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in different occurrences. Following [Y2] (see also [Bou], [Au] and [BK]), 
we derive the a priori estimates for the solution Ua of (17) and {18). We 
begin with the c0-estimate. 

{21) (1 - e9a)w2 = w2 - w2 a a a 

= .j=I88Ua I\ (wa - Wa) 

Multiplying {21) by lualP-2u0 with p > 1 and applying integration by 
parts give 

Hereafter the volume element in integrations over X is always w~. Since 
9a is very small, we have from (22) 

(23) 

We now put p = 2. Then we can apply (3) (the Sobolev inequality) to 
the left side of (23). Applying Holder's inequality to the right side, we 
have 

where q,q' > 0 and½+}= 1. Putting q' = 4 (q = f), we have 

(24) 

Combining (24) and (20) gives an a priori L4 -estimate for u 0 : 

(25) 
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Applying again the a-independent Sobolev inequality (1) and the Holder 
inequality to (23), we have 

lluall~P ~ Clldlual~lli + C'lllual~lli 

S Cpll9allplluall;-l + C'llual\; 

(26) Blai2P P 

S (A+ lluallP )lluallp· 

or 

(27) 

Put p = Pn = 2npo with Po = 4. Suppose 

It follows from (25) that this is the case when n = 0. Moreover we 
have from (26) and (27) that lluallPn+i ~ Cn+l lal2 with a constant Cn+1 
which obeys the following inequalities: 

(28) 

(29) 

Cn+l S (A+2nB)t,.-Cn ifCn ~ 1 

Cn+l ::; (A + 2n B) 2~ if Cn s 1. 

It is easy to show applying induction to (28) and (29) that Cn S C 
for some constant C independent of a and n. This implies the a priori 
C0-estimate for the solution Ua of (17) and (18): 

(30) 

We now proceed to deriving the C2-estimate. Let Ra be the maximum 
of the absolute value of holomorphic bisectional curvature [KN] of the 
Kahler metric Wa. Then Ra= max:1<i<16{a11, ... ,aii}- We set Ca= 

2Ra. Let 6.a and 6.a be respectively the Laplacians of the Kahler metrics 
Wa and Wa = Wa + Ff_88ua, e.g., 6.a = Z:a,,B g"'f'3v a V {3, where 9a{3 

and V are respectively the components and the Levi-Civita connection 
of the metric Wa- The inequality in [Aul] and (2.22) in [Y2] reads in our 
case as follows 
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(31) ec.u. 6.a (e-c•u•(2 + 6aua))(x) 

:::: A(x) + B(x)(2 + 6aua) + C(x)(2 + 6aua)2, 

where A(x), B(x) and C(x) are 

A(x) = 6aga(x) - 4 i~f(-R;,j 1)(x), 
i-,...1 

B(x) = -2ca, 

C(x) =(ca+ i~f(-R;,j 1)(x))e 9•(x). 
,-,...1 

Here we have used the same convention as in [KN] on the curvature 
tensor and have taken the subscripts i and j with respect to any local 
unitary frame for the holomorphic tangent bundle of X. We define a 
continuous function k( x) by 

k(x) = - inf(-R· 0 • 0 )(x)/R 
i#j "11 a, 

where inf is taken for all unitary frames at x. It is clear from the 
definition that lk(x)I :::; 1. Using (31), we obtain an a priori estimate for 
6 0 Ua-Suppose that e-caua(2+6 0 u0 ) assumes its minimum at x EX. 
Then we have from (31) 

0 :::: eCaUa6_a (e-C•U•(2 + 6aUa))(x) 

= (6 0 g0 (x) + 4k(x)Ra) - 4Ra(2 + 6 0 ua)(x) 

+ (2 - k(x))Rae 9"(2 + 6 0 ua)2(x) 
2e-g.(x) 2 

= e9 ·(2 - k(x))Ra{ ((2 + 6au 0 )(x) - 2 _ k(x)) 

2e-g.(x) 2 e-g.(x)(L, 0 90 + 4Rak)(x) 
- (2 - k(x)) + (2 - k(x))Ra }. 

Hence we have 

I 2e-g.(x) I 
(32) (2 + 6 0 u0 )(x) - 2 _ k(x) 

1 

< I ( 2e-g.(x)) 2 _ e-g.(x)(L,a9a + 4R 0 k)(x) I' 
- 2 - k(x) (2 - k(x))Ra 
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If x lies outside of the neck regions LJ Ui, then 9a(x) = 0 and 6.a9a(x) = 
0. In this case (32) becomes 

(33) 
2 

2 + 6.aua(x) S 2 _ k(x) 

I 
2 2 4k(x) I½ 

+ ( 2 - k( X) ) - 2 - k( X) = 2· 

If x is in the neck regions, we have 

IYa(x)I S C lal2 , 

I sectional curvature at xi S C lal2 , 

[6.a9a(x)I S Clal 2 

and hence lk(x)I S Clal 3. 

These estimates together with iia = min1~i~16{ai} s lal give 

(34) 
2(1 + Clal 2) 

(2 + 6.aua)(x) S 2 - Claj3 

1 

+ I { 2(1 + Clal 2)) 2 _ C(l + Clal 2)lal3 I 2 

2 - Clal 3 2 - Clal3 

s 2 + Cjaj 2 • 

It follows from (33) and (34) that 

(35) 2 + 6.aUa S ec.,u.,e-c.,u.,(:i:)(2 + 6.aua)(x) 

S ec.,(supu.,-infu.,)(2 + Cjal2). 

P tt . max a, h u mg r a = min a, , we ave 

We have then from (35) 

(36) 2 + 6.aUa S eCr.,Jal(2 + Clal 2 ) 

S 2 + Cralaj. 
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The equation (17) and the estimate (20) imply 

(37) 

2: 2 IT (1 + ui,) = 2e2f­
i 

2: 2(1 - C\a\ 2 ). 

It follows from the estimates (36),(37),(20) and the equation (17) that 

(38) 

This gives an a priori C2-estimate for Ua. By the Holder estimates 
for second derivatives [GT, Theorem 17.14] for fully nonlinear elliptic 
equations, we have an a priori C2•°'-estimate of Ua for some O < a < 1: 

(39) 

which is independent of a. We now consider the following equation 
containing a parameter t E [O, 1] with a normalization condition: 

(40) 

( 41) 

(wa + y'-188ua,t) 2 = {1 + t(e9• - l))w~, 

l Ua,tW! = 0. 

The case t = 1 is the equation (17) for a Ricci-flat Kahler metric. By 
Yau's solution to Calabi's conjecture [Y2], the proof of which we have 
followed to examine the behavior of the solution Ua of {17) in the limit 
a-+ oo, the equation (40) (with normalization {41)) has a unique solu­
tion. So we can argue in the following way to get a better C 2 estimate 
and estimates for higher derivatives of Ua- Since log{l + t(e9• - 1)} has 
the same properties as 9a, it follows from the above discussion in the c0 

estimate that there are c0 and C 2 estimates {30) and {38) for ua,t which 
are independent oft E [O, 1] as well as a. Differentiating the equation 
( 40) with respect to t, we have 

(42) 6. OUa,t - e9 • - 1 
a,t at - 1 + t(e9• - 1)" 
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From the above discussion, we have an a priori estimate 

(43) 

where Osc means the oscillation. The estimate ( 43) is independent of 
a and t E [O, 1]. It follows from the a priori c0 estimate (30) for ua, 
(42), (43) and the interior Schauder estimates (see [Au, p.88] and [GT, 
Chapter 6]) that there is an a priori c 2,a estimate 

( 44) 

independent of a and t E [O, 1] on any relatively compact subdomain in 
the complement of the sixteen (-2)-curves. Integrating the estimate 
(44), we infer that, on any compact subdomain disjoint from (-2)­
curves, there is an a priori c 2,a estimate: 

(45) 

By using bootstrapping argument, we have ck,a estimates 

( 46) 

In a neighborhood of a (-2)-curve, the metric Wa has concentrated cur­
vature and we must consider the stale change (cf. (14)) to get a proper 
C2 estimate of ua. As a result, we have in a neighborhood of a distin­
guished (-2)-curve 

( 47) 

( 48) 

lluallc2 :s; Clal 
lluallc• :s; C. 

Estimates ( 45 )-( 48) imply that wa converges to the orbifold metric wo 
and the curvature concentrates along distinguished ( - 2 )-curves and the 
metric looks like the Eguchi-Hanson metric up to the curvature level. 

Next we consider the case of general background. We start with 
a generalized K3 surface with an orbifold Ricci-flat (generally non-flat) 
Kahler metric. By [Kr], there exists an ALE gravitational instanton 
corresponding to each singularity. At a singularity, we take holomorphic 
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normal coordinates ( x, y) such that the background metric is of the form 
Dij+[2] ([2] begins with a quadratic term) and the holomorphic 2-form is 
dx/\dy. The Kahler potential of any ALE gravitational instanton has the 
same asymptotic properties as that of the Eguchi-Hanson metric. We 
choose an ALE Ricci-flat Kahler metric with sufficiently strong curvature 
concentration so that, for example, the are of any ( -2)-curve is grater 
than ½a and smaller than ½a where a is a small positive number ( ¾ 
measures the strength of the curvature concentration). We glue two 
Kahler potentials, one for the background metric r2 + [4] and the other 

for the ALE gravitational instanton r 2 + :: ( for r ~ af3 for j3 < ½ < 1), by 
applying the construction (16). Note that the diameter of the standard 
2-sphere of area a is 0( Ja). If we set j3 = } < ½, we get an approximate 
Ricci-flat metric Wa with 

(49) 
,,, I\ r; !. 

9a = log - 2- = O(a 2 ). 

wa 

Consider the equations (17) and (18). Arguing in the same way as in 
the Kummer surface case (cf. (25)), we have 

(50) 

(51) 

llualloo ::; ca¥ 

lluallc2,a ::; ca¼• 
From the Interior Schauder estimates we get 

(52) 

on any relatively compact subdomain in the complement of distinguished 
(-2)-curves and 

(53) 

(54) 

lluallc2 ::; cal 

11:allc·(~):::: cal 

in a neighborhood of a distinguished ( -2)-curve. These imply that Wa 

converges to the orbifold-metric w0 and the curvature concentrates along 
the distinguished ( - 2 )-curves and after the scale change 

Wa 
Wa--+ -

a 

we capture the corresponding bubble of ALE gravitational instanton. 
We thus get the following convergence theorems: 
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Theorem 18. Let X be a generalized K3 surface with a fiat orb­
ifold Kahler metric wo and Y --+ X be the minimal resolution. Let wa be 
a Kahler metric on Y as in (16) {with r :::::: 1}, i.e., Wa is constructed by 
gluing the fiat metric w0 with ALE gravitational instanton metrics cor­
responding to the singularities with the areas of the distinguished (-2)­
curves pinched between ca and c- 1a for some positive number c (so the 
curvature is pinched between ac- 1 and c- 1a- 1 ). We consider the limit 
a --+ 0. Then, for any relatively compact subdomain 11 in the regular 
part of X, there exist positive numbers C, o: E (0, 1) and Ck(c,11) such 
that 

(30) 

on the whole Y and 

(46) 

for all k E N and in a neighborhood of the exceptional set, there exists 
a positive number C = C(c) such that 

(47) 

(48) 
lluallc•::; Ca 

lluallc4 ::; C. 

Theorem 19. Let X be a generalized K3 surface with a non-fiat 
Ricci-fiat orbifold Kahler metric Wo and Y its minimal resolution. Let 
Wa be a Kahler metric constructed by gluing wo and ALE gravitational 
instanton metrics corresponding to the singularities with the area of the 
distinguished (-2)-curves pinched between ca and ca- 1 by using (16) 
with r ~ a i . We consider the limit a --+ 0. Then the same conclusion 
holds provided we replace a2 in (30) and (46) by a¥- (cf. (50) and (52)), 
a in (47) by al (cf. (53)) and C in (48) by ca-¾ (cf. (54)). 

Let X and w0 be as in Theorem 19. Let 11(w0 ) be the moduli space 
of polarized K3 surfaces determined by requiring that the class [wo] is of 
type (1,1). The space 11(w0 ) is isomorphic to the Hermitian symmetric 
domain S0(2, 19)/ S0(2) x S0(19) of type IV of dimension 19. From 
Theorem 13, there is a family of Kahler-Einstein generalized K3 surfaces 
over 11(w0). Let us call this deformation a polarized deformation. We 
know that in the family restricted on K110 , the canonical Kahler-Einstein 
metrics depend smoothly on parameters in polarized deformations. If 
we (locally) combine polarized deformations and their isometric defor­
mations, we get a smooth (local) section of the fibration Kn --+ 11. It 
follows from this and Theorem 19 that 
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Theorem 20. Let (X, w0 , Y) be as in Theorem 19. In the po­
larized deformation of (Y, [w0 ]), the canonical Kahler-Einstein metrics 
depend "smoothly" on the parameters in the whole D(wo), To be more 
precise, for any sequence Pi E D(wo) of Kahler polarizations such that 
p = limi__, 00 Pi annihilates some (-2)-vectors, the canonical Kahler­
Einstein metrics corresponding to [pi] converge smoothly to the orbifold 
Kahler metric corresponding to [p] outside singularities. In particular, 
the canonical Ricci-fiat Kahler metrics converges to an orbifold Kahler­
Einstein metric in any polarized degeneration of type I. 

Theorem 21. The moduli space of all Einstein metrics including 
orbifold-metrics on a K3 manifold with volume 1 is isomorphic to 

N = S0(3, 19)/ S0(3) x S0(19). 

The singular metrics appear as those metrics corresponding to the fixed 
point set NW with respect to the action of the Weyl group W. There 
exists a universal marked family of Ricci-flat K3 manifolds including 
Ricci-fiat K3 orbifolds ( on Nw) in which the Ricci-flat ( orbifold-) metrics 
depend "smoothly" ( outside quotient singularities) on the parameters in 
the whole N. To be more precise, suppose gi is a sequence in N 0 = 
N - NW with g = limi--+oo Yi E NW. Then 
(i) for large i, the curvature of Yi concentrates near some Dynkin diagram 
configurations E of distinguished 2-spheres of self-intersection number 
-2. If we rescale the metrics gi by the local maximum values of the 
curvature ( recall that we have put f3 = ¾ just before ( 49)), then we can 
capture the ALE gravitational instantons corresponding to the simple 
singularities obtained by contracting E. 
(ii) outside the singularities the metrics Yi converge smoothly to the 
orbifold-metric g. 

Remark. In (KT], a uniformization theorem for a K3 surface is 
proved using Ricci-flat metrics: if X is a generalized K3 surface then X 
is holomorphically covered by a complex 2-torus if and only if the Euler 
number of X in the sense of orbifolds 

vanishes, where Ep is the exceptional set of the minimal resolution over p 
and Gp is the local fundamental group of p. There is a lattice theoretical 
approach to the uniformization of K3 surfaces (M]. Riemannian geomet­
rically this means that X is fl.at if and only if the sum of the ~ times 
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the L2 norm of the curvature tensor J IIRll2 of the ALE gravitational 
instantons corresponding to Sing(X) is 24. 

Theorems 18-21 fill the "holes" (fix points of W) of the moduli 
space r\Kn (resp. r\N) of Kahler-Einstein (resp. Einstein) metrics on 
a marked K3 surface. If we fix a polarization and consider only integral 
isometries fixing this polarization, we get the coarse moduli space of 
Kahler-Einstein K3 surfaces with a fixed polarization. This is a Hermi­
tian locally symmetric V-manifold with cusps. We recall that there is a 
natural compactification due to Satake, Baily-Borel and Mumford. It is 
then natural to ask what Riemannian geometric objects correspond to 
quotient singularities and cusps. The object corresponding to a quotient 
singularity is a Kahler-Einstein orbifold-metric. In (Koh], we make an 
attempt understanding the Riemannian geometric objects corresponding 
to cusps. 
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