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Some Observations concerning the Distribution
of the Zeros of the Zeta Functions (I)

Akio Fujii

§1. Introduction

Let Z(s) be a zeta function which has nice properties like the Rie-
mann zeta function ((s). Let oq be the critical point of Z(s) and suppose
that the Riemann Hypothesis (R.H.) holds for Z(s), namely, all the non-
trivial zeros of Z(s) are of the form oy + ¢y with a real number «. The
purpose of the present article is to find some of the characteristic prop-
erties of the distribution of the zeros of ((s). We shall approach this
problem by comparing it with the distribution of the zeros of Z(s) from
the following three points of views.

(A) To study the pair correlation of the zeros of Z (s). Namely, to
find an asymptotic law for the quantity

Z -1 as T — o0,

0<y,y'<T
O0<ry—ny! < 2mcx
Y= Slog '21-"

where v and 4’ run over the imaginary parts of the non-trivial zeros of
Z(s) and « is a positive number.
(B) To find an asymptotic law for the mean value

/T(Sz(t+A)—SZ(t))2dt as T — oo,

where Sz(t) = 1 arg Z(og + it) as usual and A > 0.
(C) To find an asymptotic law for the sum

Z !Z(cro+i('y+A))|2 as T — oo.
0<y<T
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As we shall see below (A),(B) and (C) are related each other. In

particular, to study (A) and (B), it is inevitable to evaluate the following
Montgomery’s sum

Fz(a) = Fz(a,T) = Lt > ( T )i“””") w(y =),

- —
2m logT 0<y, ¥ <T 27
here a is real, T > Ty and w(t) 4
where a is r and w(t) = ——.
9 0 4+t2

As a result, we shall realize that the distribution of the zeros of {(s)
represent the most primitive, or genuine, feature. And that the distri-
bution of the zeros of Z(s) is of the same type as that of {(s) if Z(s) is
primitive, namely, it is not decomposed of the products of the ordinal
zeta functions which have the Euler product expansion and the func-
tional equation like ((s). Dirichlet L-functions and Ramanujan 7-zeta
function belong to this category.
In general, roughly speaking, it might be that

> 1
0<7,Y'<T

0<y— < 27
Y ’Y‘log%

T
= log T - {a linear combination of “Uniform distributions”
T

+ a linear combination of “GUE distributions”},

where “Uniform distribution” is of the form

U(a)=/0a dt

and “GUE distribution” is of the form

Gla) = /Oa (1 - (Siit”)2> dt.

It might also be that

T 9 2
/ Sz |t+ —= | —Sz(t) | at
0 IOg or

T
~ — X a linear combination of “GUE parts”,
T
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where “GUE part” is of the form
g(@) =log(2ra) + Cy — Ci(2ra) + 1 — cos(2ma) + ma — 2raSi(2na)

with the Euler constant Cj.
In particular, it might happen that even when the pair correlation of the
zeros of Z(s) is not of GUE type, the mean value

T 9 2
/ Sz |t+ ) = Sz(t) | at
0 log 5~

is of GUE type. The simplest example might be the Dedekind zeta
function of a quadratic number field.
The contents of the rest of the present article is as follows.

§2. Statements of the general conjectures
83. Riemann zeta function
84. Dedekind zeta functions
§85. Ramanujan T-zeta function
§6. Some other examples
§7. Proofs of some theorems stated in the section 4
7-1. Proof of Theorem 14
7-2.  Proof of Theorem 13
7-3. Proof of Theorem 12
7-4. Proof of Corollary 3
References

We always assume R.H. for Z(s) in each section if we do not mention
anything about it.

The proofs of the other new results will appear in the subsequent
articles.

§2. Statements of the general conjectures

We start with stating some conjectures concerning our problems (A)
and (B). In the subsequent sections we shall see the background of the
conjectures by describing the results and the conjectures for some special
cases.

Now suppose that Z(s) is of the form

Z(s) = Z1(8)Z2(s)--- Zr(s)
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with the primitive zeta functions Z;(s) of b;-type for j = 1,2,..., R,
where we say that Z;(s) is of b;-type if

U
EJ_,(ZJO — o+ it) ~ ~bjlogt as t—oo forany o> 20p.
g

We rewrite Z(s) as follows.
Z(s) = G1(s)Ga(s) - -- Gk (s),

where we put

Gn(s) = II Z;(s)

Z;(s) is of by-type

and we suppose that 0 < by < by < ... < by and that

. 1 ’
A Tt J, S5 (057,00 =0

if and only if Z;(s) and Z,(s) belong to different G},’s.
Let my, be the number, with multiplicity, of Z;(s) in Gr(S). We put
further

M:m1b1+m2b2+---+meK

and

A=m24+m2+. - +m%.
Using these notations, our first conjecture on Montgomery’s sum Fz(a)
may be stated as follows.

Conjecture 1.

((Aa+ (M?+0(1))(£) 2 logT +0o(l)  for 0<a<b
m2b; + (A —m?)a + o(1) for by <a<bs
Fy(a) = m2by + mby + (A —m2 —m3)a+o0(1) for by<a<

L m3by + mbs + - - + m% bk + o(1) for b < a,
uniformly in bounded intervals.

Our second conjecture is concerned with the pair correlation of the
zeros of Z(s).
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Conjecture 2. For any a >0,

SR

0<y,y' <T

0<y— g 2T
v ’Y'_log%

T
= 5-logT- {(M? —m2b2 — - — m%b%)U(a)

+m2b1G(bra) + - - - + mibrg G(bra) + o(1)}.

Our third conjecture is concerned with our problem (B).

Conjecture 3. For any a > 0,

T 9 2
/ (S’Z (t+ = > - Sz(t)) dt
0 10g o

= - Imlg(b10) + -+ miglbra) + o(1)}.

Conjectures 1 and 2 for {(s) were proposed by Montgomery [17] and
Conjecture 3 for {(s) is the GUE part of the conjecture (19) proposed
by Berry [1].

We do not dare to describe any conjecture concerning our problem
(C) since only the mean values for {(s) and Dirichlet L-functions have
been evaluated.

§3. Riemann zeta function

¢(s) is the zeta function from which we start and to which we return.
We describe some of the known results and conjectures concerning this.
In this section we omit writing suffix (.

Montgomery [17] and Goldston-Montgomery [14] have shown the
following theorem.

Theorem 1. Foranya in0<a<1,

loglogT T

loglogT T, 2,
—T—7 —— (= log —.
)+ (1400 2B ) () log 5

F(a) =a+ O( log T

For a > 1, Montgomery [17] has conjectured the following.
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Conjecture 4.
F(a)=1+0(1) for a>1,
uniformly in bounded intervals.

Theorem 1 and Conjecture 4 imply the following Montgomery’s pair
correlation conjecture.

Conjecture 5. For any o >0,
T
Z 1= 2—7;logT-{G(a)—|—o(1)}.
0<v,y'<T

0<vy— /g 2ma
Y 'Y_logg‘l_r

As is noticed by Dyson, the density function

(sinﬂ't)2
1—
mt

in G(a) is exactly the density function of the pair correlation of the
eigenvalues of Gaussian Unitary Ensembles (GUE).
By the Riemann-von Mangoldt formula, we see that

X -y % s

0<vy,Y'<T O<yST y— 222 <y/<y
0<’Y—’Y/S 2-”%_‘ log 3
log-z—ﬂ_
T T [¢ 2
Ll [a- ¥ s<7__710;_> o),
4 T Jo 0<~<T log 5
because
1 /7 logT \*
3 S(’y)=2—/ S(t)logtdt+o<(1°1LT) )
0<~<T T Jc og log

1 1 T logT \?
=9 Tr_ - ~d _—S5—
271'[ 1) logt]c 271'/0 Sl(t)t t+0<(loglogT) )

-0 logT 2 ’
loglogT

S1(T') being the integral fOT S(t) dt which is O (Zﬁ—gl%(g’ng)z)'

Hence, Conjecture 5 is equivalent to the following one.
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Conjecture 5'. For any a > 0,

T T « (sinmt)?
3 s( T): lg—_-{/ (S’“) dt+o(1)}.
0emer g 5 2 2w 0 mt

Concerning this kind of sum, we have shown in [9] and [10] the
following theorem.

Theorem 2. Suppose that a < T4 with some positive constant
A. Then we have

Z S(y+a) <TlogT.
0<~y<LT,v+a>0

If we use this in the above argument, then we get the following
consequence.

Corollary 1. For any a > 0,

> -1:—1og—</ dt+0(1>

0<y,y'<T
- I< 2no
0<y—y Sie L

27

We turn our attentions to our problem (B). We recall some of the
basic results concerning the mean value of S(t). First, Selberg [20] has
shown the following theorem.

Theorem 3. For each integer k > 1,

/O TS(t)%dt (%T(loglogT)k+O(T(loglogT)k 7).

A short interval version of Theorem 3 has been shown by the author
in [2] and [4].

Theorem 4. For 0 < A < 1 and for each integer k > 1,

2k

/T (S(t+A) = S(¢))™ dt
0

(2k)!

=yl L (log(2+Alog )" +O(T (log(2 + Alog T))* %),

Theorems 3 and 4 were proved without assuming R.H. Under R.H.,
Goldston [13] has refined Theorem 3 for k = 1 as follows.
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Theorem 5.
T 5 T
/0 S(t)* dt =52 loglog T

+ T(/OOF(a)da—i-Co

Ty (= + ) ) + oD

where p runs over the prime numbers.

In fact, Goldston [13] has shown, under R.H., that

/ F(a) da is bounded.
1

a2

A short interval version of Theorem 5 has been shown under R.H. by
the author in [9] and [10] (cf. also Odlyzko [18]).

Theorem 6. Suppose that 0 < A = o(1). Then we have
T 2
/ (S(t+A)—S(t))"dt
0

T Aloglﬂ_ 1—
_ __{/ 2 cos(a) da
0 a

w2

+ /100 F(Qa) (1 — cos (aAlog %)) da} + o(T).

a

We notice that

/100 Fa(za) (1 — cos (aA log %)) da

If we assume Conjecture 4, then we get the following result.

52/ F(j)da<<1.
1 a

Corollary 2 (Under Conjecture 4). For 0 < a = o(logT), we

have
/OT (S (t + 1:;2) - S(t)) dt = ;rj—;—(g(a) + o(1)).

The right hand side is nothing but the GUE part of Berry’s formula
(19) conjectured in [1].
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Finally, it is noteworthy that the density function
. 2
(4
1 (s1n7r )
Tt

appears also in the coefficient of the main term of the following mean
value theorem on the problem (C) due to Gonek [15].

Theorem 7. For|a| < Elog L,

¢ 1 iy n 2T
—+1
2 7 1og%

. 2
sin Ta T 9o T

2

2

0<~y<LT

The author has refined this and evaluated the coefficients of the
lower main terms as follows (cf. [6] and [7]).

Theorem 7'. For0< a<logT,

1 . 2T
C (§+Z(7+ lOg T ))

2

>

0<y<T 2
. 2
sinTa T T
=(1- — log? —
( ( o ) ) o ¢ 2
sin 2o ¢ 2w T T
21 -1+ C 1- R(=(1+i—— — —
+ < +Co+(1-2C0) e T (C( +llog-27—%))) o 8 or

+ G(T, o) + O(T 75 log? T),
where G(T, a)(= O(T)) can be described explicitly.

In closing this section, we notice that all these results on {(s) can
be generalized to Dirichlet L-functions. We notice only the following
theorem which corresponds to Theorem 7’. Let L(s, x) be the Dirichlet
L-function with a primitive Dirichlet character x mod g > 1. Let y(x)
run over the imaginary parts of the zeros of L(s,x). When ¢ = 1, we

suppose that L(s,x) = ((s).
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Theorem 8. For0< A K1,

>

0<y(x)<T

. 2
[, (n(5loe gD\ ) 0@ T | 2 (aT
o Ao 1L 2 8 \2n
2 108 o7 q

1 2
L(5 +i(v(x) +4),x)

+G(T, A, x) + O(T% log? T),

where Xo is the principal character modq, Cy(xo) is the constant term
of the Laurent expansion of L(s,x0) at s = 1, ¢(q) is the Euler function,

)=y 1,
dlg

and G(T, A, x)(= O(T)) can be described explicitly.

We notice that the remainder term O(T'1 log? T) in the above the-
orem is obtained under G.R.H. (Generalized Riemann Hypothesis) for
all L(s,v), v being a Dirichlet character modg.

In particular, we see that for 0 < o < logT and for any q > 1,

2
1 . 2w
Z L (5 +1 <’Y(X)+ 1—Z> 7X>
0<y()<T 8 2x
. 2
N (1 ~ (sm(m)) ) o@ T\ 2
T q 27

§84. Dedekind zeta functions

We shall treat the simplest case, the Dedekind zeta functions of
quadratic number fields. However, we shall treat a slightly more general
zeta function

Z(s) = L(s, x)L(s, ),
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where x is a primitive Dirichlet character modqg > 1, % is a primitive
Dirichlet character modk > 1, L{s,x) and L(s,v) are the correspond-
ing Dirichlet L-functions. We may extend our results to the Dedekind
zeta functions of the cyclotomic number fields, for example.

We may notice that we have previously studied the distribution
of the zeros of Z(s) in a comparative study of the zeros of Dirichlet
L-functions [3] and [5]. Our primary problems have been:

(i)  Is there a coincident zero of L(s, x) and L(s, ) if x # ¥?

(ii)) To get a quantitative expression of the independence of the
distribution of v(x) and that of y(¢) if x # %, where v(x) or v(¢) run
over the imaginary parts of the zeros of L(s, x) or L(s,), respectively.

Concerning these problems we have shown the following theorems.

Theorem 9. If x # 1, then a positive proportion of the zeros of
L(s,x) and L(s,¢) are non-coincident.

Theorem 10. Suppose that x # 1. Let ®(n) be a positive in-
creasing function which tends to oo as n — oo. We put

An(¥)=n-m  if  Y(x) < WmE) < Ymr1(x),

where v, (x) denotes the m-th non-negative imaginary part of the zeros
of L(s,x). Then we have

2m/loglogn

for almost all n > nyg.

We have obtained these as the consequences of the following mean
value theorem in [5]. We put S(t,x) = Sps,x)(t) and S(t,9) =

SL(S,IZJ) (t)

Theorem 11. Suppose that x # . For 0 < A < 1 and for each
integer k > 1,

/O (St +A,x) = S(t,x) — (SE+ A, ¢) — S(t, )" dt

=(2(T2)k2)’°!k—!T(4 log(2 + A logT))k

+ O(T (log(2 + Alog T))k_%).
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Theorems 9,10 and 11 were proved without assuming any unproved
hypothesis.

We now describe our results on our present problems. We first
notice the following theorem which expresses an orthogonality relation

of S(t,x) and S(¢,v).

Theorem 12.

T
/0 S(t,X)S (¢, v) dt

T
=0y 5.2 loglogT

T ooFx,w(a)
+z7:{/ T ¢

+ 6y (oo+ i Z;n (— - —) —bi(g) —b(q)>

m=2 p

xwﬁR(i > qun)mz )}

1 p
oL ).
ViegT

where p runs over the prime numbers and we put

5x,¢={1 if x=1

0 otherwise,
1 o0
o)=Y >
plq =2

and
Fyp(a) = Fyp(a,T)
ia(y(x)—v(%))
= en > (5) w0 = Y6}
2

i
27 108 0<(x) ¥ (¥)<T

This is a generalization of Theorem 5, where x =1 and k = ¢ = 1.
Concerning F) 4, we have the following result.
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Theorem 13. For 0<a <1, we have

Fx’qp(a, T)
=6y a+ N _2‘110 T+O(T™?*) 40 1
— Ox o 8 VIogT )

This implies the following corollary which makes Theorem 12 mean-
ingful.

Corollary 3.

< 1.

<1
"/1 ;Fxﬂ/)(a) da

According to Conjectures 1,2 and 3 described in the section 2, The-
orem 12 implies the following conjectures.

Conjecture 6. Suppose that x # . Then

Fy(a) = 2a+ (44 0(1))(&)"22logT +0(1)  for 0<a<1
2= 2+ o(1) for 1<a,

uniformly in bounded intervals.
Conjecture 7. For x # ¢ and for any a > 0,
T
> 1= —logT{2U(0) + 2G() + o(1)}.
T

0<v,y'<T

0<’Y—"Y,§ l021ro¢
2 o7

This says that the distribution of the zeros of Z(s) for x # 9 might
not be of genuine GUE type.

Conjecture 8. For x # ¢ and for any a > 0, we have

og 2

/0‘ (SZ(t+12”‘;)—sz<t)> dt=f—2-{2g<a>+o(1>}-

In view of Theorem 13, Conjecture 6 is essentially the following.
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Conjecture 6'.
Fy y(a) = 6y.4 + o(1) for a>1,
uniformly in bounded intervals.
Similarly, Conjecture 7 may be stated as follows.

Conjecture 7'. For any o > 0,

> 1
0<(x)Y (W)LT
0<y(X) =" (¥) < 22%

_ {/Oa (1 ey (Singt))Q) dt+o(l)} : %log %

Concerning Conjecture 8, we may state first the following theorem.

Theorem 14. Suppose that 0 < A = o(1). Then we have

T
/0 (S(t+ A, %) = S(t,%)) (S(t + B, ) — S(t,w)) dt

T Alog% 1—
:_{5”/0 1-cos(a)

72 a

+/ —5@;—(9 (1 — cos (aAlogI—)> da}
1 a 27

This is a generalization of Theorem 6, where x =% and k = g = 1.
Thanks to Theorem 13, we have

< L

1 T
/ — (1 — cos (aAlog —)) Fy y(a)da
1 27

a?

As a consequence of Theorem 14, we get the following.
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Corollary 4. For x # ¢ and for 0 < A = o(1), we have

/T(Sz(t +A)—- Sz(t))2 dt

Alog lﬂ, _
_T {2/ 27 1 — cos(a) da
0

2 a

>~ 1 T
+ — 11— Alog —
/1 5 ( cos (a log2 ))

(Fxx(@) + Fyp(a) + 2Fy,y(a)) da}

—I—O(T(Az—i—\/l_olg_T>>.

If we combine Corollary 4 with Conjecture 6, we get

Corollary 5 (Under Conjecture 6’). For 0 < a = o(logT), we

have

T

2
T
2o T
/ (Sz(t + 1 ) — Sz(t)> dt = 7—1_5{2(1 + 6y p)g(a) +o(1)}.

Y 27

Thus we see that Conjecture 8 is valid for & = o(logT) under Con-
jecture 6.

Similarly, we obtain the following results which give some improve-
ments of Theorem 11 for k£ = 1 either under G.R.H. or under G.R.H.

with Conjecture 6'.

Corollary 6. For x # % and for 0 < A = o(1), we have

T
/0 (S(t+ A, x) = S(t,x) — (S(t+ A, 9) — S(t, 1)) dt

T Alogz% 1—
== {2/ —cos(a) da
T 0 a
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1 T
+/1 p (1—cos(aAlog %))

’ (Fx,x(a) + Fyp(a) - 2Fx,¢(a)) da}

+O(T(A2+\/l—01ﬁ>).

Corollary 7 (Under Conjecture 6'). For x # ¢ and for 0 < a =
o(logT), we have

T o
[ S 0 = S0 = (S04 )~ S

27

= 5 (29(0) + o(1)).

Finally, we notice that we can show the following theorem which
supplements Theorem 8 stated in the section 3.

Theorem 15. For x # v and for 0 < A <€ 1, we have

>

0<y(#)<T

T
= T og? (gf) ¢(q)
2 2 q

T qT »(q) 1 k
gD gy D0 (B 40y - Cr(g) L
+ —log o . + 5 log . + Co 1(q)(’0(q)

L(; +i(r(8) + 8),%)

/

+§R—%(1 — iA,Yz/))}
+G(T, A, x, %) + O(T log® T),
where G(T, A, x,¥)(= O(T)) can be described explicitly.
We notice that the remainder term O(T% log? T) in the above the-

orem is obtained under G.R.H. for all L(s, ), v being a Dirichlet char-
acter modg.
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§5. Ramanujan 7-zeta function

Let 7(n) be the Ramanujan 7-function defined by

o0 o0
ZT(n)z" =z H(l — ") for |z| < 1.
n=1 n=1

Let Z(s) be the Ramanujan 7-zeta function defined by

Z(s) = Z TT(::) for Rs> }2§
n=1

It is well known that Z(s) can be continued analytically to the complex
plane and is entire. It has a functional equation of the form

(27)°T(s)Z(s) = (2m)"(2=91(12 — 5)Z(12 — 5).

It has an Euler product expansion of the form

Z<3) = H (1 — T(p)p_s _{_pllwzs)—l

P
[0 (-
p

where p runs over the prime numbers, |a,| = pZ and Rs > B Z(s)

has and is expected to have other nice properties like ((s). However, as
we shall see below, the precise statements of theorems and conjectures
must be slightly modified.

Concerning Montgomery’s sum, we can show the following theorem.

Theorem 16. For any a in 0 <a <1, we have

Fz(a) =a+ (4+0(1)) (-5%)_2@ logT + O (_T\/;ol—‘g‘_”f> .

For a > 1, the following conjecture might be expected.
Conjecture 9.

Fz(a) 2{

a-+o(1) for1<a<2
2+ 0(1) fora>2 |
uniformly in bounded intervals.

Conjecture 8 and Theorem 16 might suggest the following conjec-
ture.
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Conjecture 10. For any a > 0,

Y oa- gj—logT - {2G(20) + o(1)}.
0<y,Y' <T "

0<y— < 2w
v ’Y_'logz—j;r-

For the mean value theorem on Sz(t + A) — Sz(¢), we can show the
following theorem.

Theorem 17. For 0 < A = o(1), we have

/T(Sz(t+A) — 85(t))* dt
0

T 11 — cos(aAlog %)
=t a

+ /loo aiz (1 ~ cos (aAlog %)) Fz(a) da}

+O<T(A2+ \/Tblg—T)>

da

If we assume Conjecture 9 on Fz(a), then we get a more precise
result on Sz(t + A) — Sz(t) as follows.

2
Corollary 8 (Under Conjecture 9). For0 < A = . 7ro:’41 = o(1),

we have
T 2
2
/ Sz t+ o | = Sz(t) | dt
0 log 5

T 2
= —5{/ 1 (1—cos (aAlogI—)) da
s 0o @ 2w
<1 T
2. — | 1- log —
+ /2 2 ( cos (aA og 2ﬂ_)) da+o(1)}

= 5 {0(20) +o(1)}.
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§6. Some other examples
Example 1. Z(s) = ((s+ 7)¢(2s).
In this case we have og = %,
M=1-1+1-2=3

and
A=124+12=2

1
We may express an orthogonality relation of arg {(5 + it) and

arg( ( +42t) in the following form.

/O S(2t)S(t) dt = — { Z Zmngm —/ Fl( %) o +0(1)}

where we put

Fi(a) = Fi(a,T) = T l1 R Z (%)ia(%—’yl)w (% _,y/) ,

0<Z ' <T

v and v/ running over the imaginary parts of the zeros of {(s) and

/1 £1a) 4o <1,

a2

In particular, this implies that

/T(S(t +t) - S(t))* dt

T
=—210g10gT
[e9) 1 oo
5200 +23 3 (54 ) o
m=2 p m=1 p
oo [—
+/ F(a,2T)+F((L¢;,T) 2F;(a) da+o(1)},

where F'(a,2T) and F(a,T) are F(a,2T) = F¢(a,2T) and F(a,T) =
F¢(a,T), respectively. This should be compared with Theorem 6 in the
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section 3, where the shorter intervals are considered. We can evaluate
Fi(a) for 0 < a < 1 and we conjecture that
Fi(a) =0(1) for a>1.
Now Conjecture 1 in the section 1 suggests that
2a+ (94 o(1))(£)2*1log T + o(1) for0<a<1

Fz(a) =14 1+4+a+o(1) fori<a<?2
34 0(1) for 2 < a,

uniformly in bounded intervals, while we can show that
T —2a
Fyz(a) =2a+ (9 + o(1)) (2—> logT +o0(1) for0<a<1.
T

Conjecture 2 suggests that

e .27% logT - {4U(a) + G(a) + 2G(2a) + o(1)},
0<y,y'<T

Oy < 2mcx
s ’Y_logzlﬂ

where « and 4’ run over the imaginary parts of the zeros of Z(s) as in
the statement of Conjecture 2. Thus if v and 4’ run over the imaginary
parts of the zeros of {(s), there might be no pair correlation of v and %/
in such a sence that the distribution of the pairs is uniformly distributed.

Example 2. Z(s) = ¢*(s).

In this case A = k% and M = k. Our conjectures stated in the
section 2 coincide with the trivial consequences of the conjectures on

¢(s)-

Example 3. The zeta function attached to the Maas wave forms
can be treated in a similar manner.

Example 4. Selberg zeta functions do not belong to the category
in the section 2 unless we shall generalize the framework. Since the
eigenvalues of the Laplace-Beltrami operator are the zeros of Selberg zeta
function, we cannot conclude anything on their distribution from the
present context. Nevertheless, as we have noticed in [8], the eigenvalues
of the Laplace-Beltrami operator on L?(the complex upper half plane
/T) for any principal congruence subgroup I' = T',, of level p a prime > 2
are not GUE distributed in the context of [8].
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§87. Proofs of some theorems stated in the section 4

7-1. Proof of Theorem 14

In this subsection we shall prove Theorem 14 and suppose that x
and % are primitive characters modqg > 1 and k > 1, respectively. We
shall use the following lemma which is a generalization of Goldston’s
explicit formula [13] for S(%).

Lemma 1. Suppose that x > 4, ¢t > 1 and t # v(x). Then we
have

(n) logn
Stx) =3 Z \/—lognn”f (logx>

+ = Zh ((t—~(x))logz) — 6(x)x%g(ac,t)+0< ! )

2
e tlog™

1
=A@x»+B@xy—aMx%uwy+o( 5 ), say,
tlog” x

where we put

o= (3).

9(z,1) = % {/000 (A - z't)glcc:gitac)2 —u?) Sini“ du}’

i d
h(v) ::sinv/ o
0

u2 +v2sinhu

and

1 if g=1
“”:{0 if g¢#1.

B
T
Using this lemma with © = (2—) with 0 < 8 <1, we get
T
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S
_ /1T(B(t +A,x) — B(t,x)) (B(t + A, %) — B(t,¢)) dt
_ /1T (A(t+ A, x) — AL, x)) (At + A, 9) — A(t, ) dt
N /1 T (At D) — Al ) (S(E+ A ) — S(t,9) de
+ /1T (S(t+A,%) = S(t, X)) (At + A,%) — A(t, ) dt
co (T 4 a =)

logz
=51+ SS9+ 53+ 5,

+ (6(x) + 6(¥))

lo x =
+o (Ioi Z + 6(X)6( )Bg‘l—:c + (5(X) +5(T/’)) \/_:c> , say.

log

Su = /T S(t, X){2A4( %) — At - A,9) — A(t+A,9)}dt
1+A
_ /1 " S0 (AL ) — At — A, )} dt
T+A
+ /T S(t, A, ) — At — A, )} dt

T
- /1 S(t, X){2A(t %) — A(t — A, ) — A(t + A, )} de
+0 (A log T ——‘/—E—)

loglog T log x

2 P(n) , (logn
=-9 {Z Jlogn f (log:v) (1 — cos(Alogn))

T .
. / S(t,x)e_”log"dt}
1

+O(A log T ﬁ)

loglog T log x
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Here we use the following lemma whose proof will be given in the
subsequent paper.

Lemma 2. For an integer n > 1, we have

T
/ cos(tlogn)S(t, x) dt
0

1 A(n)

_Zr'w—\/ﬁlognT%(X(n))

logT Vn logT

1
0] log log(3 Toglog T
+O(Vnloglog(3n) + nrree loglogT ~ logn\ loglogT

)

and
T
/ sin(tlogn)S(t, x) dt
0

1 An) 1
3 T

—1 — logT log T
+ O(y/nloglog(3n) + nieleT ——&——gologT + l(‘)gn logoi‘)gT).

Using this lemma, we get

_% Z \/—logn f Gggg) (1 —cos(Alogn))}

1 A(n)
27 y/nlogn

1 T(3(x(n)) — S (3x(m)

log T Vv log T
loglog T logn\ loglog T

O(y/nlog log (3n) + niElos T ]

+O(Aigi_ ﬁ)

log log T log =
C\{ Z A2(n)(n)x )f (logn) (1 — cos(Alogn))}

e nlog’n log =
T logT
+0 loglog(3x) +
(Iog(3 ) og log(32) log®(3z) \/ loglogT
vz logT

(.’E Tog llog_T + A) ) .

log z loglog T
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Similarly, we get

s, :W_I;%{i Z AZ(n)X(n)¢(n)f <Iogn> (1 - cos(Alogn))}

nlog?n log z

T [ logT
O(————loglog(3x) +
+ (lOg( ) og Og( 1»') 10g2(3x) log IOgT

vz logT 1
log x log log T (71T + A)).

Thus we get

S5+ Sy =—~z§re{ 3 x(p)v(p )f(logp)(l — cos(Alogp))}

= p logz

1 .5,A -
o(T Z W&nQ(Elogp))

pr<z, 722

z log T
+ log log(3) + i/
(log(3 ) oglog(32) log?(3z) |/ loglog T

vz logT
log z loglog T

(z=e1sT + A)).

We next evaluate S,.

A(m)x s logm
{/ Z \/_logmm“(m A_:l)f<logm)
—iA logn
Z \/_lognn)“( -bf (loix) dt}
(m)x(m)y(n)
27r2 {2 Z \/_Iogmlogn

m<z n<lz

e 07 (7)1 (55) [ e
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n)x(m)i(n)
271'2 {Z Z \/_logmlogn

m<lznlzx

e - () 5 (120) [yt an

— R o7 ((E2) (o) 1 - cos(Alog)}

1 A log log(3x)
+0(T —— sin ( logp")) + O(= —)
. <§22 prr? g(3z)
Since . A
S LS og) <7
pr 2
pr<x, r>2
we get
Sy + S+ S,

T T o (322) (12 0

= log x log
x T logT
O(7—5— loglog(3
+ (log(3m) og log(3z) + log?(3x) \/ loglog T
vz logT

8% (mEeET LA TA2
log:z:loglogT(x s )+ )

If we put
Z (.Xl’%%(_@ =8,y -loglog Y + C(x®) + 7y,4(Y)
<y

with some constant C(x%), then for any positive constant A
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1

TX,'IZJ(Y) =0 (W) for 'Y > Yo.

Using this we see that

Z &tﬁ@ (2f (I_OQ) — f2 (lo_gg)) (1 — cos(Alogp))

= log log x

8 2 T
=6y * {—/ 2 (1 —f(%)) (1 — cos (aA log —2—;)> da
0
°1 1 Al T d
—f—/o E( —cos (a og2—7T—)) a
+O(A2+ 10;:6)'
So+S3+ 54
T s a)’ T
:Féx’d’. ——/0 <1—f(5)) <l—cos(aAlog 2—;)) da

F1
+/ - (1 — cos (aAlogZ)) da}
0 @ 27

+0 (TA2 +

Thus we get

IS

T
1 T}.
Tog T og log )

We are left to evaluate S;.
T T
si=2 [ BwBGw - [ B+ A0BEY)d
1 1

T
— / B(t+ A,)B(t,x) dt + O(Alog® T).
1
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As in pp.158-160 of [13], we get an evaluation of a typical integral
as follows.

/ "B+ A)BlE ) de
1

1 +oo
—% %[ h((t+ A= (00 10g)h((t = 2(9) log)

0<y(x), ()T

+ O(log® T

1 .
T Zlonn > E((v(x) — ¥(¥) — A) log z) + O(log® T),
8L 0<rOmw<T

where we put

k() = 515 - 7r700‘5(7r2u))2 for |u| <
o for |u] > ==

—~~

and k() is the Fourier transpose of k(u).
Thus we get

P > k() = (@) logz)

TR0 (O W) <T

: Z E((v(x) — () — &) log z)

- e
T Ong<7(xM(¢)ST

1 Z ’;((7(7/’) —7(x) — A) log z)

T2
mlogz | ym<T

+ O(log® T).
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We notice first that

> E(v00) —v(®) — A) logz)(1 — w(v(x) — 7(¥)))

0<y(x), v (V)T

i () — A) Tog ) Y00 =)
_0<7(X)Z’%w)§Tk((7(X) ") A)l s )4+(’Y(X —7(¥))?

. 1
< 0<'v(x%7:(w)§T Mll‘l(l’ () = v(¥) — A) log -’3)2)

() —v()?
4+ (7)) —v(¥))?

< A’TlogT,

where we have used the following lemma which can be proved as in
pp-99-100 of [10].

Lemma 3.

Suppose that a < T4 with some positive constant A.
Then we have

> S(y(x) + a,9) < TlogT.

0<v(x)<T, v(x)+a>0

We notice second that

Y B0 = 1) - A) leg )w(v(x) — v(¥))

0<v(), (V)T

+oo
/_ Ko) Y e(—u(v(0) — v(¥) - A)logz)

0<y(x), v (V)T

~w(y(x) —v(¥)) du

+o0
:[ Bw) > e(—u(v(x) —7(¥))log )

0<y(), Y (P)ST

~w(v(x) — v(@))e(ullog z) du.
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Hence, we get

+oo
g /_w Bu) Y e(—ulv(x) — () logz)

' T rZlogx
0<y(x), (V)T
~w(y(x) —7(®)) du

+o00
: /_oo Ku) Y el—u(v(x) — () log)

~ lors
0<y(x), ()T

~w(v(x) — v(¥))e(uAlogx) du

+o0
: /_oo Ku) Y e(—u(v(®) = v(x))log )

-
Tess 0<v()y($)<T

~w(v(¥) = v(x))e(vAlogz) du

+0 (MTIOgT)
log z

+oo
1 /m k(w) S e(-uly(x) — (%)) logz)

“n?logz
0<v(x),y(¥)<T

~w(y(x) — (%)) (1 — e(uAlogz)) du

+oo
: /_oo k(u) > e(—u(y(¥) — v(x)) log z)

" n2logz
0<y(x):v(¥)<T

~w(v(¥) = v(x)) (1 — e(ul log z)) du

+0 (AQT-——IOgT)

log
_Tloess [Ty o 1 Alog 1)) d
_7T4ﬂlog:c/0 (m) x,w(a) —COS(a Ogé;r—) a

+0 (AQTM>
logz
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T A1 ma ra.\’
= —_ -— t A
2 {/0 a? (1 2600 (25))
T
- Fy p(a) (1 — cos (aAlog %)) da
1 lon T
—|—/ﬂ a’z‘FX#’(a) 1 —cos (aA Og§7—r) da
-1 1 T d
—f—/l a—2FX’¢(a) 1 —cos (aAlog %) a

apl
+O(ATﬁ).

Using Theorem 13, we get

T ! 2 T
Sy =;§6x,¢/0 " (1 - f(%)) (1 — cos (aAlog %)) da

T | T
+ F‘Sw/ﬁ ’ (1 — cos (aA log ﬁ)) da

T [*1 T
+ ) ﬁFXﬂp(a) (1 — cos (aAlog 2_7r)) da

o7} ()

Combining all of our evaluations and taking 5 = %, we get

T Alog g cos(a)
s =§{5x,w/0 — da

+ /1 L (1 — cos (aAlog —2—2)) Fyy(a)da}

a2

+0(T<A2+ﬁ)).

This proves our Theorem 14 as described in the section 4.
For completeness, we shall give a proof of Lemma 1 below.
By evaluating the integral

1 c+100 LI

T
[=— =
278 Joioo L (5:%) z— 8

zZ—8

dz
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for ¢ > Max(o,1), in two ways, we get for x > 1, = # p™ and for
s # —a—2n, s #p,

L B A(n)x(n) zl—s xP—s too p—e—2n—s
Z(S’X)—_; ns +okx )1—5_Z Zoa+2n+s’
where a = a(x) = (1 — x(-1)).
Thus we get
o— lLI o-L/ .
x f(0+1tX)_x L(l——a+zt,x)
1 A(n)x(n) [ rz\° z\1-°
n<zx
£(100-1) .zl — 20)
(1-20) —6(x)z? : :
Do o B R e ey

+oo x—a—2n

-1t
1-2 .
+am U)nZZO(a+2n+a+it)(a+2n+1—a+it)

By the functional equation of L(s, x), we get for t > 1,

(-;-(o +it+a))) + %8(%(%(1 — 0o +it+a)))
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We notice also that

+oo —a—2n
. - T

1-2 -
22 G)TLZ_O(a+2n+a+it)(a+2n+1——a+zt)

2iv(x)—-t)
- (1-20)3 (; A -0+ (v(x) - t)2>

g [ 3o AX) [ () = ()7

do
277 — g3~ C
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1 )
ke i(y(x)—t)

2

I (.- 20) o
i (G=0?+(00) —1)?)(27" % — a3

Wim
|
8
=
!
q
S—

%(5(3:““

S

+6(x)

' /oo (0 — z(tl) (; -2-00)— —it) 2 sinh((adf
+o (t 102;2 x)

A(n)x logn
Z \/_lognn” # )

logx

Dioga))

+ 1S =) Toge) — 0w ale,) +0 ()

2
~GO tlog"z

1 1
=A(t,x) + B(t,x) — 6(x)zzg(z,t) + O ( 5 ) , say,
tlog” x

where the functions f, g and & are introduced in the statement of Lemma
1. This proves Lemma 1.

7-2. Proof of Theorem 13

We start with the following formula which can be proved as above
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Foril<o<2andzxz>1

C($’ X’ t7 o-)

iy(x)
=)~ hd

2 F =0+ (00— 02

- {Zw«n () A >}
pz—otit

—+ 5 — 1 log 7

14 1 /. —a
T2 T2 x
o
+ (20—1+ ( T

T

—D(x X,t,O’) +E1(t70) + EQ(X7t 0)
where we put 7 = [t| + 2

(07
We put x = (2——) with 0 < a < 1. We notice first that
7

/ Clz, x, t

_

+
iy 00 —7($)) / = dt
0<Y(x) ()T —oo (I (v(x) - 1)

(x ¢’ )

DA+ (v(¥) —1)?)
+ O(log®T)
- (YO =) 2m
0<w(x)zn:(w)s:rx 44 (v(x) —(¥))?
+ O(log® T).

Hence, we get

R D G007 (y(x) — ()}
0<y(x),v(¥)<T

_—28?{/ ( z, X, t, = )+E1(t )+E2(X,,

2)

((w bt 2) 4 Batt, )+Ez(¢,t3>) dt}
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1 T 3 3
+12§R{/TD( t, VBt 2) dt)
T Z, X, 32 1 72
+71r2§re{/ Bt D(z ot )dt}
1 3 3.
+ ;28%{/0 D(x’ X t’ §)E2(¢’ ta —2—) dt}
1 T
+2ow( [ Dt DBt 3t
0
1 /T
+ -2
™ Jo
T
e /
0

=U;4+U;+Us+---+Us, say.

2 3

Bt dt+12/TE( 83 Byt 3yt
1 72 o o 2X772 2 372

Ei(t, §)' Ez(x, t, 3)+E2(1/’ )’ dt)

2

3 3
D(z,x,t, 5) + D(z,9,t, —2—) dt

T 2 T 2
-/ at- [ dt
0 0

Here we use the following lemma which can be proved by modifying
the proof of Lemma 7 in Goldston-Montgomery [14].

o) D@, ,1,3)

D(z, x,t,
(z,x 5

<§<1and

’ﬂlw

Lemma 4. Suppose that Y oo, A(n)|a(n)| < oo,

A(n) > 0 is a continuous function such that A(u) ~ A(u') whenever
u v and a(n) < A(u) for integers n > 1. Then we have

/

=(T+0(5 Z A?(n)]a(n)|? + O(6T/ A% (w)u du).

2
dt

Z A(n)a(n)n™

n=1
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)%), we get

218

Using this lemma with A(u) = Min((g)_%, (

:_TZA2 ) (Ix(m) +»(@)* = x()* = [$(n)|*)
o (2)7G))
) <$—1§~1 i[ﬁ(n) - Min ((%)—1 ) <%)3)>

oo

Max(z,6~ 1)
+ 0 x’léT/ ——du + 0 x”léT/ —Edu
5 Max(z,6-1) ¥

-1

= —ZA2 )P + X¢) (n)n

n<z

+ 1t T 20+ T 05

+0 |zt ZAQ(n)n+x32A2
n<w n>zx
O(Min(6Tz, §°Tx?))
T
2%6,(71/, logz+ O (T exp (——A\/log(B:v)))
+ O(Min(8T'z, 6°Tx?)) + O(6~* log(3z)),

where A is some positive constant.
Here we choose

§=T 3273 log%(?m:) if z<6!

and 1 1 1
§=T7"2z72]og?(3z) if z>6"

Then we get
Uy :%‘%mb logx + (Texp( Am>)

+ O(Min(T* z? log? (3z), T3 25 log3 (3z))).
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Uy, Us <22 Z A(n)\/ﬁlogT n Z A(n)logT

lo 5
= zn = n: logn

<z~ 7 logT.
By Schwartz inequality, we get
T
Us < ;\/]og:c + 6(p)T/TogT.

Similarly, we get

Us «— \/logx—i—é(x) ViegT.

Us =

ol (log” T + O(log T)) .

o7 <L (600 + 86y L + 500000

Us <5 logT + (50) + 6()z"*.

Combining all of our evaluations we get

R{ Y, OO u((x) —v(@)}

0<yY(x) ()T

o > log? T—l—O(ZlogT)—t—O( V9og z)
+ O( Texp( A+/log(3z) )

+ O(Min(T?z? log? (3z), T3 2% log? (3z)))
+0(600)8(%)x) + O((6(x) + (%)) Tv1og T).

T T
=—0y,plogz + Y=

This proves our theorem as described in the section 4.

7-3. Proof of Theorem 12

Our proof of Theorem 12 goes pararel to the proof of Theorem 14

given in the subsection 7-1. We shall use some of the notations used
there.
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B
Using Lemma 1 with z = (;) with 0 < 8 < 1, we get
s
T
sz/ S(t,x)S(t, ) dt
0

T T
= /1 B(t,x)B(t, ) dt — /1 A(t, x)A(t, ¥) dt

T T
+ [ st [ agnsed

log T x N
+ O + 8008W) o + (00 + 6) )
=51+ S22+ S3+ 5,
1 2
+OCZET 1505 (500 + 66) 5-), sy
0og- x log” x

1 logn

T
—itlogn
. Zmogn FGED)- [ Sttxgemitorn an

logn
= Doy MO Lo,y
= nlog n log
T [ logT
+ O(——— loglog(3x
(log( 3z) glog(3z) + log2(3ac) loglogT
‘\/E lOgT xlogl}ogT).
log x loglog T

Similarly, we get

=53 st Z nlog )}

T logT
+O(—=—loglog(3 1/
(10 g(3z) oglog(3z) + log?(3z) |/ loglog T

log T
L VT _log

log x loglog T

() , logn
n

f(logac

1
xloglogT)'
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We next evaluate Ss.

A(m)A(n)x(m)¢(n)
27r2 {Z Z \/_logmlogn

m<lzx nlz

logm. . logn T
P(RBI ¢ )/1(  dt}

logz ' ‘logx mn)#

x(m)y(n)
271'2 {Z Z \/_logmlogn

m<lzn<lz

lo lo T .
S GED) [ (Eytan

_ A2(n)(x3) (n 5, logn log log(3z)
- 271'2 R Z nlog n (log:c)} + 0l log(3z) )

Hence, we get

52+53+S4
(n) logn 5, logn >
%{Z WO (2752 - (2D

z T logT
—— log log(3
+ O(log(Bx) oglog(3z) + log?(3z) \/ loglog T

vz logT Eﬁ)
log x log log 7" )
Since
AZ(n)(x¥)(n logn logn
Z ( )(X2 )( ) (2f(l )_f2(1 )>
ot nlog®n og T ogx

= 6y p{loglogz + Co + Y _ (log (1— %) +%) —/01 (i(u)uidu
DIEPIE LS
T

qu p,r>2

+(1—6yp) i A%(n) (x¥)(n) 4 O(loglog:c)’

nlog®n log z

n=2
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we get

Sy + 83+ 54

zéx,wé%{loglogx + Co + Z (log (1 - %) + %)
flu) —1)?
/ S Z Z pr2

plq p’l‘>2
)L A% (n) (x¥)(n) T
il O log 1
(1= Sxp)y {Z nlog? P+ (logw oglog z)
x logT
+0 log log(3
(log( 3x) oglog(3z) + log?(3) \/ loglog T
vz ﬁm@—iﬁ)
log z loglog T '

We shall finally evaluate S.

! S B((v() = 1)) log )

:;z_lo—g—w 0<v(x), v ($)<T
+ O(log® T)
i || Mg Fov(@da+ O()
:5%5,(,1!,/[} L (1—f( )) da+2T26X,,/,/ﬂl%da
tor w%px,w(a)dajm(\/g?).

Combining all of our evaluations and taking 8 = =, we get Theorem

12 as described in the section 4.

1
2

7-4. Proof of Corollary 3
We shall prove that

/ ! (1 — cos (aAlog 2T )) E, y(a)da
1

< 1.
a2
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In fact, the argument below proves at the same time that

1
,/1 ?FXﬂ/’(a) da

We put G(a, x,t) = C((%;)“,X, t, g) Then

< 1.

T
Fogla) =21 gy /0 G(a, x, )G(a, 0, D) di}

T T
71'2—71_10g2—ﬂ,

1 T
|G(a, x,t) + G(a,,1)|? dt

LI /TIG(a 12 dt+/T|G(a 0,12 dt
W%log% 0 7X7 0 b b

11 /TIG(axt)+G(a¢t)[2 dt
Wzlﬂlogzl‘,r_ O b 3 b K

log? T )
)

1
= 5 {Fxx(a) + Fyy(a)} + O
Thus we get
/; a% (1 — cos (aAlog %)) Fyy(a)da
1 (> 1 T
- _ 5/1 = (1 — cos (aAlog Zr-)) Fy x(a)da

e T
- %/1 lei (1 — cos {alAlog —2?)) Fy y(a)da
1
T
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Hence we have only to prove that

1 >~ 1 T
ﬁ/ — (1 — cos (aAlog—))
s-logs-J1 a 27

T
/ |G(a, x, t) + G(a,,t)|? dida
0

I =

G

is bounded, since we see by Goldston’s argument in [13] that

b T
/ L <1 — cos (aAlog —)) F, x(a)da
1 2m

a2

<1
</ Fyx(a)da <1
1

- a?
and
/°° ! 1 —cos(aAlo Z) Fy y(a)da
1 a? g27T Y
1
S/ —Fyy(a)da< 1.
1 a
Now
I L g1 T+%1 TG G ? dtd
) e t t i
<<T10gTTZ:;r2/T_%( la r|>/0 1G(a, x, t) + G(a, ¥, 1)|* dtda

0 r+1
<X [ -lo-rh (Fep@+ {R(@+ o)) da

log? T
+ 28
T

o0

1 1
Z log £ Zr2

5‘7; r=1

1 T ir(y(x)—v(¥)) 7\ "r00)-7(®)
5, 2 (&) “(z)

0<y(x),v(¥)<T

' (Sin(‘Y(X)E’Y(ﬂ’) log %)
v(x);'v(dl) log %

) w(y(x) = (%))
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ir(v(x)—7' (x))
1 T
3 > ()

0<v(x) ' ()T
(Sin('vgx)—Qv’(xz log %)

69k id69) T
r(x W 1og L

) w(v(x) =7 (x))

ir(y(¥)—~' ()
1 T
oY (%)
0<y(¥), v (¥)<T
’ 2
Sin(w(wz—;v () log %) ,
2 og 2m

+0(1)

= 1
< Z ;5 < 1,

r=1

since

Sin(l(l)__l(i)_ log __:%)
2 ( TSI log 7 | wlr(x) = (%)) < TlogT
2 27 .

0<y(x),7(¥)<T

and

Sin(v(x)—zv’(x) log %)

, .
Y= C o T ) w(v(x) =¥ (x)) € TlogT.

0<y(x), 7' ()T (

We remark that the last two inequalities can be derived using Theorem
13 and the formula (3) of p.182 of Montgomery [17].
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