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(19.1.4) if Ui n Ui -/-</>,then Ui n Ui is (Tk,, 'Pi) and (Tk;, 'Pi) invariant, 
(19.1.5) 

F-structure is defined replacing open covering in Definition 19.1 by 
etale covering. Namely : 

Definition 19.2. An F-structure on M stands for the collection 
({Ui},{Ui},{Tk·},{cpi},{1/1;}) such that 

(19.2.1) {U;} is an open covering, 

(19.2.2) 1r;: iJi-----, U; is a finite Galois covering with Galois (deck trans-
formation) group = G;, 

(19.2.3) Tk• is a k;-dimensional torus, 

(19.2.4) cp;:Tk, -----, Diff(U;) is an effective and smooth action, 
(19.2.5) ¢i: Gi-----, Aut (Tk•) is a homomorphism satisfying 

g;(cpi(--f;)(x)) = cp;(('lj!;(g;)(,;))(x)), 

k· -for each g; E G;, 1; ET •,x EU;, 
(19.2.6) if U; n Ui -/-</>, then 1r- 1 (U; n Ui) is (Tk,, cp;)-invariant, 

(19.2. 7) let ¼,i be the fibre product in Diagram 19.3. Finite covers fk, 
and fk; of Tk• and Tk; act on ¼,i· Then we have 

where 'Yi E fk,, 'Yi E fk;, x E ¼,i, and <p;: fk, _____, Diff(¼,i ), 

'Pi= fk; _____, Diff(¼,i ), are induced actions. 

Diagram 19.3 
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Remark 19.4. Cheeger-Gromov [CG4] used more sophisticated ter­
minology (sheaf of groups and their actions) to define F-structure. 

Remark 19.5. In Thanks to (19.2.5) the orbit of the action on Ui 
through x E Ui is well defined. 

Definition 19.6. A polarization of the F-structure is a collection 
of connected subgroups H. c Tk• such that the following holds. 71 

(19.7.1) H. is invariant by the adjoint action of Wi(Gi)-
(19.7.2) The Hi-orbit in Ui throughp E Uinui, (which is well defined by 

(19.7.1)), contains the H;-orbit through pin Uj or is contained 
in it. 

(19.7.3) The dimension of each H.-orbit is equal to dim H •. In other 
words the action of H. is locally free. 

A polarization H. E Tk• is a pure polarization if 

(19. 7.4) the Hi-orbit in U. through p E u. n Uj coincides to the H;-orbit 
in Ui through p. In other words, dim Hi = dim Hi for each i 
andj. 

An F-structure is said to be polarized if it has a polarization and is 
said to be pure polarized if it has a pure polarization. 

An F-structure ({Ui},{U.},{Tk•},{rpi},{tP.}) is said to be pure if, 
for each p E Ui n U; the orbit of Tk• through p coincides to the orbit of 
Tk; through p. 

An F-structure is said to be of positive dimension, if all orbits are 
of positive dimension. 

Examples 19.8. 
(1) Any effective action of a torus Tk on M defines a T-structure on 

M. If Ip= {g E Tk I g(p) = p} is discrete for each p, then H = Tk 
is a pure polarization of this T-structure. Next, suppose that Ip is 
not necessarily discrete but Ip -/= Tk for each p. Let H ~ R be a 
dense subgroup of Tk. Then H defines also a pure polarization of 
this T-structure.(Compare Example 10.3.) 

(2) Let Tk - M - N be a fibration. This fibration defines a T­
structure on M if the structure group is reduced to Tk ex Aut(Tk). 
This T-structure is pure polarized. 

71 We do not assume that H; is compact. 
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(3) More generally let M be a manifold, Nan orbifold, and Tk-----> M-----> 
N be a Zeifert fibration. 72 This fibration defines an F-structure 
on M if the structure group is reduced to Tk ex Aut(Tk). This 
F-structure is pure polarized. 

(4) Let /:M-----> N be as in Example 10.11. Put Tk = c~:;t'J:...A. Then, 
using the action of Tk to the fibres, we can define a pure polarized 
F-structure on M. 

( 5) Let /: M -----> X, f: FM -----> Y be as in the conclusion of Theorem 
12.7. By {4}, FM has a pure polarized F-structure, which is invari­
ant by the action of O(n). Hence it induces a pure F-structure of 
positive dimension on M. The author does not know whether this 
F-structure admits a polarization or not. 

(6) Let M 3 = (T 2 -B 2 ) x S 1 UT2 S 1 x {T2 -B 2 ) be as in Example 17.4. 
We take an open covering M = U1 U U2 U U3 such that U1 ~ U3 ~ 
(T 2 - B 2 ) X S 1 , U2 ~RX T 2 • We put k1 = k3 = l,k2 = 2. Then 
Tk• acts on Ui in an obvious way. These actions give a T-structure 
on M 3 • Hi= Tk, is a polarization of this T-structure. We can prove 
that this structure is not pure polarized. A similar example can be 
constructed from Examples 17.7, 17.12. 

(7) (Januszkiewicz 73 ) Let T 2n act on CP 2n by 

(ei91, •.. 'ill2n)[zo, ... ,Z2n] = [zo, eill1z1, •• •' eill2,. Z2n], 

where [z1 , · · · , Zn] is a homogeneous coordinate. This action has 
2n + 1 fixed points Pi = [O, · · ·, ~' · · ·, O], i = O, · · ·, 2n. Put Bi = 

• 
B.(p, CP 2n ). Take two copies M1, M2 of CP 2n - UBi. Define 
/: 8M1 -----> 8M2 by 

if [zo, ... 'Z2n] E 8Bi, i =J 2n 
f([zo,·· ·,Zn])= ! [zo, · · ·, Zi,~Zi+i / Zi) · Zi, · · ·, Z2n] . 

[(zo/ Z2n)·Z2n, Z1, · · ·, Z2n] 

if [zo, ... 'Z2n] E 8B2n• 

We obtain an orientable manifold M by attaching M1 and M2 by f. 
Put U1 = M 1, U3 = M2, U2 = a neighborhood of 8M1 in M. Then 
T 2n acts on U1 , U3 and T 2n+1 acts on U2. These actions define a T­
structure on M. We can prove that this F-structure does not admit 
a polarization, as follows. By a simple calculation we see that. the 

72 See [Or] 5.1. 
73 See [CG4] Example 1.9. 
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signature of M is equal to 2. Hence by generalized Gauss-Bonnet 
formula the minimal volume of M is not 0.74 On the other hand, 
Theorem 19.10 below shows that if a manifold admits a polarized 
F-structure then its minimal volume is 0. 

Remark 19.9. Example 19.8 (7) shows that signature is not an ob­
struction for the existence of an F -structure of positive dimension. On 
the other hand, (CG 4] proved that the Euler number of M vanishes if 
it has an F-structure of positive dimension. 

Theorem 19.10. (Cheeger-Gromov [CG4]). Let M be a C 00 -

manifold. Suppose that M admits an F-structure of positive dimension. 
Then there exists a family of metrics g. on M such that 

(19.10.1) 

(19.10.2) 

supini(M,g.) < e, 

IK(M,g.)I::; 1. 

If we assume that the F-structure is polarized, then we have 

(19.10.3) lim Vol(M, g.) = 0. 
e-+0 

If we assume that the F-structure is pure polarized, then we have 

(19.10.4) sup Diam(M, g.) < oo. 
•E(0,1) 

Idea of the proof. Using the .proof of Proposition 10.3, we can find 
a desired family of metrics on each chart Ui. The problem is how to 
patch them together while keeping Condition (19.10.1). On Ui n U; we 
have two families of metrics, one is obtained by shrinking each orbit of 
T'"· and the other is obtained by shrinking each orbit of T'"; . Hence if 
we patch the metrics directly, then the curvature goes to infinity. To 
avoid this, we expand the direction normal to both T'"· and T'"; orbits. 
The detail is found in (CG4]. 

Theorem 19.11. (Cheeger-Gromov (CG5]). There exists a posi­
tive number En depending only on the dimension n satisfying the follow­
ing. Let M be a complete Riemannian manifold with IKMI ::; 1. Then 
there exists an open set U of M such that 

(19.11.1) Ifp EM - U then injM(P) > e, 

74 See [G9]. 
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(19.11.2) There exists an F-structure of positive dimension on U. 

Remark 19.12. Theorem 19.11 gives a converse to the first part 
of Theorem 19.10. Namely if we assume injM < En, then M has an 
F-structure of positive dimension. 

Open Problem 19.13. Suppose that M admits a family of met­
rics g, satisfying (19.10.1), ... , (19.1.3). Does M admit a polarized 
F-structure of positive dimension ? 

Suppose that M admits a family of metrics g, satisfying (19.1.1), 
... , (19.1.4). Does M admit a pure polarized F-structure of positive 
dimension? 

The question we suggested in Examples 19.8 (5) is closely related to 
the second problem. 

Sketch of the proof of Theorem 19.11. We prove by contradiction. 
Let (M,, g,) be a family such that jK(M.,g,) I ~ 1 but M, does not satisfy 
the conclusion of Theorem 19.11 for En = E. Take points p, E M, such 
that inj(M.,g,)(P,) = b, < E. By Theorem 6.6, we may assume that 
((M.,g,/b,),p,) converges to a space (X,p) with respect to the pointed 
Hausdorff distance. Since inj(M.,g,/o,)(P,) = 1 and since jK(M.,g,/o,) I ~ 
b, --+ 0, it follows that ( X, p) is a flat Riemannian manifold and that 
injx(p) = 1. Therefore the soul theorem 75 for nonnegatively curved 
manifolds implies that X is diffeomorphic to a vector bundle over a 
totally geodesic compact submanifold, the soul, S, of X. Since X is 
flat, so is S. It follows that a finite covering of X admits an action of 
a torus. On the other hand, by the proof of Theorem 3.2 we see that 
a neighborhood of p, in M, is diffeomorphic to a neighborhood of p in 
X. Hence we can find a neighborhood U of p., its finite cover fJi and 
an action of a torus Tk• on fJi. Thus, it suffices to make these actions 
compatible in the sense of Definition 19.2. We omit the detail of the 
argument of this part, which can be found in [CG5]. Essentially this 
follows from the topological rigidity of compact group action. 76 

In [CGl], [CG2], [CG3], [CG6], Cheeger-Gromov gave interesting 
applications of Theorem 19.11 to the study of Gauss-Bonnet type the­
orems for open manifolds with finite volume. Unfortunately this article 
is already so long that we have no room for mentioning them. 

75 (CGrl], (CE] Chapter 8 
76 See Theorem.6.9. 
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Note added in proof. Grove-Petersen-Wu said that they proved 
Theorem 14.9 but not 14.6. 14.6 is now a conjecture. 
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