, 1, 2, ... ; 

b) the values of ('(O) and ((2n), n = l, 2, ... (special values, in 
brief); 

c) Riemann's functional equation. 
After recalling the basic techniques illustrated upon (( s) (Section 

2) and reviewing functional determinants (Section 3), we shall arrive 
at the core of the paper, namely the specific treatment of two very 
different classes of differential operators: the Laplacian on a compact 
surface of constant negative curvature, involving Selberg's zeta function 
(Section 4), and the Schrodinger operator (-d2 /dq2 + q2M) on the real 
line (Section 5). Section 6 gives a concluding discussion. 

We will use the standard notations of special function handbooks 
[1]. 

The spirit of this survey will be to emphasize the main ideas on a 
global level at the expense of technicalities, even though these are quite 
important; we refer the reader to our earlier papers for more detailed 
discussions and references. 
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§2. Basic techniques 

2.1. General spectral functions [2] 

Spectral functions are symmetric functions of the eigenvalues to
gether with an auxiliary continuous variable. Substantial flexibility is 
achieved by building spectral functions not only over the original spec
trum p,k}, but also over some distorted spectra {Pk}, of the form 

(2.1) with Pk deleted if Pk = 0, 

where p(.\) is some smooth function such that p(.\) 1 +oo for .\ 1 +oo. 
For a fixed operator, different distortions of its spectrum will disclose 
inequivalent, complementary spectral properties; accordingly, we keep 
separate in our notation the basic operator and its distortions. At the 
start, one obviously uses Pk = Ak ( always removing zero values), but we 
shall also resort to some quite contrived ( at first sight) distortions! 

The basic types of spectral functions are then Theta, Zeta and Det 
(determinant), 

(2.2) 

(2.3) 

(2.4) 

Theta(t) = L e-tpk, 

k 

Zeta(s) = LPks, 
k 

Det(p) =IT* (Pk+ p) 
k 

(TI* denoting a convergent Hadamard product, obtained by zeta
regularization of the divergent expression TI (Pk+ p), see Section 3). 

The fundamental transformations linking the three types are, for
mally, 

(2.5) i r= 
Zeta(s) = r(s) la Theta(t)ts-1dt 

(2.6) s 1= = - sin 1rs ~ logDet(p)p-s-ldp, 
7r 0 

(2.7) ~ l D ( ) -1= Theta(t) -tpd - og et p - ~---e t. 
0 t 

The symbols ~ and ~ denote regularizations: we had to subtract the 
terms causing divergences, at p _, +oo and t _, o+ respectively; more
over, restrictions apply to the domains of validity of the formulae ( details 
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in the references [2]). We summarize by a diagram: 

(2.8) 

Theta 

Laplace (2.7✓ ~llin (2.5) 

- ~ log Det --------+- Zeta 
Mellin (2.6) 

By experience, spectral information is most pregnant in Theta-type func
tions, hence these play the main initial role. Theta-type functions may 
carry information of two very distinct types. One type is exhibited by 
the heat operator techniques, and the other will be illustrated through 
the genesis of the functional equation for ( ( s). 

2.2. Heat operator techniques 

The basic Theta-type function is the trace of the heat operator, 

(2.9) 

If the operator under study is either a differential operator on a compact 
manifold, or a Schrodinger operator with a positive polynomial potential, 
then 0(t) admits an asymptotic series 

00 

(2.10) 0( t) ~ L Cin tin ( t -+ o+) 
n=O 

with i0 < 0. This expansion is computable in principle, so it expresses 
the analytic structure of 0(t) in the small (t--+ 0). 

Information like Eq. (2.10) about a Theta-type function is then 
transferable in two directions (cf. diagram (2.8)): 

- towards log Det(>..), by Laplace transformation: to the series (2.10) 
there corresponds term by term an asymptotic power expansion of 
log Det(>..) for ,\ --+ +oo; the leading, divergent terms of this series are 
subtracted to get the finite part~ log Det(>..), used in Eqs. (2.6-7); 

- towards Zeta( s), by Mellin transformation: it follows that 
ft Theta(t)ts~ 1dt (= f(s)Zeta(s)) has a meromorphic extension to the 
whole s plane with only simple poles, one per power oft in the expansion 
like (2.10). 



Spectral Zeta Functions 331 

Specifically, now, to 0(t) in Eq. (2.9) corresponds the M-P zeta func
tion Z(s) of Eq. (1.3), 

(2.11) { 
Z(s) = I'(s)- 1r,(s), 

r,(s) = 100 
0(t)t8 - 1dt (Res> -io). 

The expansion (2.10) implies that r,(s) is meromorphic in all of C and 
has only simple poles, located at s = -in with residues cin. Hence, 

(i) Z ( s) is meromorphic in the whole plane, and has only simple 
poles, located at s = -in with residues cin/r (in) (a zero residue meaning 
a regular point); 

(ii) s = 0, -l, -2, ... are always regular points, and 

(2.12) 
Z(-m) = (-l)mm!cm (m EN), 

{ Cm = coefficient of tm in the expansion (2.10). 

Such closed expressions for Z(-m) are called trace identities. 
Thus, the results of class a) have found immediate analogs for the 

M-P zeta function, consisting of its explicit meromorphic structure (i) 
and its trace identities (ii). 

2.3. The functional equation for ((s) [3] 

One definition of the Riemann zeta function is privileged from the 
standpoint of spectral theory. It is the following Mellin representation, 
(which comes in two related forms, cf. [1] and Fig. 1), 

(2.13) 

(2.131) 

with 

(2.14) 

((s) = rts) 100 8(r)Ts-ldT, 

r(l - s) 1 ((s) = . 8(r)(-r) 8 - 1dr, 
2m c 

00 

e(r) = Le-kT = (eT - 1)-1. 
k=l 

In other words, ((s) is the M-P zeta function of the integer spectrum 
{k} = {1, 2, ... }. 

Thus, starting from the classical expansion 

00 

(2.15) e(r) = L BnTn-l /n!, 
n=O 
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Eq. (2.13) generates the well-known meromorphic structure of ((s) and 
the trace identities (2.12), which here read as 

(2.16) ((-m) = (-lynBm+i/(m+ 1). 

lmr 

Jir, 

2ir1 

ir, c.c· 
2rr Re r 

-ir 
C,C' 

Fig. 1. The Mellin representations of ((s ), Eq. (2.13'). The 
dots are the poles of 0(r) = (e,,. - 1)-1 and the 
boldface numbers are residues which contribute to 
((s). 

Now, the functional equation itself follows most readily from 
Eq. (2.13'). For Res < 0 we may inflate the contour C away from 
s = 0 (as C' on Fig. 1); then, as the radius R of C' is increased, the 
integral over C' tends to zero. Consequently, the value of the integral in 
(2.13') results entirely from the contributions of the (non-zero) poles of 
0(7). Ifwe denote these poles as ±iTr, with 

(2.17) r = 1,2, ... , 
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then the residue calculus gives 

00 

(2.18) ((s) = r(l - s) L [(iTr)s-l + (-iTr/- 1] 
r=l 

00 

(2.19) 7rS ~ 1 = I'(l - s )2 sin 2 L..,(21rr )8 -

r=l 
1 ( ) 7rS = 28 7r 8 - I' l - s sin -((1 - s), 

2 

Q.E.D. 

We now stress that this output was generated entirely by the polar 
decomposition of 8 ( T). The key ingredient was thus the analytic struc
ture in the large of 8 ( T), and precisely the singular part of 8 ( T). A 
generalization of this property is expressed in the Poisson formula for a 
compact Riemannian manifold M, which computes the real singularities 
of a Theta-type function, 8(it) = Tr exp(-it✓-~M), and finds them 
at the lengths of periodic geodesics (i.e., in the length spectrum of the 
manifold) [4]. The particular case (2.14) corresponds to the manifold 
S 1 : {k} is the spectrum of ✓-~8, while Eq. (2.17) gives the length 
spectrum of the circle. From this general point of view, the right-hand 
side of Eq. (2.18) arises as a zeta function over the length spectrum. 

However, this case is also very special in the sense that the general 
Poisson formula for manifolds is replaced here by the stronger classical 
Poisson summation formula. Now, the operator spectrum on one side 
and the length spectrum on the other are identical ( up to a scale fac
tor), making the Poisson formula self-reciprocal. A coincidence of this 
nature must be viewed as totally accidental from the perspective of gen
eral operator theory, hence non-generalizable. On the other hand, this 
coincidence is what causes the same (-function to emerge on both sides 
of Eq. (2.19), whence the functional equation. 

All this suggests the following attitudes towards the properties of 
( ( s) still awaiting generalization: 

- class b) (special values): although ('(O) and ((2n) are directly 
given by the functional equation, we should seek an alternative, more 
general computation method; 

- class c) (functional equation for (( s)) : consider this as a particular 
manifestation of the singular decomposition of 8( T); then, use only this 
broader concept as a starting point for generalizations, instead of the 
functional equation itself. 

In the next section we shall achieve both goals indeed, within the 
framework of pure spectral theory. 
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§3. Functional determinants 

3.1. General notions [2] 

A useful preliminary step is the introduction of a "two-prong" func
tion, 

00 

(3.1) Z(s, ,\) = L (,\k + >.)-s (>. tt (-oo,->.o]), 
k=O 

analogous to the generalized (Hurwitz) zeta function of the integer spec
trum [lb], 

00 

(3.2) ((s,,\) = L(k+>.)-s. 
k=O 

As a function of s, Z(s, ,\) is the M-P zeta function for a shifted 
spectrum; hence 

(3.3) Z(s, ,\) = - 0(t)e->..tts-ldt l 100 

f(s) 0 

and its meromorphic structure and trace identities follow as before. 
The new feature in Z(s, ,\) is its ,\-dependence, embodied in a func

tional relation, 

(3.4) 
r+= 

Z(s, >.) = s }>. Z(s + l, >.')d,\1 (Res> -io), 

which constitutes an effective tool for the analytic continuation in s. 
In particular, repeated uses of Eq. (3.4) establish the following results. 

The function D(>.), defined by 

(3.5) D(>.) = exp [-Z~(O, >.)], 

has a convergent Hadamard product expansion with the monomial fac
tors (1 + ,\/,\k)- (It is thus a Det-type function for the spectrum {,\k}: 
the zeta-regularized, or functional determinant). Moreover, 

(3.6) ! log D(,\) = -Z'(O) -t(-l)nFP':(n) ,\n 

FP' Z(n) = Finite Part [Z(s)]s=n [+ anomalous term 

if n ~ 2 and c_n -=/- O] 
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and, following from Eqs. (3.3) and (2.7), 

(3.7) - ~ log D(>..) = f 00 ~ e(t) e->-.tdt 
lo t 

3.2. The Riemann case 

For the spectrum of integers, the determinant formulae become ex
plicitly 

(3.8) 

(3.9) 

with 

(3.10) 

(3.11) 

~ log D(>..) = log D(>..) + >..(log >.. - 1) + ! log>.., 
2 

1 1 1 
~8(7) = -- - - + -. 

eT-1 7 2 

Now, we can exhibit another manifestation of the singular structure 
of 8( 7), this time upon the Laplace transform (3.9) (the functional equa
tion for ((s) was a manifestation upon the Mellin transform (2.131)). A 
contribution of the singular part of 8(7) has to be a contour integral 
in order to lend itself to a residue calculation. To achieve this starting 
from (3.9), we perform coupled rotations of both the argument )... and 
the integration path, in their respective planes, and both ways (Fig. 2): 

(3.12) 

(3.13) 

-~log D(-i>..) = ~--e+i>-.rd7, J 8(7) . 

L 7 

-~log D(+i>..) = { ~ 9 (7\-i>-.rd7 
lu 7 

(we have exploited the parity of ~8(7), actually not an accidental prop
erty). Since the integrands have been regularized at 7 = 0, the con
tribution (3.12)+(3.13) is a contour integral around the upper poles of 
8(7), 

1 8(7) . 
(3.14) ~log D(i>..)+~log D(-i>..) = - ~--ei>-.rd7, 

C 7 
C = L-L"; 



336 A. Voros 

lmr 

L" 

Rer 

L' 

Fig. 2. The Laplace transformation paths in the plane of 
the function 8( T) = ( e 7 -1 )- 1 , as used in Eqs. (3.12-
3.14). 

it is thus a quantity solely dependent on the singular structure of 8 ( T). 
We compute the right-hand side by the method ofresidues, using T1 = 21r 
and Eq. (3.10), exponentiate the result and obtain 

(3.15) D(i>..)D(-i>..) = e1r,\(l - er1 ,\)/>.. 
sinh 1r >.. 

= 2 >.. 

i.e., a functional equation for the determinant. 
After that, expanding the logarithms of both sides with the help of 

Eq. (3.8), we find 

(3.16) 2 [-('(O) - f)-l)n((2n) >,.2nl = log 21r+ f (21r)2n B2n >,.2n; 
n=l 2n n=l (2n)! 2n 

thus, the special values ('(0) and ((2n) have now come out of the deter
minantal functional equation (3.15). 

Finally, the functional determinant for the integer spectrum has the 
explicit expression [lb] 

(3.17) D(>..) = y27r/f(l + >..), 

hence its functional equation is none other than the reflection formula for 
f(z). Our point, however, is that we never came to invoke any particular 
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property of the special function r ( z) ( such as its other functional relation 
f(l + z) = z r(z), which certainly reflects the regularity of the integers). 
All our arguments were of a purely "spectral" nature, and as such they 
will generalize. Up to minor qualifications, the following final picture 
will result in general: 

(3.18) 
Certain 8-functions have a remarkable global analytic structure. 

! 
Functional determinants satisfy functional relations. 

! 
Special zeta values obey algebraic identities. 

The central difficulty in the whole scheme will be to implement the 
first statement in each case, i.e., to identify an adequate Theta-type 
function 8 ( T) offering access to the details of its analytic structure; 
in general it will be much richer than meromorphic: resurgent, which 
means indefinitely ramified, with implicit ( analytic bootstrap) relations 
linking its discontinuity functions. 

§4. The spectrum of a compact hyperbolic surface 

4.1. The Selberg trace formula [5] 

Let X be a compact surface of constant negative curvature ( -1) and 
genus g (2: 2). The spectrum {.Xk} of its Laplacian -~xis very special; 
although it is unknown, it is completely determined through one closed 
relation, the Selberg trace formula. We can then directly resort to this 
trace formula to construct and make explicit the spectral functions for 
-~x-

The structure of the trace formula favors the auxiliary spectrum 

( 4.1) Pk = ✓>-k - 1/4, 

and for simplicity we shall assume that no >.k equals 1/4. The Selberg 
trace formula, with a general test function h(p) and its Fourier transform 

h(T) = (21r)- 1 J~: h(p)e-iTPdp, reads as 
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(4.2) l 00 1+00 00 
~ h(pk) = (g - 1) -oo h(p)ptanh 1rp dp +tr~ Wp,r h(rr(p)), 

VV: - r(p) 
p,r - 2sinh[rr(p)/2]' 

where the summation L{p} runs over the primitive periodic geodesics p 
on X, and r(p) denotes the length of p. Convergence primarily demands 
that h(p) be an even function analytic in a strip llmpl < 1/2 + c. 

For instance, the choice h(p) = e-tP2
, h(r) = ½(1rt)- 112e-72 / 4t, 

leads to the Theta-type function 

00 
(4.3) 0x(t) = Ee-tP~. 

k=O 

Then the right-hand side of the trace formula immediately reveals the full 
t ! 0 asymptotic expansion of 0x(t) (only the integral term contributes), 

( 4.4) 
oo (21-2n - 1) 

0x(t) ~ (g - 1) L I B2ntn-l _ 
n. 

n=O 

The usual heat trace I: e-t>.k = e-t/40x(t) will have a more involved 
expansion than 0x(t) itself, suggesting that P-k - 1/4} is a more basic 
spectrum than { Ak} . 

Accordingly, we would like to discard the usual M-P zeta function 
[6], 

(4.5) (Res> 1), 

in favor of the Mellin transform of 0x(t), formally 

k k 

but the presence of low eigenvalues (i.e., Ak < 1 / 4) makes this ill
defined. The Selberg trace formula can be of no help here, since the 
function h(p) = IPl- 2s grossly violates the analyticity condition. 

By contrast, in the "mirror" case of the sphere S2 ( constant curva
ture +1), the analogous shift Ak----+ Ak + 1/4 is permitted and simplifies 
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the spectral analysis. We have 

(4.7) 0s2(t)= f)2c+1)e--:t(£+1/2)2 ~ f)-1r(21-2n,-1)B2ntn-l 
R=O n=O n. 

(compare with Eq. (4.4)), and Z82(s, +1/4) is expressible in closed form: 

00 

(4.8) Zs2(s, +1/4) = L(2£ + 1)(£ + 1/2)-28 = (228 - 2)((2s - 1). 
£=0 

We shall consequently attempt again to define Eq. ( 4.6) properly, 
later. 

Another choice of test function, h(p) = cos tp, displays the content 
of the Poisson formula for the manifold X, similarly to Section 2: 

(4.9) 

" (1 - g) cosh t/2 
~ cos tpk = --2- sinh2 t/2 

k 

00 w +LL ;,r [8(t - rT(p)) + 8(t + n(p))]. 
{p} r=l 

The essential feature is the explicit, isolated T-singularities of the right
hand side, located in the length spectrum. Here, moreover, the singular
ities are elementary, thanks to the special choice of distorted spectrum 
{Pk} instead of~ as in Section 2. 

All this suggests that a Theta function of interest should be 

(4.10) 8x(T) = Le-TPk_ 
k 

However, Eq. (4.10) is ill-defined for the same reasons as Eq. (4.6). 
Fortunately, we can find a different trace formula which will allow and 
determine singular spectral functions like ( 4. 6) and ( 4.10). 

4.2. The sectorial trace formula [7] 

Suppose instead that h(p) is analytic in a sector IArg Pl < 7f /2 + E: 

(with mild decay conditions at O and oo ); then, 

( 4.11) 

1+00 L h(pk) = 2(g - I) h(p)ptanh 1rp dp 
k 0 

1oo[h(-iK,)-h(+i"')]dl z (! ) + 2 . og X 2 + K, ' 
0 7ri 
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where 

00 

(4.12) Zx(O") = IT I: ( 1 - e-(a+m)r(p)) 

{p} m=O 

defines the Selberg zeta function; Z x (1/2 + K) vanishes at ±ipk, and the 
second integration path must avoid those zeros which lie in the interval 
[0, 1/2]; it can do so by the right (or left), in connection with the choice 
of each corresponding Arg Pk in the left-hand side of (4.11), -n/2 (or 
+n/2). 

With such a choice made, we can define and compute unambiguously 
a function 8x(7) as in Eq. (4.10). Putting h(p) = e-rp in the sectorial 
trace formula, we obtain 

(4.13) 
[ 1 00 

( 1t' l 8x(7) = ~ e-rpk = (2 - 2g) 72 + 2 ~ (7 +-2nir')2 

+ ~ 100 

sin rn d log Z x ( ~ + K) . 

The right-hand side then reveals the global analytic structure of 8x(7) 
(Fig. 3). This function is meromorphic, and has: 

a) double poles at 7 = - 2nr', with principal part coefficients 4( 1 -

g)(-lY' (halved for 7 = O); 
/3) simple poles at 7 = ±irr(p), with residues Wp,r/2n; 
'"Y) a functional equation, 

(4.14) 
COS 7/2 

8x(7) + 8x(-7) = (g - 1) . . 
sm2 7 /2 

Like the function 8(7) = (e7 - 1)-1 used for ((s), the function 8x(7) 
has a nice global meromorphic structure. We can therefore perform the 
exact analogs of the contour integrations made in Sections 2-3, in order 
to exhibit consequences of this global structure. 

On the other hand, the local analytic structure ( or complete expan
sion at 7 = 0) is no longer available for 8 x ( 7), but only for the other 
Theta-type function 0x(t), in Eqs. (4.3-4). The information which for 
((s) was carried by the single function 8(7) is now distributed among 
two distinct functions. 

4.3. The functional determinant [8,2,9] 

We first describe the effect of the poles of 8 x ( 7) upon its Laplace 
transform. Manipulations similar to those leading from Eq. (3.9) to 
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+ Imr 
' ' __,_ 

..... Twp,,/2Tr 
inlp! • 

- 2x •2x - 2x •X 

-6rr -4rr -211 o 

-in/pJ -.. 

Re r 

Fig. 3. The analytic structure of 8x(T) for a compact hy
perbolic surface X. Dots are simple poles and cross
es are double poles. The boldface values are the co
efficients of the principal pole terms; for the simple 
poles they are the residues Wp,r/21r; for the double 
poles, the notation is X = 2 - 2g. 

(3.15) give here a determinant formula, 

(4.15) 

341 

Here, the functional determinant of -Ll.x occupies the place which 
>..D(i>..)D(-i>..) had in Eq. (3.15). The Selberg zeta function Zx is con
tributed by the simple poles of 8 x(T) : like the right-hand side of (3.15), 
it originates from a geodesic length spectrum (notice the same Euler 
factors in both!). Finally, the other determinant factor comes from the 
double poles of 8x(T), which did not exist in 8(T). 

So there is, as announced, a functional relation for the functional 
determinant, Eq. ( 4.15), similar to the reflection formula for the Euler 
Gamma function, Eqs. (3.15), (3.17). (In ref. [7] we proceeded back
wards, using Eq. (4.15) to actually derive the sectorial trace formula). 

Selberg's functional equation for the zeta function Zx [5] is con
tained in Eq. (4.15) (divide it by the same with K ~ -K, thus eliminate 
Det(-Ll.x - 1/4 + K 2 ) by parity). Thus, it also lies in parallel with the 
reflection formula for f(z). 
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Therefore, from the point of view of spectral theory, the Selberg 
functional equation is of a totally different nature from Riemann's, and 
Zx has none of the properties of a Zeta-type function; the Selberg zeta 
function is fundamentally a Det-type function. (Naturally, other points 
of view on these two functions may uncover different connections, see 
these Proceedings). 

There remains the remarkable coincidence that the Selberg zeta 
function, like Riemann's, has an Euler factorization (Eq. (4.12)), with 
the skeleton now being provided by the Ruelle zeta function (1.2) of the 
geodesic flow on X. This Euler factorization ·may receive a semi-classical 
interpretation, as a manifestation in the spectrum of the limiting wave 
dynamics of wave-length tending to zero [10] which is governed by the 
geodesic flow (geometrical optics or classical limit). Since for this spe
cific problem the asymptotic or semi-classical formulae are exact [11], the 
factorization of the functional determinant over the Ruelle zeta function 
can be exact as well. 

4.4. The "zeta function of the zeta function" [7,9] 

The spectral zeta function in this problem is not the Selberg zeta 
function, but the Dirichlet series of its (non-trivial) zeros. Thanks to the 
sectorial trace formula we now have an interpretation and an evaluation 
method for Eq. (4.6): we set h(p) = p-2s in Eq. (4.11) and find 

Zx(s, -1/4) = :~::>kzs 
(4.16) k 

( ) Z8 2(s,+l/4) sin 1rs1= _28 l (1 ) = 1 - g ----- + -- ,,,, d og Zx - +,,,, 
COS 7rS 7r O 2 

(cf. the rule of determination provided with Eq. (4.11), and Eq. (4.8) 
for Z 8 2 ). 

All at once, this formula gives the meromorphic continuation of 
Zx(s, -1/4) and displays many of its properties, by mere inspection 
of the zeros and poles of its components: trace identities, 

( 4.17) 
Zx(-n, -1/4) 

= (-1r+1 (g -1)(1 -T2n-1)B2n+2/(n + 1) (n EN), 

and special values (Zx at s = +n, and Z~ at s = 0, in terms of higher 
derivatives of log Zx at 1/2) [9]. These are the results of classes a) and 
b). 

Now, we turn to class c), finding the substitute for Riemann's func
tional equation. 
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IfwereplaceZx by its Euler product (4.12) inEq. (4.16) and expand 
term by term, we obtain formally: 

Zx(s, -1/4) = (1- g) Zs2(s, +1/4) 
COS 7rS 

(4.18) 1 
-1;2r(--s) 00 

+ 7r22s i(s) LLWp,r[n(p)]2s-l, 
{p} r=l 

which arises in the same way as Riemann's functional equation in the 
form (2.18): the sum in (4.18) is a (weighted) zeta series over the simple 
poles of 8 x ( T ), while the Z 8 2 term is the resummed contribution of the 
double poles. 

It is obvious that Eq. (4.18) can in no way represent a functional 
equation for Zx(s, -1/4), because now the eigenvalue spectrum in the 
left-hand side and the length spectrum in the right-hand side are so 
different. Moreover, the term by term expansion of the integral in 
(4.16) was illegitimate, and the series (4.18) diverges for all s (this 
is also directly implied by the exponential proliferation of the length 
spectrum, or positive topological entropy of the geodesic flow). Never
theless, Eq. (4.18) holds true as the asymptotic expansion of Zx(s, -1/ 4) 
for s - -oo. 

In conclusion, the substitute to Riemann's functional equation for 
the spectral zeta function of this problem is, strictly speaking, the rep
resentation (4.16) for Zx(s, -1/4), which among other things yields its 
analytic continuation and its asymptotic behavior for s - -oo. 

§5. Homogeneous Schrodinger operators 

We now consider the spectral problem for a homogeneous 
Schrodinger operator on the real line, 

(5.1) 

with M a positive integer. The spectrum { .\k} is purely discrete; the 
obvious dependences on M will not be explicitly indicated. 

Only for M = 1 (harmonic oscillator) is the problem solvable; then 
Ak = 2k + 1, hence the spectral functions are essentially those of Sec
tions 2-3. Here we shall survey results for M 2:: 2; all examples will 
focus on M = 2 (quartic oscillator), which already contains (almost) the 
full analytical complexity of the general case, i.e., of linear differential 
equations with polynomial coefficients. At the same time, algebraic or 
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combinatorial complexity is kept minimal: only one parameter is rele
vant,>.. 

5.1. Basic results [12] 

The trace of the heat operator exp(-tH) can be evaluated in powers 
oft ( t --+ o+) by global symbol calculus a la Weyl, resulting in an explicit 
asymptotic expansion, 

(5.2) { 
B(t)( = I:e-t,\k) ~ f e,;ntin (in= (~; l) 

k e.g., Ci0n:0
(2My7r)- 1f[l/(2M)]. 

(2n - I)), 

Then, as explained in Section 2.2, the M-P zeta function, 

(5.3) Res> (M + I)/(2M), 

has a meromorphic continuation to s E (C with explicit poles, residues, 
and trace identities (for example, if Mis even, Z(-m) = 0 lc/m EN). 

We also gave a few special values in [12b], notably 

(5.4) Z'(O) = log sin ( 7r ) , 
2 M+l 

but the arguments were ad hoc and perhaps misleading as to the deep 
origin of those results. Here, we shall present a unified viewpoint in 
accordance with the diagram (3.18) [13]. 

The main initial obstacle comes from an "uncertainty relation" be
tween 800 , the asymptotic density of a spectrum {Pk} for p--+ +oo, and 
d-1 , the minimal inverse distance between any two singularities of the 
function L e-tpk on the imaginary axis: 

(5.5) 

Now, standard (WKB) estimates for the spectrum of Eq. (5.1) give 

(5.6) Ak ~ [r (~ + 2~) (2e,;0 )-
1 (2k + l)rM/(M+I) 

The case M = I is special: Eq. (5.6) is exact, and the function B(t) of 
Eq. (5.2) is described by the Poisson summation formula: it has equidis
tant poles, and with spacing exactly 21r800 • But as soon as M 2: 2, 
800 = 0, and Eq. (5.5) implies a natural barrier for the function B(t) : 
the imaginary axis is densely covered by its singularities, which then 
cannot be resolved. 
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5.2. Resurgent Theta-type function [13] 

As in the preceding section, our only hope is to find another Theta
type function with better global analytic properties. This time, however, 
we have no exact trace formula to produce such a function immediately, 
and in fact there is no guarantee that it will exist at all. 

A first approach is based on Eq. (5.6) and on the limiting case 
M = l. We distort the spectrum into an asymptotically uniform one, by 
setting 

(5.7) 

and 

(5.8) 

, (M+l)/(2M) 
Pk= "k 

Unfortunately this function cannot be directly and fully resolved 
into singular terms even for M = 2; nevertheless, this attempt gave 
encouraging partial results [14], like the prediction of a regular lattice of 
branch points for the function 8 3;4(7) of the case M = 2. 

Further progress requires a more thorough investigation of the dif
ferential equation (5.1) itself. One can associate to it (for each fixed 
M) an infinite algebra of ramified analytic functions whose singularities 
obey simple recombination laws under convolution. All singularities are 
then governed by this algebraic structure, which is of the general type 
known as resurgence algebra [15]. The singular structure of the function 
8 M+1 ( T) then follows from its actual membership within the algebra, 

2M 

i.e., from its resurgent character. We now describe the main lines of this 
analysis (cf. [13] for details). 

5.3. Analytic bootstrap 

We introduce a spectral function a(.\) directly coupled to the dif
ferential equation (5.1) itself. By general theorems [16], this equation 
admits asymptotic solutions (the WKB expressions) 

(5.9) { 
't/J±(A,q) = 7r(q)- 112 exp± jq ?r(q')dq', 

?r(q) = (q2M _ .\)1/2, 

which become exact in either limit I q I--+ oo or A --+ -oo. For A < 0 
and for the (unique) true solution 'lj;(A, q) of (5.1) having a decreasing 
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behavior at q -+ -oo prescribed by 

(5.10) 

we define the Jost function 

(5.11) 

On the one hand, a(.\) -+ 1 for ,\ -+ -oo since WKB solutions then 
become exact; on the other hand, a(.\) = 0 whenever an exact solution 
decreases for both q -+ ±oo, which happens precisely at the eigenval
ues; hence, a(-.\) should be proportional to Det (-d2 /dq2 + q2M + .\) = 
D(.\). Both facts are reflected in the following rigorous identity, 

(5.12) 
log a(-.\) =~log D(.\) 

(valid at first for ,\ > 0, then analytically continued everywhere). We 
have thus linked the functional determinant D(.\) to the special solution 
1/J(-.\,q), via Eqs. (5.9-11). 

Then, noting that the corresponding equation (H + .\)1/J = 0 can be 
rescaled ( for A > 0) as 

(5.13) (-x-2 d~2 + q2M + 1) 1/J (q) = 0, 

where 

(5.14) 
M+l 1 

x = ,\ 2M (and q = ,\-2Mq), 

we can expand the solution 1/J(-.\, q) semi-classically (in powers of x- 1 , 

around the WKB approximation 1/J+(-.\, q); x- 1 is also the quantum 
mechanical Planck's constant ti). This results in an expansion for the 
function a(-.\), of the form 

(5.15) { 
log a(->-~~ t a,.x'-'", 

an - -r( Zn)Cin 

(x-+ +oo) 

This series should diverge for all x since we are using a singular 
perturbation technique. We then consider the Borel-transformed series, 

co 

(5.16) (log a)B(T) = LanT2n-l/(2n -1)!. 
n=l 



Spectral Zeta Functions 347 

If this series has a finite radius of convergence, and if its sum 8 0 ( T) 
extends analytically to the positive T-axis, we may tentatively write a 
Borel resummation formula, 

(5.17) { 
log a(->.) 

i.e., ~ log D(>.) 

= x 100 
(log a)B(T) e-xr dT, 

= x 100 8 0(T) e-xr dT. 

We are using Eqs. (5.12), (5.14); our notation 8 0(7) for the Borel 
transform (log a)B is meant to recall the Laplace relationship (2.7). 
(However, 80( T) cannot have a Dirichlet series like (2.2), otherwise it 
would not be analytic around T = 0). 

Now, all this can be justified (semi-rigorously) using the complex 
WKB method, which moreover establishes that 8 0(7) belongs to a par
ticular algebra of ramified analytic functions with isolated singularities 
[13]. The locations of these singularities have a geometric interpretation 
reminiscent of the Poisson formula for manifolds: they lie at the values 
of the action integrals over all cycles, i.e., of j(q2 M - >.) 112dq taken 
along all real or complex periods of classical trajectories. 

In the simplest case M = 2, we display the analytic structure of 
8 0 ( T) in Fig. 4a. The action values ( elliptic integrals) form the discrete 
lattice 

(5.18) w(Z + iZ), 

-l(ala'-Jl~ 3 B 

. l( ala'-2) 
2 B 

- ( aa·l )B 

w = r(l/4) 2 /(3fo). 

0 

4a 

I ( -3 , -11 --3 aa 8 

Rer 



348 A. Voros 

Imr 

~ iw~ 

-(a2a'le -2(aa'le 2(a1a')s (a2a')a3w 

4b 

lmr 

(+ 1/2) 

-,. 1) (-1) -------1-2) fi.w 

(-1/2) {+1) 0 

:,i,.21 4 1-21 -,.21 
Rer 

-,.s, -(-3) (+1) 

=it-141 4 (+20}1r(-2) 

~(-35/2)~(+5) (-1/2) 

4c 

Fig. 4. Analytic bootstrap structure of resurgent spectral 
functions for the quartic oscillator (M = 2): a) the 
Borel-transform series (5.16), or 6o(r); b) the func
tion a~(r) = aB(-iT), also in the resurgence al
gebra; c) the function T- 1 6 3 ; 4 (r), with 6 3 ; 4 (r) = 
""""' -t>.314 D" . ·t f t· th t uk e k • 1scontinm y unc ions across e cu s 
are marked for a), b) (see [13] for details). 

All discontinuity functions across cuts are the Borel transforms, nor-
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malized as in Eq. (5.16), of monomials Cmm'a(x)=a(ix)m' (m, m' E Z); 
the x-series a(x) and a'(x) = a(ix) are computed by exponentiation of 
Eq. (5.15). 

Figure 4b shows the analytic structure of a~ ( s). In fact, the function 

80 ( T) and all monomials (am a' m') B ( m, m' E Z) form a closed system 
under monodromy operations (property of analytic bootstrap); they gen
erate a special type of convolution algebra called a resurgence algebra 
[15]. 

Finally, figure 4c sketches the similar analytic structure found for 
the function T-1 8 3; 4 (T), where 8 3; 4 (T) is an actual Theta-type func
tion (Eq. (5.8), with M = 2). The pattern is rotated by ?T/4 from the 
previous figure and the discontinuity formulae suffer slight additional 
complications (hence we have simply marked a few weights Cmm' ), but 
the relationship with the previous algebra is visible. 

5.4. The M-P zeta function 

The function Z(s) = I; >.-,;s, already defined in Eq. (5.3), has three 
Mellin representations: the usual one, Eq. (2.11), another one differing 
from it by the rescaling of the powers (Eqs. (5.7-8)), 

(5.19) (Res> 1), 

and finally the representation obtained by composing the Laplace trans
form (5.17) and the Mellin transform (2.6), 

Z ( ~; 1 s) 
(5.20) 

sin (M; 11Ts) 1= 
_2 _s_ 8o(T)Ts-ldT (-1 <Res< 0). 

sm 1TB f(s) 0 

Either of the two displayed equations can be used to investigate the ef
fects on the zeta function of isolated singularities of 8-functions. 
Eq. (5.19) was used in [12b], but (5.20) is actually much simpler to use 
because it is readily turned into a contour integral (Fig. 5 for M = 2): 

(5.20') 
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[mT 

Rer 

--
Fig. 5. The Mellin representations (5.20) for the spectral 

zeta function Z(s) = Ek x,;• of the quartic oscil
lator (M = 2). 

We can now mimic exactly the contour deformation which led from 
Eq. (2.13') to Riemann's functional equation, ... except that the con
tributions of the singularities are now integmls over the (radial) cuts 
(Fig. 5), 

(5.21) 

z ( ~Zls) 

. (M+l ) 
sm ?M1rs sr(l_- s) Z:f 8 0 (r)(-r) 8 - 1dr (Res< 0), 

sm 1rs 2i1r . cj 
J 

and we cannot resum this in closed form. Clearly, anyhow, the s.truc
ture of the right-hand side is quite different from that of Z(s) itself, so 
that any local functional equation for Z(s) of Riemann's type can be 
excluded. 

However, if we order the summation terms in Eq. (5.21) according 
to the increasing distance of the cuts' origins from s = 0, and expand 
term by term (using the information like in Fig. 4a for M = 2), the 
result is the explicit asymptotic expansion of Z ( s) for Res -+ -oo, in 
analogy with Eq. (4.18) for the zeta function of a hyperbolic surface. 
Here, however, it will be a double series in exponentials and powers of 
s. 
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For instance, for M = 2, the leading expansion terms are 

(5.22) 

z(~) s sm 31rs/4 8 Loo . --~[w aT(-s-J) 
1r cos 1r s /2 1 

j=O 

+ cos :s (-/2w )8 :z:::;:0 ,jr(-s - j) + ... l (s - -oo ). 

The first asymptotic series in the brackets is the contribution of the two 
cuts at the nearest branch points, namely T = ±iw, and the second one is 
the contribution from the four next nearest branch points having lrl = 
-/2 w (Fig. 5). The coefficients aj and rj are specified by generating 
functions which invoke the an again (Eq. (5.15); this is a manifestation 
of analytic bootstrap): 

(5.23) 

f acz£ = exp [- f aj(wz) 2j-ll e.g., a 0 = 1, 
£=0 j=l 

~ otz' ~ exp [2 ta; coo [c2j - 1) 3; l (v'2wz)'H] ; e.g., Oo ~ L 

We recall that the asymptotic expansion (5.22) was constructed us
ing the same mechanism which produced Riemann's functional equation 
for ( ( s); here, this constitutes the only property of this type for Z ( s) 
which we can write out in a fully explicit closed form. 

5.5. The functional determinants [13] 

Through the integral representation (5.17), the rigid analytic struc
ture of 8 0 ( T) imposes a severe constraint upon the functional determi
nant D(>.). Indeed, generalizing Eq. (3.12-14), we may form all integrals 
like (5.17) (cf. Fig. 6 for M = 2), 

(5.24) 

This is a piecewise constant function of the angle If!, which has finite 
jumps at the phases of branch points of 8 0 ( T) in the sheet of integration. 
The successive jumps are functions of I'-P itself through the analytic boot
strap relations, moreover I'-P+1r(x) = -I'-P(-x) by the parity property of 



352 A. Voros 

Fig. 6. The Laplace transforms (5.24) of the function 0o(T) 
for the quartic oscillator (M = 2). 

8 0(7) in Eq. (5.16). Exploiting all this, we can deduce a symmetric 
polynomial functional equation for the functional determinant, 

(5.25) p [D(>.), D(02 >.), ... , D(02M >.)] = o, f2 = ei1r/(M+l). 

For M = 1, D(>.) = yl27r2-,\/2 /r((1+>.)/2), and we recover the 
reflection formula for the Gamma function. Eq. (5.25) generalizes this 
to higher M. For M = 2, the functional equation is 

(5.26) D(>.) D(j>.) D(j 2 >.) = D(>.)+D(j>.)+D(j2 >.)+2 

For M > 2 the equation is intractable in polynomial form; an alter
native form is the system 

(5.27) { 
~ </>(f22k >.) = 1r/2, -

¢(>.) = Arc sin [D(O>.)D(n- 1 >.)r 112 . 

These equations are of the same type as the functional equations 
satisfied by the Stokes multipliers of polynomial Sturm-Liouville equa
tions [16]. (In fact, the Borel transforms of Stokes multipliers belong to 
the same resurgent algebra already discussed). All studies indicate that 
these functional equations are very mysterious and that their solutions 
within entire functions ( the only relevant ones in the present case) are 
quite elusive. 
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The same argument as Eq. (3.16) for ((s) can now be applied. If 
we expand the functional equation in powers around .X = 0, we obtain 
information about special values of Z ( s) = L x;;s, namely, 

(5.28) Z'(O) = logsin[7r/(2M + 2)], 

and countably many polynomial identities of the form 

(5.29) Z[(M + l)n] = Pn{Z(m) I 1::; m < (M + l)n}, n = 1,2, ... 

where Pn is homogeneous of total degree (M + l)n if Z(m) is assigned 
degree m. For instance, the first identity for M = 2 is 

(5.30) Z(3) = Z(1) 3 /6 - Z(l)Z(2)/2. 

These identities are to be viewed as generalizations of the classical 
zeta-values ((2n); here they are only implicit, like the analytic bootstrap 
relations which generated them. 

Further progress is achieved by splitting all spectral functions into 
even and odd parts; for instance, 

(5.31) 

where D+(.X) (resp. n- ().)) is the functional subdeterminant over the 
eigenvalues {),.2k} belonging to the even eigenfunctions (resp. {-\2k+d 
belonging to the odd eigenfunctions). 

A functional relation is then found between n+ and n-, one form 
of which is, for M > 1, 

(5.32) 
n 112 n+(n-1 .x)n-(n.X) - n-112 n+(n.x)n-(n-1 .x) = 2i 

(D = ei1r/(M+1)). 

This relation not only implies Eq. (5.27) but contains much more infor
mation: its power series expansion around .X = 0 now gives one identity 
for each power of .X, instead of only one identity like (5.29) for every 
(M + 1)-th power of .X in Eq. (5.27): 

(5.33) 

Z'(O) + f: cos~ Z(n) (-.xr 
M+l n 

n=l 

[ 7l' ~00 m7l' zP(m) l = log sin ( ) + sin-M --(-.X)m 
2M+l +1 m 

m=l 
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(M > 1), where 

00 

(5.34) zP(s) = 2)-l)kAks. 
k=O 

The first two identities besides Eq. (5.28) read as 

(5.35) 

n n n 
cot ( ) sin-- zP(l) - cos -- Z(l) = 0 

2M+l M+l M+l 
(M > 1), 

n 2n p 2n 
cot ( ) sin -- Z (2) - cos -- Z(2) = 

2M+l M+l M+l 

n P 2 
[2cos 2(M + l) Z (1)] . 

Eq. (5.33) thus subsumes the class b) results for this problem. The 
supplementary information gained upon going from Eq. (5.27) to (5.33) 
corresponds for M = l to the special values 

(5.36) 
(n /2)2n+l 

/3(2n + 1) = 2(2n)! IE2nl 

of the alternating zeta-function f3(s) = I:~(-l)k(2k + 1)-s (which is 
zP(s) for M = 1), in terms of Euler numbers [1]. 

Now, a fundamental open problem is to understand the structure 
and solvability of functional equations like (5.26-27) or (5.32), which 
can take a bewildering variety of equivalent forms, and the degree to 
which these relations determine the spectrum of Eq. (5.1). 

Conclusion 

We have obtained, for the spectrum of homogeneous Schrodinger 
operators, the following diagram of the type (2.8): 
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(5.37) 
0(t) 

Lap!™" (3.7) / . xllin (2.11) 

- ~ logDet(>.) Mellm (2.6) Z(s) 

Laplac~Ilmel (5.~ Mellin (5.20\ ~ (5.19) 

8o(T)-+----.- 8M+l() 
2M T 

resurgence algebra relation 

355 

The top-half arrows provide the results of class a), and the bottom
half arrows those of classes b) and c), for the spectral (M-P) zeta function 
Z(s). 

§6. Concluding discussion 

In the preceding two sections we have surveyed two spectral gen
eralizations of some classical results about the Riemann zeta functions 
and its spectral (trigonometric, Gamma) functions. 

The two examples were chosen to have very distinct features. The 
spectrum of a compact hyperbolic surface is described by a partial dif
ferential operator, which is special but genuinely two-dimensional (non
separable, mixing in the classical limit). The spectrum of a homoge
neous Schrodinger operator is a prototype of a non-solvable problem in 
one degree of freedom, described by an ordinary differential equation 
with variable coefficients. 

Each case has special properties of its own which were exploited in 
its analysis. In the former case we used the Selberg trace formula which 
expresses some form of exact solvability for the problem; in the latter we 
used techniques for ordinary differential equations, which are much more 
developed than for partial differential operators. At present we cannot 
directly analyze the spectrum of general partial differential operators, 
which is the remote goal of such studies. 

We can conjecture, however, that the identical structures found in 
those two contrasted examples will appear in general: resurgent Theta
type functions; functional relations for functional determinants; identi
ties on special values and some asymptotic ( s -, -oo) information for 
certain spectral zeta functions. Solvable problems ( cf. Section 4, and 
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the harmonic oscillator in Section 5) should lead to meromorphic Theta 
functions (a degenerate case of resurgence). 

A candidate for a resurgent Theta function in a general spectral 
Schrodinger problem 

(6.1) H(n)'l/J = E'l/J 

is, for instance, 

(6.2) eE(T) = L e-TXk(E)' 

k 

where xk(E) are the "characteristic values" of !i-1 for which E (fixed) 
is an eigenvalue in Eq. (6.1). We have conjectured that the complex 
singularities of 8 E ( T) should lie at the action periods of the classi
cal (bicharacteristic) Hamiltonian flow, real and complex - assuming 
that its periodic orbits are isolated [17]. This conjecture essentially re
expresses, in a divergence-free manner, Gutzwiller's trace formula for 
quantum mechanics [18], adding the contributions of the complexified 
orbits in compliance with Balian and Bloch's analysis [19]. All in all, the 
function (6.2) provides one possible starting point for further general
izations of the results described here, but all the computing algorithms 
remain to be elaborated. 
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