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Compact Ricci-Flat Kahler Manifolds 

Ichiro Enoki 

In this part, we survey general results on compact Kahler manifolds 
M with c1 ( M)lli! = 0. According to the solution of the Calabi conjecture 
by Yau [Ya], such a compact Kahler manifold M admits a unique Ricci 
fl.at Kahler metric with given Kahler class. Our main interests here are 
applications of the existence of Einstein-Kahler metrics to studies on 
topological or holomorphic structures of compact Kahler manifolds M 
with C1 (M)R = 0. 
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§1. Bogomolov decomposition 

There are three fundamental types of compact Kahler manifolds 
whose real first Chern classes vanish: 

(1) complex tori T; 
(2) symplectic Kahler manifolds, i.e., compact Kahler manifolds X 

of even dimension 2m which have a holomorphic 2-form cp with 
cpm nowhere vanishing on X (such cp is called holomorphic sym­
plectic 2-form); 

(3) special unitary Kahler manifolds, i.e., compact Kahler mani­
folds Y of dimension n 2: 3 such that the canonical bundle of Y 
is trivial but H 0 (Y, nP) = 0 for O < p < n. 

Some examples of compact symplectic Kahler manifolds are given in 
Section 5. These three types are fundamental in the sense that the 
following holds: 
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Theorem 1.1 (Bogomolov decomposition). Let M be a compact 
Kahler manifold with c1 (M}IR = 0. Then a certain finite unramified 
covering space M' of M decomposes holomorphically, 

M 1 ~TX Xi X · · · X Xr X Yi X • · • X Y., 

into a direct product of a complex torus T and simply connected mani­
folds Xi, Yj, where 

- Xi are symplectic Kahler manifolds with h2•0 (Xi) = 1; 
- Yi are special unitary Kahler manifolds. 

Moreover this decomposition is unique up to order. 

Because of the uniqueness of the decomposition, a simply connected 
symplectic Kahler manifold X with h2 •0 (X) = 1 cannot decompose any 
more. Such a manifold X is called irreducible symplectic Kahler mani­
fold. 

Corollary 1.2. a) The Albanese map of a compact Kahler mani­
fold M with c1 (M)IR = 0 is surjective; and 

b) any surjective holomorphic map f: M ---+ N between compact 
Kahler manifolds M, N with c1 (M)R = O, c1 (N}R = 0 induces a struc­
ture of holomorphic fiber bundle with finite structure group. 

Calabi [Ca-1] noted that the existence of Ricci-flat Kahler metric on 
M would imply Corollary 1.2 for the Albanese map. Bogomolov [Bo-1] 
proved Theorem 1.1 for simply connected M without using the Ricci­
flat Kahler metrics. The following proof using the Ricci-flat metric was 
found independently by S. Kobayashi [Kol] and Michelson [Mi-ll[Mi-2]. 

We begin by quoting several facts: 

Cheeger-Gromoll's splitting theorem (CG]. Let M be a com­
pact Riemannian manifold with non-positive Ricci curvature. Then the 
universal covering space of M splits into Riemannian direct product of 
a fiat Euclidean space and a compact simply connected manifold. 

The second is the classification_ of holonomy groups. Let ( M, g) be 
a Riemannian manifold of dimension m. Then the restricted holonomy 
group P 0 (x) at x E M is always isomorphic to a subgroup of SO(m) 
with the standard action of SO(m} to TpM. We call M irreducible if 
the action of the restricted holonomy group P 0 ( x) to T,,M is irreducible. 
According to Berger [Ber], if M is irreducible but not locally symmet­
ric, then the restricted holonomy group Pp is isomorphic to one of the 
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following subgroups of SO(m) (the action to T,,M is the standard one 
induced by that of SO(m)): 

SO(m); U(n) (m = 2n); SU(n) (m = 2n); 
Sp(r) (m = 4r); Sp(l) · Sp(r) (m = 4r); 
Spin(9) (m = 16); Spin(7) (m = 8); G2. 

Recall that Ricci fl.at locally symmetric spaces are fl.at. Moreover, if 
(M, g) is a Ricci-flat Kahler manifold, then the restricted holonomy 
group is a subgroup of SU(n)( C SO(m)), m = 2n. Thus we have 

Theorem 1.3. Let M be a irreducible Ricci-fiat Kahler manifold 
with dime M = n. Then the restricted holonomy group of M is either 
SU(n) or Sp(r), n = 2r; the action to the tangent space is standard. 

We need one more. Let G = <k( x) be the holonomy group of M at 
x E M and (/\PT; M) 0 the space of (p, 0)-forms at x invariant under 
the action of G. 

Proposition 1.4. Let M be a compact Ricci-fiat Kahler manifold 
with the holonomy group G at x EM. Then H 0 (MJJ.P) ~ (/\PT;M)G. 

In fact, let ( be a holomorphic p-form on M. Let 11(11 be the point­
wise norm of(. We compute the laplacian of 11(112 • Then, since the Ricci 
curvature is zero, by the Bochner formula we have 611(112 = IIV(ll2 , 

where V is the covariant derivative. Integrating the both hands sides 
yields V( = 0. Conversely any parallel (p, 0)-form is holomorphic since 
the (0, 1)-part of the covariant derivative Vis 8. Therefore the mapping 
( 1-+ ((x) gives an isomorphism: H 0 (M,!JP) ~ (/\PT;M) 0 . 

Now we can give 

Proof of Theorem 1.1. Let M be a compact Kahler manifold with 
c1 (M)R = 0. Then by Yau [Ya] M has a Ricci-flat Kahler metric. 
Let M be the universal covering of M and M = E X ni Mi the de 
Rham decomposition of M, where Eis the fl.at-part. Since Mis Kahler, 
this decomposition is holomorphic and tlie fl.at part E is the complex 
Euclidean space. In view of the Cheeger-Gromoll splitting theorem cited 
above, the remaining part Ili Mi is compact. Therefore, by the theorem 
of Bieberbach (see [KB]), there is a finite unramified covering M' ~ 
T x IL Mi of M, where T is a complex torus covered by E. Note 
that the holonomy group of Mi coincides with the restricted holonomy 
group since M; is simply connected. By the classification of restricted 
holonomy groups by Berger (Theorem 1.3) the holonomy group G; of 
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Mi is isomorphic to either SU(m;) or Sp(r;), m; = 2r;, where m; = 
dime M;. According to Weyl [Weyl, Chap. VI], 

. (j\P * )G· { 1, if G; ~ Sp(r;), m; = 2r; and pis even; 
drmc TM· • = 

"' ' 0, if G; ~ SU(m;) and O < p < m;. 

Thus by Proposition 1.4 M; is either a symplectic Kahler manifold with 
h2 •0 (M;) = 1 or a special unitary Kahler manifold according as G; is 
isomorphic to Sp(r;), m; = 2r;, or SU(m;). Q.E.D. 

§2. Deformation 

Let M be a compact complex manifold and M -t S the Kuranishi 
family of M. We call S the (local) universal deformation space of M. 
This space always exits as complex analytic space [Ku] but in general 
not smooth ( even non-reduced). 

Theorem 2.1 (Tian [Ti], Todorov [To-2]). Let S be the universal 
deformation space of a compact Kahler manifold M with c1 (M)R = 0. 
Then S is smooth and dim S = H 1 ( M, 0). 

Bogomolov [Bo-2] proved this theorem for a symplectic compact Kahler 
manifold M. On a symplectic manifold the sheaf 0 of holomorphic 
vector fields is isomorphic to the sheaf n1 of holomorphic 1-forms. He 
showed that any obstruction for deformation, which is an element of 
H 2 (M, 0), should vanish, by regarding it as an element of H 2 (M, n1 ) 

via the isomorphism above and then calculating integrals over 3-cycles. 
Fujiki [Fu-3] also gave a proof for symplectic Kahler manifold, using its 
hyper Kahler structure ( cf. Section 3). The proof we overview here is 
due to Tien and Todorov. 

Let M be a compact Kahler manifold of dimension n and TM its 
holomorphic tangent bundle. For a holomorphic vector bundle E over M 
let Ap,q(E) denote the space of E-valued smooth (p, q)-forms, which is 
also understood to be the space of E ® /1/ T* M-valued (0, q)-forms. 

According to the deformation theory ofKodaira-Spencer (cf. [Kod]), 
each small deformation of M corresponds to cp E A0•1 (TM) with the 
integrability condition 

- 1 
8cp + 2[cp, cp] = 0. 

What Tien [Ti] and Todorov [To-2] proved in fact is the following 

Theorem 2.1'. Let M be a compact Ricci-flat Kahler manifold. 
Then for each TM -valued harmonic ( O, 1 )-form cp1 there exists a unique 
series cp,,_ E A 0•1(TM), µ ~ 1 such that forµ~ 2 
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- 1 .,_..µ 
a) 8cpµ + 2 L.tv=l['Pv, 'Pµ-v] = 0, 
b) [J*cpµ = 0. 

Then by the argument in [KNS] ([Kod], Chap. 5) the power series cp(t) = 
I: cp,,.tµ converges for sufficiently small It\, satisfying the integrability 
condition above. This shows that M can be deformed in the direction 
of any element of H 1(M, 0) and hence the Kuranishi space of Mis an 
open subset of H 1 (M, 0). 

Since Ku ~ I\ n TM, the contraction induces a holomorphic iso­
morphism 

a:r: Ku © I\ n-rT* M _. I\ rT M, 

where /\ 0T M is understood to be a trivial line bundle. This extends to 

a:r: An-r,q(Ku) _. Ao,q(/\rTM), 

commuting with[}. Via a:1 , the Lie bracket on ffiq>O A 0 ,q(TM) induces 

a Lie bracket [ , ] on EBq~O An-l,q(Ku): -

for e, 'T/ E EB A 0•q(TM). 
q:?;O 

On the holomorphic tensor bundle E = I\ r TM© I\ s T* M, the Levi­
Civita connection V of M defines the hermitian connection relative to 
the induced metric and the exterior covariant derivative 

Let a be the (1, 0)-component of d". 

Lemma 2.2. Fore, 'T/ E An- 1,1 (K1-) 

where f3 is induced from an interior product 

TM @ j\ n-l T* M -> j\ n- 2 T* M. 

Proof. Recall that KM and Ku are flat line bundles with the in­
duced metrics. Relative to a parallel local trivialization w of KM, define 
div w X for a local holomorphic vector field X by 

(divwX)w = Cxw, 
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where Lx is the Lie derivative with respect to X. Let Z_jw denote 
the interior product of w with a vector field Z. Then {) o J3 corresponds 
to divw and the lemma reduces to the fundamental properties of Lie 
derivative: for holomorphic vector fields X, Y we have 

Lx(Y _jw) = (divw X)Y _Jw + (£x Y)_jw 

= a(X_jY _jw) + X_ja(Y _jw) 

and £xY = [X,Y]. 

( the derivation rule) 

(H. Cartan's formula) 

Q.E.D. 

Since KM is a flat line bundle and M is Kahler, the Hodge theory 
holds also for KM-valued (p, q)-forms; in particular every KM-valued 
8-harmonic form is a-closed and the 88-lemma holds: 

Lemma 2.3 (cf. [GH] p. 149). If KM-valued 8-closed (p, q)-form 7J 

is 8-exact, then there exists a (p - 1, q - 1)-form I such that 7J = 88 1 
and 8*81 = 0. 

The flatness of KM also implies the following 

In fact, the inverse of a(ll can be obtained by contracting with w and 
then tensoring w*, where w is a parallel local trivialization of KM and 
w* its dual. Express 8* using v'. Then, the lemma follows immediately 
since contractions and the covariant derivative commute each other. 

Now the power series Lµ,?;l cp,,,t,,, in the theorem can be constructed 

inductively in terms oft,,, E An- 1,1(KM) with 'Pm= a 1 (t,,,). The con­
ditions a), b) correspond to 

a)' at,,,+½ I:~=1ltv,t,,,-v] = o, 
b)' 8*t,,,=0. 

We pose moreover 

c)' at,,,= 0. 

Since <p1 and hence 6 are harmonic, 6 satisfies the conditions above 
by Lemma 2.4. Suppose there are determined 6, ... , t,,, satisfying a)', 
b)' and c)'. Then each [tv,tµ,-v] is 8-exact by c)' and Lemma 2.2; the 
sum is 8-closed by condition a)'. Hence, by the 88-lemma, Lemma 2.4, 
there exists t,,,+1 satisfying a)', b)' and c)'. By condition b)' this series 
is unique. 
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§3. Symplectic manifolds 

In this section we discuss the structure of de Rham cohomology ring 
of a symplectic Kahler manifold. We begin by recalling Kahler case 
briefly. 

Kahler Case. Let M be a compact Kahler manifold of dimen­
sion n. We first note that any parallel endmorphism 0 of the tangent 
bundle TM of M induces a derivation of the de Rham cohomology ring 
H*(M, Fil) of M. In fact we have ([Li-1] or see [Li-2]) 

Proposition 3.1. Let M be a Riemannian manifold and 6. the 
Laplacian on p-forms. If h is a parallel endmorphism of f,t T* M, then 
6.(ha) = h6.a for any p-form a. 

The complex structure J on a Kahler manifold M is a parallel end­
morphism of TM. Let v( J) denote the derivation ( over Fil) on A* T* M 
induced by J, namely, v(J)cp = .;=T(p--'- q)cp for (p,q)-form <p. Recall 
that TM admits another parallel endmorphism, that is, the identity id; 
and it induces a derivation v(id) given by v(id)rp = (p + q)<p for (p, q)­
form cp. These two derivations generate a Lie algebra corresponding to 
a Lie group U(l) x IR* ==== C*. Thus we have 

Proposition 3.2 (see [We]). Let M be a compact Kahler manifold. 
Then there is a real representation p of C* 3:: U(l) x Fil* to the algebra 
automorphism group of the cohomology ring H*(M, Fil). 

Let HM(M) c HP+q(M, C) be a subspace spanned by classes of d­
closed (p, q)-forms in the de Rham cohomology group of M. Then the 
Hodge decomposition, 

Hk(M, C):::: EB HM(M), FfM(M) = Hq,p(M), 
p+q=k 

is nothing but the decomposition of H*(M, C) ==== H*(M, Fil)@ C into 
the isotypical components of the real representation p in Proposition 3.2 
above ( an isotypical component is, by definition, a direct sum of one and 
the same irreducible representation). Moreover p does not depend on a 
Kahler metric of M. In fact, for z = exp(s + .;=10), s,0 E Fil, we have 

p(z) = L exp((p + q)s + .;=T(p - q)0)7f"p,q, 
p,q 

where 7f"p,q: Hr(M, C)-+ HM(M) denote the projection. 
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Let w be a Kahler form on M. Let L be the multiplication operator 
on H*(M, C) by the Kahler class of w and A the adjoint operator of L. 
For k ::; n, n = dim M we set 

Hk(M,C}w = {a E Hk(M,C} I Ln-k+la = O}, 

Hp,q(M)w = Hk(M, C}w n Hp,q(M). 

Then the strong Lefschetz theorem says 

Ln-k: Hn-k(M, R) ~ Hn+k(M, R), 

Hk(M, R) = E9 Lr Hk- 2r(M, R)w-
r:C::O 

Elements of Hk(M, C)w are called w-effective (or primitive). 

hyper Kahler manifold. Let M be now a symplectic Kahler man­
ifold of complex dimension 2n. According to the solution of the Calabi 
conjecture by Yau [Ya] there is a unique Ricci flat Kahler metric g with 
given Kahler class. Then (M,g) has a structure of hyperKahler mani­
fold (for definition, see below). Before stating results on the structure 
of cohomology ring of M, we introduce first a few notions related to 
hyperKahler manifolds. 

The restricted holonomy group of (M,g) is a subgroup of Sp(n). 
(It is exactly Sp(n) if Mis irreducible.) Hence the ring of parallel en­
domorphisms of the tangent bundle TM of M contains a subalgebra 
H isomorphic to (and identified with) the standard quaternion algebra 
over R Let P ={.\EH j .\2 = -1}. Then each.\ defines an integrable 
complex structure on M so that g is a Kahler metric under this com­
plex structure. Let M>. denote the manifold M with complex structure 
defined by .\ and W>. the Kahler form of g relative to .\. Thus we have 
a family {(M>., W>.)} >.EP of Kahler structures, which is called the Calabi 
family; and the manifold M together with this family is called a hy­
perKahler manifold. Moreover the family {w>.hEP of d-closed 2-forms 
on M defines a 3-dimensional subspace F c H 2 (M, R), which we call 
the hyperKahler 3-space associated to (M,g). 

Each member (M>.,W>.) of the Calabi family is again a symplectic 
Kahler manifold (as we will see a little later). Conversely a Kahler class 
[w] on M and a I-dimensional subspace of H 0 (M, f!2 ) spanned by a 
holomorphic symplectic 2-form r.p determine a hyperKahler structure on 
M. For a symplectic Kahler manifold M with h2•0 (M) = 1, in particular, 
a hyperKahler structure on Mis equivalent to a polarization on M, i.e., 
fixing a Kahler class on M. 
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Let H* := H - {0}. By Proposition 3.1 each parallel endomorphism 
of TM induces an algebra automorphism of H*(M, R). Therefore, cor­
responding to Proposition 3.2 above we have 

Proposition 3.3. Let M be a hyperKahler manifold. Then there 
is a real representation PHK of H* ~ Sp(l) x R>o to the algebra auto­
morphism group of the cohomology ring H*(M, R). 

The decomposition of Hk(M, R) into isotypical components of the ac­
tion of PHK(H*) is compatible to the Hodge decomposition relative to 
any complex structure A E P. Note that, however, this decomposition 
depends on the hyperKahler structure of M. 

Corollary 3.4 ([Wal). Every odd dimensional Betti number of a 
compact hyperKahler manifold is divisible by 4. 

This follows from Proposition 3.3 and results on the representation of 
H* ([Fu-3]). The following argument is taken from Wakakuwa's long 
forgotten paper [Wa]. 

Proof. Let l, T/ be harmonic forms of odd degree on a compact 
hyperKahler manifold with Ricci flat Kahler metric g. Assume that 
l is orthogonal to 'f/ with respect to the L 2-inner product. Since g is 
hermitian relative to the complex structure corresponding to each A E P, 
we have g(p(A)l, p(A)rt) = g(l, rt). On the other hand p(A) 2 l = -l for 
A E P since the degree of l is odd. Thus the de Rham classes of l and 
p(A)t A E P, span a 4-dimensional subspace in the cohomology group 
and they are all orthogonal to T/· Q.E.D. 

We examine here the action of PHK(H*) more closely. For A E P 
let v(A) denote the derivation on H*(M, C) induced by the complex 
structure A. Then v(µ)w;,.. = 2w;,..,,. Let (A,µ, v) be a standard basis of 
pure quaternions such that 

12 = µ2 = v2 = -1, 

lµ =-µA= v, µv = -vµ = A, VA= -Av=µ. 

Then v(A)a = J=I(p - q)a for a E HM(M), relative to the complex 
structure A, and 

(3.5) 
(v(µ) + Av(v))(HM(M)) c HP+I,q- 1 (M), 

(v(µ) - Av(v))(HM(M)) c Hp-I,q+I(M). 
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Moreover 

'P>. := Wµ + \f-lwv = \f-l(v(µ) + \f-lv(v))w>. 

is a holomorphic symplectic 2-form under the complex structure ..\. The 
hyperKahler 3-space F, spanned by the de Rham cohomology classes of 
W>., wµ and Wv, is identified with the space of pure quaternions, i.e., the 
Lie algebra sp(l). Thus we have 

Proposition 3.6. For a compact hyperKahler manifold M, 
1) PHK(H*) ~ H* ~ Sp(I) x R>oi 
2) the hyperKahler 3-space F is stable under the action of PHK(H*) 

and the action of Sp(I) on F ~ sp(I) is identified with the adjoint 
action. 

For each ,\ E P let L>. be the endomorphism of H*(M, R) defined 
by the multiplication with W>.-For k ::; 2n, define 

An element of H"(M, R)F called universally effective. Since each el­
ement W>. of the hyperKahler 3-space F is a Kahler form relative to 
the complex structure corresponding to ..\, the strong Lefschetz theorem 
holds with respect to each L>.. Moreover we have 

Theorem 3.7 [Fu-3]. Let M be a compact symplectic manifold 
with dime M = 4n. Let N* be the subalgebra of H*(M, R) generated by 
the hyperKahler 3-space F. Then: 

1) The submodule H; ( M, R) generates H* ( M, R) as N* -module and 
we have a natural direct sum decomposition 

2) If l ::; n, then the natural map 

is an isomorphism of H* -module. 

Let cp be the holomorphic symplectic 2-form on M. Let 

L · Hq(M DP) ---t Hq(M nP+ 2) 
r.p· ' ' , 

Lq,: Hq(M, DP) ---t Hq+2 (M, DP) 
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be the linear maps defined by the multiplication with cp and 'P respec­
tively. For 1 = cp or 'P the space of 1-effective Dolbeault classes is defined 
by 

Hq(M,W), := {a E Hq(M,W) I L;-•+ 1a = O}, 

where s = p or q according to 1 = cp or 'P· 

Theorem 3.8 [Fu-3]. Let M be a compact symplectic Kahler man­
ifold with dirnc M = 4n. Then: 

1) The linear maps 

L;-P: Hq(M,Dl)---+ Hq(M,n 2n-p) for p < n, and 

L;-q: Hq(M, D,P)---+ H 2n-q(M, W) for q < n, 

are both isomorphic. 
2) For any p, q 2". 0 we have the direct sum decopositions 

Hq(M, W) = EB L;Hq(M, W)r.p, 
r?:'.n-p 

Hq(M, D,P) = EB L~Hq- 2 r(M, W)c;,. 
r?::n-q 

Theorems 3. 7 and 3.8 are, respectively, hyper Kahler and holomor­
phic symplectic versions of the strong Lefschetz theorem for Kahler man­
ifolds. Recall that the strong Lefschetz theorem is a consequence of the 
fact that the de Rham cohomology ring of a compact Kahler manifold 
admits an sl(2)-action generated by the operator Land its formal adjoint 
A. One can proof Theorem 3.8 similarly by considering an sl(2)-action 
on EBP Hq(M, f/.P) (or ffiq Hq(M, f/.P)) generated by Lr.p (or Le;,) and its 
formal adjoint. We shall give here a proof of Theorem 3. 7, which uses the 
fact that L>.., their formal adjoint operators, and v(>.), >. E P, generate 
an sp(2)-action on the de Rham cohomology ring. 

Proof of Theorem 3.7. We fix a Ricci-flat Kahler structure on M. 
Define an operator H by Hep = (p + q - 2n)cp for (p, q)-form cp. The 
complex structure corresponding to >. E P induces a derivation v(>.) 
( over R) of the space of forms. Moreover, for >. E P, let L>.. denote 
the multiplication by W>.. and let A>.. be its formal adjoint. Then these 
operators act on the space of harmonic forms by Proposition 3.1. We 
shall determine the commutator relations. 

First of all, for each >. E P we already know that H, L>.. and A>,. 
generate s1(2): 

(*) [H,L>..] = -2L>.., [H,A>-] = 2A>-, [L>..,A>..] = H, 
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and v(>.), >. E P, generate sp(l): 

(**) [v(>.), v(µ)] = -2v(>.µ) for>.,µ E P. 

To derive other relations, take a standard basis of the pure quaternions, 
say >., µ and 11, so that >. corresponding to the fixed complex structure. 
Then cp := (l/2)(wµ + Aw,,) is a holomorphic symplectic 2-form. Let 
L'f' denote the multiplication by cp and A'f' its formal adjoint. Moreover 
let L<j, and A<j, denote the complex conjugate of L'f' and A'f' respectively. 
Since v(>.)a = A(P - q)a and cp is of type (2, 0), we have [v(>.), L'f'] = 
2HL'f'. Taking the real part and its adjoint, we obtain 

[v(>.), Lµ] = -2£,,, [v(>.), Aµ] = 2A,,. 

Let a be a (p, q)-form. By the same calculation as in the Kahler case we 
have 

It follows 

A[Lµ, A,,]a: = [L'f' + Lq,, A'f' - A<j,]a: 
1 

= (p - q)a = 11 v(>.)a. 
v-1 

Consequently, if >. -f:. µ, then 

[v(>.), Lµ] = -2L>.µ, [v(>.), Aµ] = 2A>.µ, 

[L>., Aµ] = -v(>.µ). 

Any other commutator of H, L>., A>., v(>.), >. E P, which does not 
appear in ( * ), ( **) or ( ***) is zero. 

Let 7i* be the space of harmonic forms on M with coefficients in C. 
By the above commutator relations, the complex Lie algebra generated 
by H, v(>.), L>. and A>.,>. E P, is isomorphic to sp(2, C). Since sp(2, C) is 
semi-simple, 7i* is decomposed into a direct sum of irreducible sp(2, C)­
submodules. Let V C 1{* be an irreducible subspace. For a subspace 
fJ c sp(2, C) and U c V we denote: 

For>. E P let 9>.. be the Lie subalgebra generated by H, L>. and A>,.. Let 
V>. C V be a 9>..-irreducible subspace. As a 9>..-module, V>. is generated 
by an W>,.-effective element V>. E V>,.. Choose >. E P so that the degree as 
a form of V>. is minimal amon~ those of vµ, µ E P. Then, since 9µV>. is 
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g,.-irreducible, V>. is w,.-effective for anyµ E P, i.e., universally effective. 
Let £ be the subspace spanned by L>., >. E P and V be the subspace 
spanned by v(>.), >. E P. It follows by(*), (**)and(***) that .CVv>. 
is stable under the action of sp(2, C) and hence V = £Vv>., Moreover 
by ( ***) each element of Vv>. is universally effective and of the same 
degree. This proves 1) of the theorem. 

To prove 2) of the theorem, we recall the representations of sp(2, C) 
(cf. [Weyl]). For any pair (/1, h) of integers with 

/i ~ Ji ~ 0, /i + h = d ~ 1, 

there is an irreducible representation V(fi, '2) of sp(2, C) and any irre­
ducible representation is equivalent to V(/ 1, h) for some {Ii, '2)- More­
over V (/1, h) and V (91, 92) are equivalent if and only if (/1, '2) = 
(g1' 92), 

We use the following characterization of V(/ 1,'2). Let V be an 
irreducible representation of sp(2, C). Consider the set E consisting of 
all pairs (r, s) of eigenvalues r of Hand eigenvalues s of v(>.) on V. Let 
(r 0 , s0 ) be the maximal element of E with respect to the lexicographical 
order. Then Vis equivalent to V(fi, '2) with Ji+ h = ro and Ii - h = 
So. 

To observe the action of sp(2, C) on V(/1, h), we shall realize it 
in an exterior algebra. Let Vo be a complex vector space with basis 
Z1, ... , Zn, W1, ... , Wn· In V := EBv,q:::::o /",/ Vo I\ I\ q Vo, we set 

n 

wv = I)zi I\ Zi + Wi I\ Wi), 
i=l 

n 

<pv = L Zi I\ Wi, 
i=l 

Let Lwv , L'Pv and Lq,v denote the multiplication in V by wv , <pv and 
<pv respectively. Moreover let Awv, A'Pv and Aq,v be the adjoint oper­
ators of Lwv , L'Pv and Lq,v respectively with respect to the hermitian 
metric defined by wv. Then these generate the action of sp(2, C) on V. 
Since these operators just correspond to Lw , L'P , Lq,, Aw, Acp and Aq, 
respectively, we will use the same symbols as before. Set 

X := [Aw, Lq,], y := [Aw, L<pl· 

Choose integers 0 ~ q ~ p ~ n so that /i = n - q and h = n - p. 
Let { := z1 /\ • • • /\ Zv I\ w1 I\ · · · I\ tiiq. Then sp(2, C){ is equivalent to 
V(/ 1,/2). In fact we have 

Aw{= A'P{ = Aq,{ = Y{ = 0, 

H{ = (2n - (p + q)){, v(>.){ = (p - q){. 
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Therefore the eigen space of H with the maximal eigenvalue, 2n-(p+q), 
in sp(2, C)~ is spanned by xr~, 0 ::; r ::; p - q. Moreover v(>..)xr~ = 
(p - q - r)xre. Note that all xre are universally effective. 

Now we complete the proof of 2). Let e(a, b, c, r) = L~LtL~Xrf 
Then, among these elements, e( a, b, c, r) is characterized by the fact that 
it contains the term 3(k) A n(a) A P(b) A IJ!(c), where 

p-r q p p+a 

3(r) = /\ ZiA I\ WiA I\ Wj, n(a) = /\ (zi A zi), 
i=l i=l j=p-r+l j=p+l 

p+a+b p+a+b+c 

P(b) = I\ (zk A wk), '1i'(c) = /\ (zk A wk)-
k=p+a+l k=p+a+b+1 

Therefore e(a, b, c, r), 2a + 2b + 2c + p + q::; n, k ::; p - q, are linearly 
independent. Q.E.D. 

Theorem 3.9 ([Bea-2], [Fu-3]). Let M be a compact symplec­
tic Kahler manifold with h2•0(M) = 1. Let v(a) := JM a 2n for a E 
H 2(M, IR). Then there is a unique quadratic form f on H 2 (M, R) such 
that 

(1) f is non-degenerate with signature (3, b2 (M) - 3); f(,) > 0 for 
any Kahler class 'Yi 

(2) f(a)n = v(a) for a E H 2 (M, R); 
(3) for a, /3 E H 2 (M, R) 

v(o:)2 f(/3) 

=/(a) [(2n - l)v(a) JM a2n- 2f32 - (2n - 2) (/M a2n-l/J r] j 
(4) f is Q-valued on H 2 (M, Q). 

We note that (2) of the theorem is due to Fujiki [Fu-3] and (3) is due to 
Beauville [Bea-2]. Both of their proofs use the Bogomolov unobstructed 
theorem for deformations; this unobstructed theorem can be proved us­
ing the existence of Ricci-flat metrics (see Section 2). The following 
proof of Theorem 3.8 uses the solution of the Calabi conjecture more 
directly. 

Proof of Theorem 3.9. Let M be a compact symplectic Kahler man­
ifold with h2•0 = 1. Let cp be a symplectic holomorphic 2-form on M 
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normalized so that JM(cprpt = 1. Following [Bea-2], for o: E H 2 (M, R) 
let 

lo(o:) := '!!'.. r (cprpf-lo:2 + (1 - n) r cpn-lrpno:. r cpnrpn-lo:. 
2 }M JM JM 

We shall show that lo multiplied by a suitable positive constant has 
desired properties. 

Since lo is a polynomial on H 2 (M, R), it suffices to consider on an 
open subset of H 2 (M, R). Therefore we may assume that the (1, 1)­
component o:<1.1) of a E H 2 (M, R) is a Kahler class. According to the 
solution of the Calabi conjecture by Yau [Ya], there is a Ricci-flat Kahler 
metric g on M with Kahler class o:<1,1). Let w be the Kahler form of 
g. We may assume J M w 2n = 1. In the following we consider this 
Riemannian structure. Then the symplectic form cp on TpM, p E M, 
is invariant under the action of the holonomy group, Sp( 4n) with the 
standard action. Hence cp can be written as 

(2n )! n 

cp = 22n(n!)2 I: Ui I\ Vi 
i=l 

with a suitable unitary basis u1, ... , Un, v1 , ... , Vn of T; M; note that 
the Kahler form w at p is given by 

Rn - -
w - -- ~(u· I\ u· + v· I\ v·) - 2 L....,' ' ' ,. 

i=l 

Since cp and w are parallel, it follows that (cprp)n-1w2 = cw2n on the 
whole M, where c is a positive constant depending only on the dimension 
of M. Hence 10 (0:) = c' JM o:2n by a direct calculation. 

To prove (3) we shall use the Sp(l)-action on the cohomology ring 
H*(M, R). First we show that 10 is invariant under this action. By 
Theorem 3.7 we have 

H 2 (M, R) =FEB H 2 (M, R)F, 

as Sp(l)-module, where Fis the hyperKahler 3-space. Since h2,0 (M) = 
1, any element of H 2 (M,R)F is of type (1,1). Therefore the action of 
Sp(l) on H 2 (M, R)F is trivial by (3.5). Since win,,\ E P, are the volume 
form of the same metric, l 0 (w>.), ,\ E P, are all equal by (2). By (2) of 
Proposition 3.6 it follows that lo is Sp(l )-invariant. 

Since the action of Sp( 1) on H 4n( M, R) is trivial, both hand sides 
of (3) is Sp(l)-invariant. Moreover Sp(l) acts transitively on the hy­
perKahler 3-space F by Proposition 3.6. Therefore we may assume that 
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o: is of type (1, 1) and hence o: = w. Let /30 be the universally effective 
part of f3 E H 2 (M, R) so that f3 can be written as f3 = w + ccp + crp + f3o 
for some c E C. Note that 

w1w!wif30 = 0 for a + b + c = 2n - 1, a, b, c 2: 0. 

Therefore w2 n- 2 cpf30 = 0 and (cp I\ rpt- 1 cpf30 = 0. Now we have (3) by a 
direct calculation. 

In particular / 0 is positive definite on the hyperKahler 3-space F. 
By Hodge bilinear relation JM w2n- 212 < 0 for I E H 2 (M, R)F- Hence 
by (3) f 0(,) < 0 for I E H 2 (M, R)F- Thus the signature of f O is 
(3, b2(M) - 3). 

Since f 0 (cp + rp), v(cp + rp) > 0, we can choose I E H 2 (M, Q) suffi­
ciently near to cp + rp so that / 0 (,) > 0,v(,) > 0. Note that v(,) is a 
rational number. Thus by (3) f := / 0 (,)- 1 f O is Q-valued on H 2 (M, Q). 

Q.E.D. 

Thus H 2 (X, Q) of a symplectic Kahler manifold X has the Hodge 
structure and the quadratic form qx. 

Proposition 3.10. Let X, Y be compact irreducible symplectic 
Kahler manifolds. Assume X is bimeromorphic to Y, i.e., there are 
proper modifications f: Z --> X and g: Z --> Y of X and Y respec­
tively. Then the bimeromorphic map h := f o 9- 1 : Y · · · --> X induces 
an isomorphism 

preserving the Hodge structure and the quadratic forms qx and qy. 

Proof. By Hironaka's desingularization theory we may assume Z is 
smooth. Let E and F be, respectively the exceptional divisors of f and 
g. Then the canonical bundle Kz of Z is written as Kz = f* Kx + E or 
g* Ky+ F, where Kx and Ky are, respectively, the canonical bundles 
of X and Y, which are both trivial. Thus we have E = F and hence 
h defines a biholomorphic map of X - f(E) to Y - g(E). Note that 
both f(E) and g(E) are of codimension 2: 2. By Lemma 3.11 below it 
follows that h induces an isomorphism H 2 (X, Q) 3:: H 2 (Y, Q). Let cp be a 
holomorphic symplectic form on X. Then h*cp extends holomorphically 
over the analytic set g(E) of codimension 2: 2 and defines a symplectic 
form on Y. Since h2 •0 (X) = h2 •0 (Y) = 1, this implies that h* preserves 
the Hodge structure. Also we have h * qx = qy since the quadratic forms 
qx and qy depends only on the symplectic structure ((2) of Theorem 
3.9). Q.E.D. 
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Lemma 3.11. Let M be a compact complex manifold of dimension 
n and V C M an analytic subset of codimension 2:: 2. Then the inclusion 
map M - V c_., M induces an isomorphism H 2 ( M, l) ~ H 2 ( M - V, l). 

Proof. Consider the cohomology exact sequence of a pair (M, M -
V): 

where the coefficient l is understood and omitted. Hi(M, M - V) '°" 
H2n-i(V) by the Alexander duality theorem; and H2n_;(V) = 0 for 
i = 2 or 3 since dim!R V ~ 2n-4. Thus H 2 (M) ~ H 2 (M -V). Q.E.D. 

§4. Period map and Weil-Peterson metric 

Let M be a compact n-dimensional Kahler manifold with c1 (M)IR = 
0. Let hr,0 (M) := dimH 0 (M, nr). In this section we consider periods of 
holomorphic r-forms. According to the Bogomolov decomposition (see 
Theorem 1. 1) the study of periods is reduced to the following three cases: 

l, n = dim M, i.e., the canonical bundle of M is 
trivial; 

(2) h2 ,0 (M) 1, the case where M is an irreducible symplectic 
Kahler manifold; 

(3) the case where Mis a complex torus. 

Starting with a general situation, we will later restrict our attention to 
the cases (1) and (2). 

Polarized family. A pair (M, w) of a compact Kahler manifold 
and a Kahler class w E H 2 ( M, R) is called a polarized Kahler manifold. 
Two polarized Kahler manifolds (M,w) and (M',w') are isomorphic if 
there is a biholomorphic map f: M ---+ M' with f*w' = w. A polarized 
deformation family (M ---+ T, u) of a polarized Kahler manifold (M, w) 
is a deformation family 7r: M---+ T of M with a section u E f(S, R 27r*R) 
such that 1) M ~ M 0 , w = u(o) for some o ET; and 2) Wt:= u(t) is a 
Kahler class on Mt for each t E T. The universal polarized deformation 
family is defined analogously to the usual deformation. Existence of an 
universal polarized deformation family of any polarized Kahler manifold 
( M, w) follows from the existence of the usual universal deformation 
family of M. 

Theorem 4.1. The universal polarized deformation space of a po­
larized Kahler manifold (M,w) with c1 (M)IR = 0 is smooth. 
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Let ( M, w) be a polarized Kahler manifold with c1 { M)IR = 0. Let 
( 1r: M ----+ T, u) be its universal polarized deformation family with M === 

7r- 1 (o), o E T. Then T is, as a germ at o, an analytic subset of the 
universal deformation space S of M. The tangent space of S at o is 
identified with H 1 ( M, 0); the tangent space of T at o is the linear sub­
space 

{ 4.2) H1{M, 0)w := {0 E H 1 {M, 0) I 0_jw = 0}, 

where the symbol _J means a product 

induced by the contraction 0 x n1 ----+ 0. 
We note here 

Proposition 4.3. Let ( M --> T, u) be a universal polarized defor­
mation family of a polarized Kahler manifold (M,w) with c1(M)R = 0. 
Let 9t be the ( unique) Ricci-fiat Kahler metric on Mt whose cohomol­
ogy class is u(t). Then there is a C00 d-closed form P on M such that 
the restriction of P to Mt is the Kahler form of 9t for each t E T. In 
particular 9t is C 00 int. 

Weil-Peterson metric. Let M --> T be the universal polar-
ized deformation family of a polarized Kahler manifold ( M, w) with 
c1 (M)IR = 0. Then T has a canonical metric called the Weil-Peterson 
metric, which is defined as follows. Let g be the Ricci-flat Kahler met­
ric whose Kahler class is w. The tangent space of T at o, M ~ M 0 , 

with H 1 (M, 0)w defined in (4.2). Moreover we identify each element 
of H 1 (M,0)w with its harmonic representative relative to the metric g. 
The Weil-Peterson metric 9WP on Tis defined at o by 

where (0, 0') is an inner product of the 0-valued harmonic {0, 1)-form 0, 
0' E H 1 (M, 0)w relative tog and dv9 is the volume form of g. 

Period maps. Let 7r: M --> S be a local universal deformation 
family of Mand Ms:= 1r- 1 (s) with M 0 === M. By the unobstructedness 
theorem {Theorem 2.1 of Section 2) the base space S is smooth. Let 
w: M x S ----+ M be a C 00 -trivialization. Assume d := hr,0 (M) -::f 0. 
Then, since M and hence Ms, s E S, are Kahler, every holomorphic 
r-forms on Ms is d-closed, i.e., H 0 (Ms, nr) C Hr(Ms, C) canonically, 
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and hr,0 (M.) = d are constant. Let Grd(V) denote the Grassmannian 
consisting of d-dimensional subspaces of a vector space V. A period map 
Pr: S - Grd(Hr(M, C)) for holomorphic r-forms is defined by 

Then Pr is holomorphic, as proved by Griffiths [Gr] (in a more general 
setting). 

Theorem 4.4 (local Torelli). The period map Pr for holomorphic 
r-forms of compact Kahler manifolds with c1,IR = 0 is locally injective. 

Proof. We shall show that the differential (Pr). of Pr at o E S is 
injective. Let p: T0 S - H 1(M, 0) be the Kodaira-Spencer map. The 
unobstructed theorem {Theorem 2.1 in Section 2) says that this map is 
an isomorphism. In view of the Hodge decomposition of Hr(M, C), the 
tangent space of Grd(Hr(M, C)) at Pr(o) is identified with 

Hom(H 0 {M, !Y), H 1(M, nr-l) EB··· EB Hr(M, 0)). 

Then (Pr)* ( v ), v E T0 S, is a map p( v )_j • induced by the contraction 
0 ® nr - nr-1. 

Now let M equip with a Ricci-flat Kahler metric. Let 0 a 0-valued 
harmonic {O, 1)-form on M and cp be a holomorphic r-form. Then the 
(r - 1, 1)-form 0_Jcp obtained by contraction with 0-component is also 
harmonic since cp is parallel by Proposition 1.4 in Section 1. Thus the 
de Rham cohomology class of 0_j cp does not vanish whenever 0 -:/= 0 and 
cp -:/= 0. It follows that (Pr). is injective. Q.E.D. 

Let ( M - T, (1') be a deformation family of polarized Kahler mani­
folds (Mt, Wt), t ET. For r < n := dime M let 

Hr(M R) ·- Ker(Ln-r+l · Hr(M R) - H 2n-r+ 2 (M R)) t, 0 .- t · t, t, , 

where Lt is the multiplication by the cohomology class of Wt- Namely 
Hr(Mt, R)0 is the space of primitive cohomology classes of degree r rel­
ative to the Kahler class Wt- Let w: M x T - M be a C 00 -trivialization 
of the family M - T. Then, identifying M x {t} with M as usual, 
we have w = w*(wt) and hence '°¥* Hr(Mt, R)o = Hr(M, R)o for each 
t E T. Since holomorphic forms always define primitive classes, the pe­
riod map Pr for the polarized family takes its value in Grd(Hr(M, C)0 ), 

d = hr,O(M). 

Period domains. From now on we assume that r = 2 or n = 
dim M and hr,0 (M) = 1. Then the image of the period map Pr is 
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contained in a certain subset of P(Hr(M, C)) = Gr1 (Hr(M, C)), which 
is a bounded symmetric domain of type III and written in general as 
follows: Let V be a vector space over R and Q a nondegenerate bilinear 
form on V. Set Ve= V © C and 

(4.5) D(V, Q) = {l E P(Vc) I Q(cp, cp) > 0, Q(cp, cp) = 0 for cp El}. 

The automorphism group G of D(V, Q) is induced by the linear trans­
formation group of V which preserves Q. Let L be the tautological line 
bundle over P(Vc)- Then Q induces a G-invariant hermitian metric hq 
on Lln(V,Q)· The curvature Ric(hq) of hq defines the G-invariant Kahler 
form ARic(hq) on D(V,Q). 

Suppose M is a symplectic manifold with h2•0 (M) = 1. Let q be 
the quadratic form on H 2 (M, R) introduced by Beauville [Bea-2] and 
Fujiki [Fu-3] (see §3) and set D2(M) := D(H 2 (M, R), q). Then any 
small deformation M. of M is also a symplectic Kahler manifold with 
h2 •0 (M.) = l; the period map p 2 takes its image in D2 (M). Moreover 
we have 

Theorem 4.6 [Bea-2]. Let M be a symplectic Kahler manifold 
with h2 (M) = 1. Let M - S be the local universal deformation of M. 
Then the period map p2 : S - D2 (M) is locally isomorphic. 

Proof. The differential of P2 is injective by Theorem 4.4. There­
fore it suffices to show dimS = dimD 2(M). By the unobstructedness 
theorem (Theorem 2.1), we have dimS = dimH 1 (M,0). The interior 
product with the holomorphic symplectic form yields an isomorphism 
0 ~ n 1 and hence H 1 (M,0) ~ H 1 (M,n 1 ). Since h2•0 (M) = 1, we 
have h 1•1(M) = b2(M)- 2. On the other hand D2(M) is an open subset 
of a hypersurface in P(H 2 (M, C)) and hence dimD 2(M) = b2 (M) - 2. 
Consequently dim S = dimD2(M). Q.E.D. 

For a polarized symplectic Kahler manifold M with h2 ,0 (M) = 1, 
we set D2(M)o := D(H 2 (M, R)0 , q). Note that D2(M) 0 with the Kahler 
form ARic(hq) is isometric to S0o(2, b2(M)-3)/ SO(b2(M)-3) with 
the invariant metric. 

Theorem 4. 7 (Schumacher [Sc]). Let M - T be a local universal 
polarized deformation family of a symplectic Kahler manifolds M. Then 
ww p = p2 A Ric( hq), i.e., the period map P2 : T - D2 ( M)o is a local 
isometry, between the Weil-Peterson metric 9WP on T and the invariant 
metric on D2(M)o-



Ricci-Flat Kahler Manifolds 249 

For periods of holomorphic n-forms, we take Q in ( 4.5) to be the 
intersection form I on Hn(M, R) and set Dn(M)o := D(Hn(M, R)0 , I). 

Theorem 4.8 (Tian [Ti]). Let M -+ T be a local universal po­
larized deformation family a compact n-dimensional Kahler manifold M 
with trivial canonical bundle. Then wwp = p~NRic(hr), i.e., the 
period map Pn: T -+ Dn(M)o is an isometric immersion between the 
Weil-Peterson metric 9WP on T and the invariant metric on Dn(M)o-

Proofs of Theorems 4. 7 and 4.8 by Schumacher and Tian respectively 
go parallel; we only sketch here the proof of Theorem 4.8. Let M be a 
compact Kahler manifold with trivial canonical bundle. Let (Mt, Wt), t E 

T, be a local universal polarized deformation family of compact Kahler 
manifolds Mt with trivial canonical bundle. Let 1Pt be a holomorphic 
n-form on Mt which depends on t holomorphically. Fix o E T and we 
write ( M, w) and t/J for ( M 0 , w0 ) and t/J0 respectively. Let !P be the Kahler 
form of the Ricci-flat Kahler metric g on M whose cohomology class is 
w. Since the Ricci curvature vanishes identically, we have t/J I\ ii; = a!Pn 
for some constant a. We identify 0 E H 1 (M,0)w with the 0-valued 
harmonic (0, 1)-form. Then, since !Pis parallel, 0_j!P = 0 as form. It 
follows by a direct calculation 

where en is a positive constant depends only on n. Therefore 

We compute next HP~ Ric{hr)- Regarding t as a local coordinate of 
the local deformation space at o, we assume 0 is the image of 8 / 8t by 
the Kodaira-Spencer map. Then 

We can take a local holomorphic coordinates (zl, · · ·, zf) on Mt depend­
ing on t smoothly so that 

e - "a(aza)~I 
- ~ 8t 8z<i t=o· 

(i t 

Using these coordinates we can compute 
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where 'If;' is a (n, 0)-form. Moreover the left hand side of the above is 
d-closed; h__J 'lf;0 is also d-closed since 'lf;0 is parallel and 0 is harmonic. 
Therefore 'If;' is a constant multiple of 'lf;0 • It follows 

Combining these all together we obtain 

9wp(0,0) = J=Tp~(Ric(h1))(0,0). 

§5. Examples 

In this section we discuss constructions of compact irreducible sym­
plectic Kahler manifolds. A 2-dimensional irreducible symplectic Kahler 
manifold is a K3 surface, which has a long history of study ( cf. [BPV]). 
Recall that symplectic Kahler manifolds have even ( complex) dimen­
sions. Four dimensional examples were discovered by A. Fujiki. General­
izing Fujiki's construction, Beauville [Bea-2] gave two series of examples 
for each even dimension as follows. 

The symplectic manifolds s(r]. Let S be a compact complex 
surface (i.e., complex 2-dimensional manifold). Let Symr S := sr / Sr 
be the r-th symmetric product of S, where the symmetric group Sr 
acts on sr as permutaion of components. Let 1r: sr --+ Symr S be the 
quotient map. Let A be the set of points ( x1 , · · · , Xr) E sr such that at 
least two components are equal; set D := 1r(A). Then Symr S, whose 
singular points set is D, has a desingularization 1:: s(r] --+ Symr S such 
that E := c 1 (D) is an irreducible divisor. (In fact s(r] is the Douady 
space which parametrizes all 0-dimensional analytic subspaces Z c S 
with lg(Oz) = r. See [Fo-1], [Fo-2], [Ia] for details.) If Sis Kahlerian, 
then so is s(rJ. In fact, if S is Kahlerian, then Symr S is a Kahler space 
according to Varachus [Va]. Moreover any monoidal transformation of 
a Kahler space is again a Kahler space by Campana [Cam]. 

Proposition 5.1. sir] has a symplectic holomorphic 2-form pro­
vided that the canonical bundle of S is trivial. 

Proof. Let A3 C A be the set points ( X1, • · · , Xr) E sr such that 

at least three components are equal. Set sir) := s(r) - 1r(A3), D. := 

D - 1r(A3) and slrl := s(rl - c 11r(A3). Then, since E = c 1 (D) is 
irreducible, c 11r{A3) is of codimension 2 in s(rJ. Therefore it suffices 

to show that sir) has a holomorphic symplectic 2-form. 
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The diagonal set ~ - ~ 3 is smooth of co dimension 2 on s;. Let 
µ: Q a ( s;) ----> s; be the monoidal transformation of s; along ~ - ~ 3 • 

The action of 6r extends to Q a ( s;) and sir] is identified with the 

quotient of Qa(S;) by 6r; let w: Qa(S;)----> sir! be the quotient map. 
Thus we have a commutative diagram: 

µ - sr 
* 

1~ 
f sir) -

Let prr: sr ----> S be the projection to the r-th component and let cp 
be a non-zero holomorphic 2-form on S. Then 1/Jo := prr cp +···+pr; cp 
is a symplectic 2-form on sr; and µ*'ljJ0 is invariant under the action 
of 6r on Qa(S;). The action of 6r on Qa(S; - ~) is free from fixed 
points. If g E 6r fixes a point p E Qa(S;), the tangent space of Qa(S;) 
at p decomposes into a direct sum of ( ± 1 )-eigen space; the ( -1 )-eigen 
space is one dimensional and the differential w* of tv is injective on the 
(+1)-eigen space. It follows that 1/Jo induces a holomorphic 2-form 1/J on 

sir] such that w*'ljJ = µ*1/Jo. The quotient map w is ramified along E 
with local ramification index 2. Therefore 

Zero(w*'lj;r) = w* Zero('lj;r) + E, 

where Zero means a zero divisor with multiplicity. On the other hand, 
since E is an exceptional divisor ofµ, 

Zero(w*'lj;r) = Zero(µ*¢ 0) + E. 

Thus 1/Jr vanishes nowhere. Q.E.D. 

There are two kinds of compact Kahler surfaces with trivial canoni­
cal bundle: K3 surfaces and complex 2-dimensional tori. For K3 surfaces 
we have 

Proposition 5.2. Let S be a K3 surface. Then s[rl is a simply 
connected irreducible symplectic Kahler manifold. There is an injec­
tive homomorphism i: H 2 ( S, C) ----> H 2 ( s[ r], C), compatible to the Hodge 
structure, such that 
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For a E H 2 (S,C) we have i(o:) = µ*{3, where {3 E H 2 (S[rl,C) satisfies 
;r* {3 = I:; pr; a with the notation above. 

The manifold Kmr(T). Let T be a 2-dimensional complex torus. 
Then T[r+l] is a symplectic Kahler manifold but it is not simply con­
nected. In fact 1r1 (T[r+l]) ~ 1r1 (T); and the Albanese torus of T(r+I] is 
isomorphic to T and the Albanese map a: T[r+I] ----> T is induced by the 
map (x1 , · · ·, Xr+1) E Tr+l f----+ I:; x; ET. Moreover, by the Bogomolov 
decomposition theorem (Theorem 1.1), a: T[r+l] ---->Tis a holomorphic 
fiber bundle with structure group finite. Let Kmr(T) denote the typical 
fiber of o:. 

Proposition 5.3. Km r(T) is a simply connected irreducible sym­
plectic Kahler manifold. 

Deformations of s[r] and Kmr(T). By deformation we have irre­
ducible symplectic Kahler manifolds which are neither s(rl nor Kmr(T). 
In fact Beauville [Bea-2] showed the following: 

Theorem 5.4. Let S be a K3 surface. Then the local universal 
deformation space V of s[r] is of dimension 21. Each point of V corre­
sponds to an irreducible symplectic Kahler manifold; points correspond­
ing to the manifolds of type x[r] with X a K3 surface form a countable 
union of smooth hypersurfaces on V. 

Theorem 5.5. Let T be a complex torus of dimension 2. Then 
the local universal deformation space V of Kmr(T) is of dimension 5. 
Each point of V corresponds to an irreducible symplectic Kahler mani­
fold; points corresponding to the manifolds of type Kmr(T') with T' a 
2-dimensional complex torus form a countable union of smooth hyper­
surf aces on V. 

Elementary transformation. Although irreducible symplectic 
Kahler manifolds enjoy similar properties as K3 surfaces, there are phe­
nomena peculiar to higher dimensional manifolds. For example Mukai 
[Mu-1] found 

Theorem 5.6. Let X be a symplectic manifold of dimension 2n 2 
4 which contains a submanifold Y isomorphic to the n-dimensional pro­
jective space pn. Then there are a symplectic manifold xv with a sub­
manifold yv ~ pn and a bimeromorphic map f: X · · ·----> xv such that f 
does not define a holomorphic map on Y but it induces a biholomorphic 
map X - Y ----> xv - yv. 
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xv is called an elementary transformation of X along Y; and the con­
struction goes as follows. 

A n-dimensional complex submanifold Y of a 2n-dimensional com­
plex symplectic manifold X with symplectic form rp is called Lagrangean 
if ty<p = 0 on Y, where ty: Y ---> Xis the inclusion map. The bundle 
isomorphism rpL: TX '.::::: T* X induces an isomorphism TY '.::::: N'x_;y, 

where Nx;Y is the normal bundle ofY in X and N'x_;y is the dual bun­

dle of Nx/Y· Assume now Y '.::::: pn_ Let µ: x 0 ---+ X be the monoidal 
transformation of X along Y and let yo := µ- 1 (Y). Then yo is iso­
morphic to the projectification P(Nx;Y) of Nx/Y· Since Nx;Y '.::::: T*Y, 
it follows yo '.::::: IP(T*Y). Let yv denote the projective space dual to 
Y = pn, namely Y parametrizes complex lines l on cn+i while yv 
parametrizes hyperplanes .. Then we have 

IP(T*Y) '.::::: {(l, H) E y X yv I e C H}. 

This means that yo admits a pn- 1-bundle structure v: yo ---> yv_ 
Moreover we can blow down x 0 onto a complex manifold xv along 
the fibers of v, namely v extends to x 0 ---+ xv so that v(Y 0 ) = yv. 
The elementary transformation f is given by v o µ- 1 . Since yv has 
codimension n ~ 2 in yv, the 2-form f* cp on xv - yv extends to a 
holomorphic symplectic form on yv. 

Counterexample to Torelli. For 2-dimensional compact irre­
ducible symplectic Kahler manifolds, i.e., for K3 surfaces, the Torelli 
theorem holds: 

Theorem 5.7 (Pjateckii-Sapiro and Safarevic [PS],[BR], [LP]). 
Two K3 surfaces S, S' are biholomorphic if and only if there is an 
isomorphism h: H 2 ( S', 1) ---+ H 2 ( S, 1) preserving the Hodge structure 
and the quadratic forms qs1 , qs. 

For the higher dimensional case, however, this type of a theorem does 
not hold in a biholomorphic level. In fact Debarre [De] gave an example: 

Proposition 5.8. There is a K3 surface S such that 
1) X := s[n] admits an elementary transformation h: X · · ·---> Y; 
2) Y is an irreducible symplectic Kahler manifold not biholomorphic 

toX. 

By Proposition 3.10, h induces an isomorphism H 2 (Y, 1) '.::::: H 2(X, 1) 
which preserves the Hodge structure and the quadratic forms qx and 
qy. 
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