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Dedicated to Kenkicki Iwasawa 

In classical Iwasawa theory one considers modules over the completed 
group ring A=Zp[[G]] for G~Zp, and one often studies these up to quasi
isomorphism, i.e., by neglecting finite G-modules. In this paper we pro
pose some methods for the study of A-modules up to isomorphism, which 
at the same time work for more general groups G (where a good structure 
theory in terms of quasi-isomorphisms is missing anyway). A future ap
plication we have in mind is the investigation of Galois extensions defined 
by torsion points of abelian varieties. Such extensions have compact p
adic Lie groups as Galois groups, and we show at several places that the 
theory works very nicely for these. 

A basic tool is the homotopy theory for A-modules, recalled in § 1. 
It amounts to considering A-modules up to projective factors (which is no 
serious restriction in view of Krull-Schmidt theorem), and has a formalism 
quite analogous to the one in topology: one has a loop space functor Q, a 
suspension 2, fibrations, cofibrations etc., and a certain analogue of 
homotopy groups in form of the A-modules E'(M) : = Ext:;(M, A). 

There is also an analogue of the Postnikov tower describing how a 
module Mis "glued together" from the modules E'(M). Instead of de
scribing this in general, we have described the first step in 1.9, and the 
result for G~ZP in § 3: in this case a A-module M is determined up 
to isomorphism by E 0(M) ~ Arank,1.M, E 1(M), E 2(M), and a class in 
Ext~(E 2(M), E 1(M)). We then discuss the modules Er(M) in some detail. 
For example, we express various properties of M-like the existence of 
finite submodules or the freeness of M/Tor,1. M-in terms of the E'(M). 
We also give some formulae for the E', in terms of inverse limits often 
encountered in the applications. 

These formulae are derived from a discussion for general G in § 2, 
where we relate the E' to the "dualizing modules" Dr(A) = fun Hr(u, A)* 
(the limits running over the open subgroups U of G) introduced by Tate 
for the study of duality theorems for profinite groups. 
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In the last three sections we give some applications to Galois theoretic 
Iwasawa modules. We start in § 4 with a general result on profinite groups 
':§ of p-cohomological dimension two. If J/fS:.':§ is a closed normal 
subgroups and G = ':§/.?If, we show how to describe the A-module 
.?lf/[Jlf, .1l'](p) in terms of the dualizing module mPl(<:§)=funmDz(Z/p"') 
of':§. 

In § 5 this is applied to study the A-module structure of certain 
abelian Galois groups over K, for a Galois extension K/k of number fields 
with Galois group G. The main results are: 

Theorem. If k is local, then the A-module X =Gal (M/K), M the 
maximal abelian pro-p-extension of K, is determined by µx(P)-the group of 
p-power roots of unity in K-and a canonical class Xe H 2(G, µiP))v (where 
v denotes the Pontrjagin dual). 

Theorem. If k is global, let S;2{1:J IP} be a finite set of primes in k, 
let K/k be S-ramified, and let KB (resp. MB) be the maximal (resp. maximal 
abelian) S-ramified pro-p-extension of K. Then the A-module XB = 
Gal (MB/K) is determined by WB=E~p)Oal(KS/K)_where mp) is the dualizing 
module of Gal (KB/k)-and a canonical class Xe H 2(G, WB)v. 

The local theorem in particular gives a complete description of the 
Galois module structure of Um,,. Kx / Kxpm for a finite Galois extension 
K/k and contains all previous results on this subject due to Iwasawa, 
Borevic, · · · (see [JI] for references). 

In the global case we show that WB is closely related to X' = 
Gal(L' / K), where L' / K is the maximal unramified abelian pro-p-extension 
in which every prime above pis completely decomposed. For example, if 
k(µpoo)cK, then we get an exact sequence 

where GP< G is a decomposition group at 1:) and IndgP is the compact in
duction. If K=k(µpoo), then W:¥~Ei(X 8), and by the quasi-isomorphism 
Tor,1 (XB)-E 1(XB)° (where M 0 is M with the new action r-m=r- 1m for 
re G and me M) we reobtain the known relations between the character
istic invariants of XB and X' (see [WI] 7.10). The above result makes this 
precise up to isomorphism and shows how to extend it to arbitrary G. 

In § 6 we derive some exact sequences for K=k(µpoo), which were 
obtained by K. Wingberg [WI] up to quasi-isomorphism. As corollaries 
we get results on the A-torsion of XB for varying S and on the Galois 
structure of the S-units. 
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§ 1. Homotopy of modules 

A homotopy theory for modules over a ring was introduced by 
Eckmann and Hilton [Hi], and it was further used and developed by 
Auslander and Bridger [AB], and by the author [J2]. We recall the basic 
definitions and results. 

Let A be a noetherian ring with unit-not necessarily commutative. 
An example we have in mind is the completed group ring Zp[[G]] of a p
adic Lie group G [La] 2.2.4. All A-modules considered are assumed to 
be finitely generated. 

1.1 Definition. A morphism f: M-+N of A-modules is homotopic 
to zero, if it factorizes 

f: M~P~N 

through a projective module P. Two morphisms f, g are homotopic 
(fc::::.g), iff-g is homotopic to zero. Let [M, N]=HomA(M, N)/{fc::::.O} 
be the group of homotopy classes of morphisms from M to N, and let 
Ho(A) be the category, whose objects are (finitely generated) A-modules 
and whose morphism sets are given by HomHoCAi(M, N)=[M, N], that is, 
the category of "A-modules up to homotopy". 

1.2 Proposition. Let M, N be A-modules and let f: M-+N be a A
morphism. 

a) f c::::. 0 if and only if f*: Ext~ (N, R)-+ Ext~ (M, R) is zero for all 
A-modules Rand all i?. l (it suffices to consider i = 1). 

b) f is a homotopy equivalence if and only if f*: Ext~ (N, R)-+ 
Ext~ (M, R) is an isomorphism for all A-modules R and all i?. l (it suffices 
to cosider i = l ). 

c) M c::::.N (i.e., Mand N are homotopy equivalent, i.e., isomorphic in 
Ho(A)) if and only if MffiP~NffiQ with projective A-modules P and Q. In 
particular, M c::::.0 if and only if Mis projective. 
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As a first application of the concept of homotopy, we get the 
following generalization of Schanuel's lemma. 

1.3 Lemma. Let f, g: M -N be surjective A-morphisms. If f ~g, 
then kerf~ker g. 

Proof. Letf-g=ir:o<p: M~P~NwithP projective, then we 
get a commutative exact diagram 

where({); (m,p),-,.(m,p+<p(m)) is the mapping cylinder of 'P· But K~ 
ker f(f)P by the commutative exact diagram 

and similarly L~P(f)kerg. 

The following groups will become important in the sequel. Their 
role is similar to that of the homotopy groups in topology. 

1.4. Definition. Let E° (M) = M+ = HomA (M, A) be the A-dual, 
and more generally, let Ei(M)=Ext~ (M, A) for i>O. If M is a left A
module, say, these are right A-modules by functoriality and the right A
structure of the bi-module A. 

The following functors are well-defined {only) up to homotopy, i.e., 
as functors from Ho (A) to Ho (A). 

1.5. Definition and theorem. 
a) The loop space functor M~QM is defined as follows: 

i) Choose a surjection P~M with P projective. 
ii) Let .QM =ker 11:. 

Thus, .QM is characterized by an exact sequence 
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(1.5.1) 

with P projective (i.e., QM is "the" first syzygy-module). 
b) Q has a left adjoint 2 (i.e., [:SM, N]:[M, QN] functorially in M 

and N), the suspension functor M~:SM, which is defined as follows: 

i) Choose a surjection P~M+ with P projective. 

ii) Let 2M=Coker (M~M++ ~r), where cpM: M __,,,M++ 
is the canonical map into the bi-dual. 

One has N = :SM if and only if E 1(N)=O and there is an exact 
sequence 

(1.5.2) 

with kercp=Ti(M) :=kercpM-
c) The transpose DM is defined as follows 

i) Choose P1~P 0__,,,M __,,,o exact with projectives P1 and P0• 

ir+ 

ii) Let DM=Coker(P 0+~Pt). 
In other words, DM is defined by the exact sequence 

(1.5.3) o__,,, M+ __,,,Pt__,,, Pt__,,, DM __,,,o. 

Then one has D2 =ld and DQ=:SD (hence also D:S=QD). 

For the proofs one uses the defining properties of projectives and the 
facts that for a projective P the module p+ is also projective and cpp: P-+ 
p++ is an isomorphism. For example, the last facts immediately imply 
D2 =ld, and the functoriality of Q is obtained by a commutative diagram 

o__,,,g M __,,, p__,,, M __,,,o 
.ati lt 

... '+' 
o__,,,QN __,,,Q__,,,N__,,,O, 

where the dotted lifting off exists by the projectivity of P, and Qf is the 
induced map. 

The reader should be aware of the fact that D and the E 1 interchange 
left and right · A-action. In the case of a group ring there is a natural 
equivalence between left and right modules, induced by the involution of 
the group ring given by passing to the inverses of the group elements. 
Equivalently, we may in this case use the two left A-module structures of A 
to give the E'(M) and hence DM left A-module structures again, if Mis a 
left A-module, say. In general this is not possible, but for the theory it is 
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not necessary either, and in the following we shall not specify, if we are 
talking of left or right A-modules or if a functor interchanges left and 
right A-action. This would only cause notational complications, and it 
will always be clear where one had to insert "left" or "right". 

Recall that the projective dimension pdA (M) of a A-module Mis the 
infimum over the numbers n~O such that there exists a resolution of 
length n 

0--+P n--+ p n-1--+ ... --+P1--+Po--+ M--+0 

with projectives Pi (with the usual convention that inf 0 = oo ). 

1.6 Theorem. The functor M~E1(M) induces an equivalence of 
categories 

{A-modules M with pdA (M)< I}~{A-modules N}· 
up to homotopy with N+ =0 

Proof One simply observes that D gives an essential inverse: 
Namely, for a module M with pdA (M)< 1 one obviously has DM-:::::..E1(M) 
and hence DE 1(M)-:::::..DDM-:::::..M. Moreover, one has E 1(M)+=O in view 
of 1.5.3. On the other hand, if N+ =0, then pdA (DN)< I by 1.5.3 and 
hence E 1(DN)-:::::..DDN-:::::..Nby the above. It remains to remark that for 
A-modules N, N' with N+ =0 one obviously has HomA (N, N')~[N, N']. 

1.7 Remark. This theorem generalizes and sharpens Theorem 2.1 
in [Jl] (cf. 2.5 below) and should be compared with section VII§ 3 in [Kun]. 

1.8 Lemma and Definition. Let T1(M)=ker <pM as above and Tz(M) 
= Coker <p M, so that 

'PM (1.8.1) 0--+T;(M)--+M--+M++ --+'I;(M)--+0 

is exact. Then canonically Ti(M)~E1(DM) and I;(M)~E 2(DM). In 
view of this let 

(1.8.2) 

(It is clear that Ei(N) only depends on N up to homotopy for i;::::,: 1 ). 

The proof is straightforward, compare [HS] IV ex. 7.3. We are now 
ready to answer the following question. Suppose we know QM or J; M 
for a A-module M. Obviously some information on Mis lost (e.g., QM 
-:::::.. 0 if pd A (M) < 1); how can we recover M itself? Theorem 1.6 tells us 
that at least we have to invoke E 1(M) (or, dually, Ti(M)); the general 
answer is: 
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1.9 Theorem. A A-module Mis determined up to homotopy by 
a) SM, Ti(M), and a class XM e Ext~ (DSM, Ti(M)), or by 
b) QM, E 1(M), and a class '\f'M e Ext~ (DSDM, E 1(M)). 

(Note that these Ext-groups in the first variable only depend on modules 
up to homotopy). 

Proof. a) Let XM be the class of the extension 

(1.9.1) o~Ti(M)~M~Im 'PM~o, 

via the canonical identification 

(1.9.2) 

which is obvious from the definitions of S and [2 (let us remark at this 
place that under this identification, the map M--+Im 'PM is the adjunction 
map M--+DSM). Since Mis determined by Ti(M), Im cpM and the exten
sion class of 1.9.1, the result follows. 

b) is obtained by dualizing, i.e., by applying the above to DM. 
Note that M is determined by DM up to homotopy (this is not true for 
M+ !) and that we have Ti(DM)=E 1(M) and QSDM =DSQM, so that 
we define '\f'M=XnM· 

For the understanding of this theorem it should be added that no 
information is lost in passing from QM (respectively, SM) to SQM 
(respectively, DSM), by the following result. 

1.10 Theorem. The functors S and [2 induce quasi-inverse equiva
lences of categories 

:z 
{
A-modules M with Ti(M)=O} ~ {A-modules N with E 1(N)=O} 

up to homotopy 7 up to homotopy 

Proof. Note that for any A-module M we have E 1(SM)=O by 1.5 
b), and hence Ti(QM)=E 1(DQM)=E 1(SDM)=0. The result now easily 
follows from the characterization of SM in 1.5 b). 

1.11 Corollary. 
a) The following statements are equivalent: 

i) T,(M)=O. 
ii) Mis submodule of a free module. 

iii) M::::: [2 N for some A-modules N. 
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iv) The adjunction map M-QIM is a homotopy equivalence. 
b) The following statements are equivalent: 

i) E 1(N)=O. 
ii) N -::::.IM for some A-module N. 

iii) The adjunction map IQN-N is homotopy equivalence. 

1.12 Remark. We have worked with finitely generated modules to 
ensure that p+ is again projective and that <pp is an isomorphism for pro
jective P. We have assumed A to be noetherian to make sure that M+, 
QM etc. are finitely generated again. For non-noetherian A one formally 
obtains the same results, if one ensures that all considered modules are 
finitely generated. For example, D is defined for finitely presented A
modules. 

§ 2. Group rings of profinite groups 

For a profinite group G define the completed group ring over ZP by 

A=A(G)=Zp[[G]]=lim Zp[G/U], 
UsJG 

where U runs over all open normal subgroups of G. 
For a closed subgroup S< G and a discrete G-module A Tate has 

defined the groups 

D,(S, A)= fun Hr(U, A)* (r>O) 
U"i:,S 

where B*=Hom (B, Q/Z) for an abelian group B, and where the limit 
runs over all open subgroups U of G containing S, with transition maps 
the transposes of the corestriction map ([S1] 1-79 ff.). This is contravariant 
in A, and if Sis a normal subgroup, then Dr(S, A) is a discrete G/ S-module 
in a natural way. In particular, one has the discrete G-module 

Dr(A)=Dr({I}, A) (r>O). 

In the following assume that A is noetherian. For example, G can 
be a profinite ( =compact) Lie group over Qv ([La] V 2.2.4). Then a finitely 
generated A-module M has a natural compact topology as a pseudo-com
pact module over the pseudo-compact algebra A (cf. [Br]), and its Pontr
jagin dual MV =Homcont (M, Qv/Zp)= Iimu Mt (where U runs over the 
open subgroups of G and Mu is the module of coinvariants) is a discrete 
G-module. The functors M~Mv and A~Av are quasi-inverse equi
valences between the category of pseudo-compact A-modules and the 
category of discrete, ZP-torsion G-modues ([Br]). Here AV is the Pontrjagin 
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dual of A, i.e. AV =A*, with the topology of pointwise convergence. For 
an abelian group Band n e Nlet Bfn=B/nB and nB={b e BJnb=O}. 

2.1 Theorem. Let M be a finitely generated A-module. 
a) There are functorial exact sequences 

o~D,(MV)©zpQP/Zp~Er(M)V ~ Tor Dr-1(MV)~O 

for all r>O, where by definition D_ 1 =0. 
b) There is a long exact sequence 

• • -~E'(M)V~fun D,( 11m(MV))~fun D,_z(MY/p"') 
m m 

~E·-l(M)V~ .. ·, 

functorial in Mand in G. 

Proof. We start by observing that M ~Mv maps projectives to 
injectives and that A~A* carries injectives to projectives, since AV= 
Inda (QP/Zp) (the induced module). Furthermore we have canonically 

M+=Hom 11(M, A):fun Hom 11(M, Zp[G/U]) 
usia 

=fun Homz 11ca1uJCMu, Zp[G/U]) 
usia 

where the limit is taken:via the norms. Hence 

(M+)V=fun Homz 11 (Mu, Zp)v 
usia 

=fun Mu©z 11Qp/Zp, 
usia _ 

where we have used the relation 

(fun Homz,, (N/p"', Z/p"'))V = fun N/p"' 
m m 

for a finitely generated ZP-module N. We may rewrite this as 

(2.1.1) 

oras 

(2.1.2) 
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In other words, 2.1.1 describes M~(M+)v as the composition of the 
right exact functors M~Do(MV) and N~N®z 11QP/Zp, while 2.1.2 
describes it as the composition of the right exact functors M~f;;.p(M) 
and (Mm)~limm Do(M':.), where fl.P sends M to the inductive system 
(M/pm), with transition maps M/pm~M/pm+i induced by the p-multipli
cation. Now the r-th left derivative of M~Do(MV) is M~Dr(MV), 
and the first functors in the compositions map projectives to acyclics for 
the second functors. Since M~Mv and filtering direct limits are exact, 
we get two Grothendieck spectral sequences of homological type 

E;,,=Torf 11(D,(MV), QP/Zp)==;E,+s=E'+'(M)V 

E;,.=lim D,(L'f;.p(M)V) ==;E,+s=Er+'(M)V. 
n 

The exact sequences in a) and b) follow from this, since 

and the left derivatives of fl.v are 

since projective modules are torsion-free. 
(M/pm)V =pm(MV) and (pmM)V =MV/pm. 

s=O, 

s=2, 

s:2:2, 

r=O, 

r=l, 

r>2, 

In b) we also use the fact that 

2.2 Remark. a) The above can be extended to the case of an 
arbitrary profinite group G, i.e., to non-noetherian A, as follows. Call a 
A-module noetherian, if it has a resolution by finitely projective A-modules. 
Ry looking at such a resolution it easily follows that 2.1 a) remains true for 
noetherian modules M and that 2.1 b) still holds, if Torzp(M) and 
M/Torz/M) (and hence M) are noetherian. The other results of this 
section extend similarly. 

b) It is easy to see that the sequence in 2.1 b) can be identified with 
the long exact sequence 

... ~E'(M)V ~E'(M/Torz/M))V ~Er- 1 (Torz/M))V 

~Er-l(M)V~ .... 

2.3 Lemma. If U<G is an open subgroup of G, then the restriction 
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induces a functorial isomorphism of Au-modules 

for every A(G)-module M. 

Proof Since A(G) is projective as a A(U)-module, this follows from 
the obvious case r=O by looking at a free resolution of M. 

2.4 Corollary. Let n=vcdP (G) be the virtual p-cohomological di
mension ofG, then Er(M)=Ofor r>n+l. 

Proof Recall that vcdp(G)<n means that there is an open subgroup 
U of G with p-cohomological dimension cdP (U):s;:.n. This obviously im
plies Dr(A)=O for r>n, hence the result by 2.1 a). One may also use 2.3 
and [Br] 4.1. 

2.5 Corollary. Let G be a.finite group, then E 0(M)=Homzp(M,Zp). 
E 1(M)=TOrzp(M)v, and P(M)=Ofor r>2. 

Proof One has vcdP (G)=0, so the result follows with 2.4 and 2.1 a). 
One may also use 2.3 and the isomorphisms 

ExtfiM, Zp)~TorfP(M, QP/ZP)V. 

2.6 Corollary. Assume that G is virtually strict Cohen-Macaulay at 
p (i.e., that an open subgroup has this property, see [S1] V4.1), with vcdp(G) 
=n. (Examples of such groups are p-Poincare groups of dimension n, in 
particular, by a result of Lazard [La] V 2.5.8, compact Lie groups of di
mension n over Qp, e.g., G=Z;). Then 

a) Er(zp)=O for r¾n, and En(zp)V ~mr>(G), the p-torsion dualizing 
module. 

b) If N is a finite G-module, then Er(N)=O for r="i=n+l, and 
En+1(N)V~Homzp (NV, E;fl(G)). 

c) If Mis a.finitely generated, torsion-free ZP-module with continuous 
action of G, then Er(M)=O for r¾n and En(M)V ~ ti.mm Dn((M/p"')V)~ 
M®zpE;fl(G). 

Proof c). By 2.1 b) we get 

ET(M)V ~ lim Dr{(M/p"')°). 
,n 

This is zero for r¾n by the assumptions (cf. [S1] V 3.1, 5) c) and I annexe, 
theoreme 3), while for any finite G-module A we have 
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Dn(A)= fun Hn(U, A)* 
U-5',,G,cor* 

(2.6.1) = fun H 0(U, Homzp (A, E;!l(G)))=HOmzp (A, E;!l(G)) 
USG,res 

by duality (see loc. cit). For Mas inc) this implies 

fun Dn((M/pm)V)= fun HomzP ((M/pm)v, E~Pl(G)):=M@zPE;!)(G), 
m m 

hence the result. Part a) is a special case of c), while for N as in b) we 
may use 2.1 a) to obtain 

hence the claim by the previous considerations. 

2.7 Remarks. a) In the cited notes by Tate and Verdier the groups 
are assumed to have finite p-cohomological dimension, but for our appli
cations we only had to assume vcdv (G)< oo, since we could always pass 
to some open subgroup. 

b) Usually one considers left discrete G-modules A and gives A* a 
left G-module structure by (af)(a)= f(a- 1a) for/: A----+Q/Z, <1 e G and a e 
A, similarly for compact G-modules M and MV. If we do so, we have to 
give Er(M) the left G-module structure in the statements above, cf. the 
discussion in § 1. Otherwise we have to endow A* and MV with the 
canonical right G-structure ((af)(a) = f(aa) etc.). 

§ 3. The case G=Zv 

In this section let G=Zp, so that A=A(Zv) is the classical Iwasawa 
algebra. Then G is a p-Poincare group of cohomological dimension 1 
with dualizing module EfP)(G):=Qp/Zp (compare [SI] I 3.5 Exemples), and 
we can deduce several of the following results from this and the results in 
the previous section. Instead we have preferred to argue more directly, 
by using well-known facts on A, e.g., that it is a noetherian local ring with 
projective dimension pd (A)=2 (recall that pd (A)=sup pdiM), where M 
runs over all finitely generated A-modules). This implies that Ei(M) =0 
=TlM) for iz3. We now investigate these groups for i~2; for this let 
To(M) be the maximal finite submodule of M. 

3.1 Lemma. Let M be a noetherian A-module (as always). 
a) Ti(M) is the A-torsion submodule of M. 
b) E 1(M) is a A-torsion module. If M is A-torsion, then E 1(M) is 

the Iwasawa adjoint a(M) of M ([Iw] 1.3) and has no non-zero finite sub-
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module. Finally, E 1(N) =0 for a finite module N. 
c) T;(M) is finite. One has T;(M)=0 if and only if M/Ti(M) is 

free, i.e., if and only if Ms:;. T1(M)ffiA' for some r::2:0. In particular, 
TlM)=Ofor A-torsion modules. 

d) E 2(M) is finite, one has E 2(M) = E 2(To(M)) = T0 (M)V, and the 
following properties are equivalent: 

i) E 2(M)=0, 
ii) pdA (M)< 1, 

iii) To(M)=0, 
iv) Mis a submodule of an elementary A-module. 

Proof a) is clear by tensoring with the field of fractions of A. The 
first statement in b) follows from a) since E 1(M)= Ti(DM). For the 
second statement see [P-R] I.2.2 and [Bi] 1.2 and remarque, and To(a(M)) 
=0 follows from Iwasawa's first description of a(M) in [Iw] 1.3. 

By the exact sequence 0-+A r-l A-+Zv-+0, where r is a topological 
generator of G, we immediately deduce E 1(Zp)=Zv (this always denotes 
the module ZP with trivial action of G). The exact sequence 

now shows E 1(Z/p)=0 and hence E 1(N)=0 for every finite module N, 
since such N posseses a composition series with quotients isomorphic to 
Z/p. 

d) By the structure theory for Iwasawa modules there exists an 
exact sequence 

f 0------+ A-----+ M------+ E------+C------+0, 

where Eis elementary and A and C are finite. One has pdA (E)< 1 and 
To(E)=0. The last property implies A 0= To(M), the first one implies 
E 2 (Imf)=O, since this is a quotient of E 2(E)=0, hence we get E 2(M)~ 
E 2(A). The isomorphism 

now follows from the local duality for the regular local ring A of dimension 
2 with residue field Z/p ( cf. [Bi] 1.2). The rest is clear: f is injective if and 
only if To(M)=0, i.e., if and only if To(M)v =E2(To(M))s:;.E 2(M) is zero, 
i.e., if and only if pdiM)< 1: look at a resolution 

ir2 
0------+ p z------+ pi------+ po------+ M ------+0 ; 
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if E 2(M) =0, then rr2 has a left inverse. 
c) now easily follows from the relation Tz(M)=E 2(DM), the exact 

sequence 1.8.1 and the well-known fact that M+ + is projective for cd (A) 
<2 (which can be deduced from the exact sequence 1.5.3), and that pro
jective modules are free for local rings. 

We now use Theorem 1.9 to describe, how a A-module Mis deter
mined by the above invariants. This result is valid more generally for 
rings A with pd (A)<2. 

3.2 Theorem. A A-module M is determined up to homotopy by 
a) T1(M), Tz(M) and a class XM e Extl (Tz(M), Ti(M)), or by 
b) E1(M), E 2(M) and a class V°M e Extl (E2(M), E 1(M)). 

Proof In our case M + + is projective, so from the exact Ext-sequence 
associated to the exact sequence 

(3.2.1) O~Im 'PM~M+ + ~ Tz(M)~0 

we obtain an isomorphism 

Extj (Im (fJM, Ti(M))~Extl (Tz(M), Ti(M)). 

If by abuse of notation we denote the image of XM under this isomorphism 
(which is the class of the 2-extension 1.8.1) again by XM, a) immediately 
follows from 1.9 a). Note that 3.2.1 implies Im (fJM::::'..QTz(M) so that Im 'PM 
is determined by Tz(M) up to homotopy, and in fact, 1.10 implies Tz(M) 
::::'.,r ImcpM::::'.,r.Q,rM::::'.~M, since E 1(Tz(M))=0 by 3.1 b). 

Part b) follows by dualizing, i.e., applying everything to DM, letting 
V°M=XnM under the identifications Ti(DM)=E 1(M) and T;(DM)=E 2(M). 

We now further investigate E 1 and T1• 

3.3 Lemma. a) One has E 1(M);;:'...E1(M/To(M)), and equivalence 
of the following statements: 

i) E 1(M)=0. 
ii) M/To(M) is free, i.e., M~To(M)EBAr for some r~0. 
b) the following statements are equivalent: 
i) T1(M)=0. 

ii) There is an exact sequence 0.-M--+P--+C.....c;,Q with P projective 
(=free) and C finite. 

Proof a) The first claim follows from the exact sequence 

0=E°(To(M))~E 1(M/To(M))~E1(M)~E 1(To(M))=0. 
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But by 3.1 d) we have pd,t(M/To(M))< I, hence M/Ta(M)-:::::.0 if and only 
if E 1(M/To(M))=O by 1.6. 

b) The implication ii)::}i) is clear (cf. also 1.11). For the converse 
we may take the sequence 3.2.1. 

3.4 Lemma. IfO-M-P-c-o is exact with P projective and C 
finite, then there is a commutative diagram 

with canonical isomorphivms a and ~-

Proof The map i: M-P induces an isomorphism i+: p+ :::::;M+, 
since c+ =0=E 1(C). The commutative diagram 

shows that we may take a=(i++)- 1 o <pp, and for~ the induced map. 

3.5 By 1.2 c) and the Krull-Schmidt theorem for A, a A-module is 
determined by its homotopy type and its rank. Hence by the above dis
cussion the investigation of A-modules up to isomorphism can be reduced 
to the following three types of A-modules 

A) free modules, 

(3.5.1) B) A-torsion modules with pdA (M)< 1, 

C) finite modules, 

and two extension classes. For a A-module M the modules in question 
are 

A) M++ 

(3.5.2) B) Ti(M)/Ta(M) 

C) To(M), I;(M) 

with the extension classes XM and the one describing the extension o
To(M)-T,.(M)-Ti(M)/To(M)-o. In the "dual picture" we have 
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A) Eo(Eo(M)) 

(3.5.3) B) E 1(E 1(M)) 

C) E2(E2(M)), E2(E1(M)), 

"V'M and "V'Et<M>· The three types of A-modules are characterized by the 
properties 

A) E 1(M)=0=E 2(M), 
B) E 0(M)=0=E 2(M), 
C) E 0(M)=0=E 1(M), 

i.e., they have only one non-vanishing Et. 
For the categories of A-modules given by A), B) and C) one has self-

dualities given by 
A) E 0, 

B) E1, 
C) £2. 

This is clear for A), while for a finite module N we have E 2(E 2(N))= 
E 2(NV) = Nvv = N by 3.1 d). The duality for modules of type B) has been 
treated in [P-R] I 2.4, it also follows from 1.6 by restricting to modules of 
type B) on both sides. Of course, all three cases follow from the general 
duality theory for Cohen-Macaulay modules (cf. [Gr]) or from the simple 
remark that canonically P. ::::+ P-; + for a complex P. of projective A-modules. 

3.6 Remarks. a) The modules in 3.5.2 and 3.5.3 are related to the 
spherical filtration and approximation theorems of [AB] 2 § 6, cf. also the 
"Postnikov tower" of M in [J2). 

b) In [Jak] Jakovlev has initiated an interesting classification theory 
for modules of type B) in terms of cohomology. This has been continued 
and extended in [Ko] and [Se]. 

We now show that the sets of modules in 3.5.2 and 3.5.3 are in fact 
the same. 

3.7 Lemma. a) There is an exact sequence 

inducing isomorphisms 
i) E 2(I;(M)):E 1(M/Ti(M))= 1'o(E1(M)), 

ii) E 1(Ti(M)):E 1(M)/To(E 1(M)). 
b) There are canonical isomorphisms 

i) E 1(E 1(M))= T1(M)/1'o(M), 
ii) E 2(E 1(M))= TlM), 

iii) E 2(E 2(M))= To(M). 
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Proof a): By splitting the sequence 

O~Ti(M)~M ~M+ + ~Tz(M)~O 
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into two short exact sequences containing B=lm </JM=M/Ti(M) we obtain 
exact sequences 

0=E 1(M+ +)~E 1(B)~E 2(T;(M))~E 2(M+ +)=0 

0=E 0(Ti(M))~E 1(B)~E 1(M)~E 1(Ti(M))~E 2(B)=O 

and hence the result-note that T0(E 1(Ti(M))=0 by 3.1 b) and that 
E 2(T;(M)) is finite by 3.1 d). 

b): From 3.3 a) we have E 1(E 1(M)) ~ E 1(E 1(M)/7'oE 1(M)) ~ 
E 1(E 1(Ti(M)))~E 1(E 1(Ti(M)/I'o(M)))~ Ti(M)/I'o(M), since Ti(M)/To(M) 
is of type B). With a) we conclude 

since T;(M) is of type C). The third isomorphism is clear from 3.1 d). 

3.8 Corollary. E 1(M) isfinite~Ti(M) isfinite~E 1(E 1(M))=O. 

From § 2 we deduce the following formulae for the E' -groups, which 
should be compared with [W3] 1. 1. 

3.9 Lemma. Let M be a.finitely generated A-module, let Gn be the 
subgroup of index pn in G, and let M• = Un M 0 " be the maximal submodule 
of M on which G acts discretely. Then 

a) E 0(M) = li.mn,m 11,,.(MV)G" is free of the same rank as M, 
b) E 1 (Torzi, (M))~li.mn,m (MV/p"') 0 ", 

c) E 1(M/Torz/M))~ li.mn,m (11,,.(MV))a,., 
d) E 1(M·)~li.mn,m P,,.((MV)a,.)~HOmz/M•, Zp), 
e) El(M/M•)~li.mn,m ((MV)Gn)/p"', 
f) E 2(M)~li.mn,m (MV/p"')a,.~li.mn,m (MV)a,./P"', 

where the transition maps are the obvious ones. 

Proof Since H 0(Gn, A)=Aa,. and H 1(Gn, A)~Aa,. for a discrete G
module A, a), b), c) and f) immediately follow with 2.1 b) and remark 2.2 
b). From 2.1 a) we get an exact sequence 

O~lim (MV)G"/p"'~E 1(M)~li.m pm((MV)a,.)~O. 
n,m n,m 

The cokernel obviously is isomorphic to Homzp (M 6, Zp), while the kernel 
vanishes for M = M·. On the other hand one has an exact sequence 
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because (M 6)+ =0=E 2(M/M 6) (cf. 3.1 d)). Since the first exact sequence 
is functorial in M, we deduce that it must be isomorphic to the second 
one, by applying it to M 8 and M/M 8• 

§ 4. Profinite groups of cohomological dimension two 

4.1. We shall encounter the following situation for global as well as 
for local fields. Let f§ be a finitely generated profinite group with p
cohomological dimension cdP (f§):::::2 for a fixed prime p. Let ,yf be a 
closed normal subgroup and let G=f§/.Yf'. We are interested in the struc
ture of X = .Yf'(p )ab= .Yf'ab(p) as a module over the completed group algebra 
A=Zp[[G]], where .Yf'ab=.Yf'/[.Yf', .Yf'] is the maximal abelian and .Yf'(p) is 
the maximal pro-p quotient of a profinite group .Yf'. 

Let ~: F -.f§ be a surjection, where F is a free pro finite group on 
finitely many generators x,, ... , Xc1- We obtain a commutative exact 
diagram 

(4.1.1) 

and it follows easily with the methods of Fox and Lyndon that one has 
an exact sequence of A-modules 

(4.1.2) 
aug 

O~!!,l(p)ab~Ad~A~zp~o 

e i ~ x\ - 1 

where aug is the usual augmentation, {et}t 1 is a basis of Ac1, and xi is the 
image of xi in Ge A (cf. [Wl] for the case of a finite p-group). 

In [NQD] Nguyen-Quang-Do has (for pro-p-groups) defined a canon
ical A-module Ywhich is very useful for our purposes: 

4.2 Definition. Let Y=l(f§),,,., where /(f§) is the augmentation ideal 
of Zp[[f§]]=A(f§). 

4.3 Lemma (cf. [NQD] 1.7). a) There is a commutative exact dia
gram of A-modules 
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where I is the augmentation ideal of A. 
b) .Al" /[.Al", E?l](p) is a projective A-module. 

Proof. a) follows as in [NQD] 1.7, by taking the Jlf'-homology of 
the two exact sequences 

(4.3.1) 

(4.3.2) 

o~I(@)~Zp[[@]]~zp~o 

o~.,-vab(p)~Zp[[@]]4~/(@)~0 

coming from the Lyndon resolution for <§ (cf. 4.1.2 for G=@), noting 
that 

H1(.n", Zp)=Hl(Jlf', Qp/Zp)V =Jlf'ab, 

Ho(Jlf', /(@))=l('#),e= Y, 

Hi(Jlf', I(@))=Hl.n", Zp)=H2(Jlf', Qp/Zp)V. 

b): .,-vab(p) is a projective A(@)-module, since cdP (@)<2, see [Br] 
5.2. Hence .,-vab(p),,.=.Al"/[.AI", E?l](p) is a projective A-module. 

We now show how to determine X and Y in terms of the dualizing 
module of <§ (strictly speaking, mPl is only the dualizing module in the 
(most interesting) case cdP ('#)=2; for cdP ('#)= 1 we have E~Pl =0). 

4.5 Theorem. Let E~Pl =E~Pl(<§)= limm,~H 2(0/t, Z/pm)* be defined as 
in § 2, let W = (mP))Jt' and Z = WV, and assume that .,yab(p) is a finitely 
generated A(@)-module. 

a) One has Y -:::.DZ, in particular, Y is determined by Z up to projec
tive summands. 

b) Up to projective summands, Xis determined by Wand a class X e 
H 2(G, W)*=HlG, Z)~[Y, I], via Lemma 1.3 and the exact sequence 



190 U. Jannsen 

f o~x~Y~I~o 

(X corresponds to the homotopy class off). As an alternative description, 
there is an exact sequence 

whose extension class is the image of X under the injection 

c) Let Xo E H 2(C§, mP>)* be the canonical class: this is the class cor
responding to the identity map under the canonical isomorphism (cf. [SI] 1-
8. 1). 

Then X is the image of X0 under the map 

H2(C§, mP>)*~H2(G, w)*, 

which is the transpose of the inflation. 
d) The modules X and Y are determined up to isomorphism by the 

above invariants and the isomorphism class of%/[%, ~](p). 

Proof. a) By the projectivity of .;Vab (p), 4.3.2 induces an exact 
sequence 

(4.5.1) 

By assumption, ZP is a noetherian A(C§)-module (2.2), so by 4.3.1 and 2.1 
b) we get 

Ei(J(C§))~E;(Zp)~(li.m DlZJpm))V =(mP>)V, 
m 

hence, by taking .n"-coinvariants, an exact sequence 

(4.5.2) 

where we have used the canonical isomorphisms 

(4.5.3) 

for every finitely generated A(C§)-module M. The result now follows by 
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comparing 4.5.2 with the exact sequence from 4.3 a) 

b) The first isomorphism is clear since Z = wv, and the second one 
is proved in Lemma 4.6 b) below. Then the first claim immediately follows 
from 1.3. For the second claim note that the exact sequence 

by 4.6 a) below induces an exact sequence 

Now by definition a maps the class off to the class of the pull-back ex
tension 

and obviously X'~XEBAd. 
c) This follows from the functoriality in 4.6 c) below: the above 

discussion is also valid for G = <§, and the class off: Y-Iis the image of 
the identity map under 

It remains to show that the identity map corresponds to X0 via the iso
morphism 4.6 b) for W and M=E;(Zp), via the identification DM = 
DE;(Zp)=DE~(I(W))=l(W). Looking at the diagram 

with exact bottom row, one easily checks that both classes correspond to 
the class of the natural inclusion I(W)=--------,,.A(W) in Hz(W, E;(W))= 
Ker ((J(W)+},-((A(W)d)+).,). 

d) has only to be shown for Y, by (the proof of) 1.3 and the Krull-
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Schmidt theorem for A. For Yit suffices to show the following: if 

Aa~p~z~o 

h 
Ad~Q~z~o 

are two exact sequences of A-modules, with finitely generated projectives 
P and Q, then P ~ Q implies 

This easily follows with the same techniques as in the proof of 1.3, together 
with the Krull-Schmidt theorem. 

a f3 
4.6 Lemma. a) Let 0--+R--+P--+N--+0 be an exact sequence of A-

modules, with P finitely generated projective, and let M be another finitely 
generated A-module. In the long exact Ext-sequence 

Hom A (M, P)~ Hom A (M, N)~ Ext~ (M, R)~Ext~ (M, P) 

one has Ker a* ~Coker fi* ~[M, N]. 
b) Let M be a finitely presented A=A(G)-module, then there is a 

canonical, functorial isomorphism 

Hz(G, M)~[DM, I]. 

c) This isomorphism is functorial in G, in the following sense: if H is 
a closed normal subgroup of G, then the diagram 

Hz(G, M)~[DM, J(G)] 

I 1 l [(DMIH' I(G)H] 

HlG/H, MH)~[D(MH), J(G/H)] 

is commutative, where the left arrow is the deflation and the right arrows are 
obtained by the obvious functoriality of [ , ], the canonical identification 
(DM)H~D(MH), and the map J(G)H--+l(G/H). 

Proof a) Obviously for f: M--+N one has f e Im fi*=}f-0. For 
the converse implication note that every map Q--+N, with Q projective, 
factorizes through fi. 
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b) Choose an exact sequence (of right A-modules, say) 

with finitely generated free modules F0, F1, so that DM is defined by exact
ness of 

Ft~Ft~DM~O. 

Then we have a canonical isomorphism N~(DM)+, by the commutative 
diagram 

On the other hand we have 

Now it is readily checked that 

and so we may identify 

On the other hand the exact sequence 

HomA (DM, Aa)~HomA (DM, J)~[DM, I]~O 

II n I 
HomA(DM, A)d~HomA(DM, A) 

coming from a) and 4.1.2 shows 

Nl=HomA(DM, A)l={f E HomA(DM, J)Jf-0}. 

Putting everything together we obtain the result, the functoriality in M 
being clear by the existence of compatible resolutions. 

c) The deflation being the canonical extension of the isomorphism 
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to the higher homology groups, this follows immediately by going through 
the steps of the above construction. The identification (DM)H==.D(MH) 
is deduced from formula 4.5.3. 

4.7 Remarks. a) Obviously, 4.6 a) holds for any ring A, while 4.6 
b) and c) remain true for any pro finite group G with finitely many topo
logical generators. More generally, one can show isomorphisms 

under the assumption that QiM is finitely generated. This implies 4.6 b) 
by an isomorphism [DZp, QM]= [DM, I], which for finitely generated 
PJlab(p) coincides with 

b) From 4.5.2 and 4.3 we obtain an isomorphism 

c) Assume that H 2(.?R, QP/Zp)=O. Then pdA (Y)~ 1, and we can 
compare 4.5 with the general method 1.9 b) as follows: Choosing a sur
jection P~f?Jlah(p) with P projective we get a commutative exact diagram 

i.e., QX==.Qf?Jlah(p)==.Q2l. Furthermore we have morphisms 

Ext] (D2QX, E 1(X))==. Ext] (D2Q 2l, E 1(X)) 

~[QD2Q 2J, E'(X)] = [Q22 2 DI, E'(X)]~[DI, E 1(X)], 

with a induced by the Ext-sequence for 

0------> Q D 2 Q2 I----> Q----> D 2 Q2 l ---->0 

(Q projective), and f, by the adjunction of Q and 2. One easily checks 
that under the composition ,ft x (from 1.9 b)) is mapped to the same class 
as X=X(X) (from 4.5 b)) under 
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[Y, /]~[DI, DY]=[DI, E 1(Y)]~[DI, E 1(X)]. 

If E 1 (f-£ab(p))==.E2(I)~E8(ZP) vanishes, then 2Qf-£ab(p):=.f-£ab(p) by 1.10 
and thus a is an isomorphism. If both E 3(Zp) and E1(I) ~ E 2(Zp) vanish 
(e.g., if G is virtually strict p-Cohen-Macaulay with vcdP (G)=n:;\=2, 3), 
then '22Q2/:=./ and so f3 is an isomorphism, and r is an isomorphism by 
the exact sequence from 4.3 

§ 5. Applications to number theory 

We apply the results of the previous section to the following number 
theoretic situation. Fix a prime p and let k be a finite extension of Q or 
QP. In the case of a p-adic field let Q/k be a p-closed Galois extension, 
i.e., an extension which has no non-trivial p-extension. For a global field 
k let S be a finite set of places containing those above P · oo, and let Q/k 
be a {p, S)-closed Galois extension, i.e., Q/k is unramified outside S (S
ramified) and Q has no non-trivial S-ramified p-extension. Let K/k be a 
Galois subextension and set <§=Gal{Q/k), .?t'=Gal(Q/K), and G=Gal 
(K/k). For any field L denote by µip) the group of p-power roots of 
unity in L. 

As in §4, we want to study the A=A(G)-module X=.?f'ab(p). 

5.1 Theorem. Let k be a.finite extension of Qp, n=[k: QP]. 
a) There is an isomorphism of A-modules 

X=limA(L), 
L 

where L runs over all.finite extensions L/k, Ls;K, and A(L)=limmLx/(LX)P"' 
is the p-completion of Lx. 

b) One has cdP(<§)<2, H 2 (.7t', QP/ZP)=0, and an isomorphism of 
<§-modules 

E~P>(c:§)~µo(p). 

c) <§ is generated by d=n+2 elements as a pro.finite group. Let 

:#"~<§, .At, f-£, Yetc. be as in §4, with d=n+2, then 

d) Let <11, ••• , <1n+2 be topological generators of G, and let ate ZP 
with <1tC,)=,a' for all, e µx(P), i=l, · · ·, n+2. Then there is an exact 
sequence 
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o~A~A"+ 2~Y~O 

h--~(q1- µ1, ' ' ', qn+z-an+2)-

e) X is determined up to isomorphism by Ax(P) and the image of 

H 2((§, µo(p))*~H 2(G, µx(P))*. 

Proof a) is clear from class field theory. 
b) If A is a p-torsion (§-module, then the inflation 

(5.1.2) 
inf 

H((§, A)-z-';H(k, A) 

is an isomorphism for all r>O, since cdP (Gal (k/Q))< 1 for an algebraic 
closure k of k (same argument as in [Sl] II 5.6). The first two claims thus 
follow from the fact that scdP (Gal (k/k))=2 (Ioc. cit. 5.3). Applying 5.1.2 
to a finite extension L/k, Lc{J, we get an isomorphism 

with the group of pm-th roots of unity in L, by Tate's local duality theorem 
(loc. cit. 5.2). By passing to the limit over m and L we obtain the last 
claim. 

c) This follows from [Jl] 3.1 and 3.2. Note that it suffices to prove 
.Af'/[.Af', Bl](p):Zp[G] in the case of finite G, since two pseudocompact 
Zp[[(§]]-modules Mand M', with M finitely generated, are isomorphic if 
M,,:M',, for every open normal subgroup ;;It' of (§ (use that an inverse 
limit of non-empty compact sets is non-empty). By Swan's theorem (see 
[S3] 16.1 Corollary 2) and the projectivity of ,Al'ab(p) it suffices to show the 
above isomorphism after tensoring with Qp, which follows from [Jl] 3.1 
and 4.3 above, together with the vanishing of H 2 (;;It', QP/Zp). 

d) With the notations of §4 we have W=µx(P) and Z=µx(PY 
Since Y~DZ and H 2(;;tt', QP/Zp)=O, we immediately get 5.1.1 from trans
posing the exact sequence 

(5.1.3) A"+ 2~A~µx(P)V ~o 
e;f----+q; - a;:1 

where {e,}f;;; is a basis of A"+2 and p sends 1 to a generator of µx(P)v 
(given the left action of G), once we have shown that (µx(P)vV =0. This is 
clear, because (µx(P)v)u is finite for every open normal subgroup U of G. 

e) This is clear from 4.5 b) and d), since X0 generates the pro-cyclic 
group H 2((§, µo(p))*:End (µo(p)) and any two generators differ by mul-
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tiplication with an element a e z;. 

5.2 Examples. 
a) If G is finite cyclic, then there is a commutative diagram 

so the Galois module A(K) is determined by the order of the group µx(P) 
n N x,iKx), and one easily reobtains the results in [Ger]. 

b) Ifcdv(G)<l, then I is projective (cf. [Br] 5.1), hence Y:XEBI, 
and in particular, X :=. D(µx(P)V) has projective dimension < 1 and is 
determined by E 1(X) = µx(p)V. For example, assume that G:Zv X LI 
with a finite group LI, p,t'(LI: 1), then with 2.6 we obtain the following. If 
µx(P) is infinite, then 

and if µx(P) is finite, then Xis determined by an exact sequence 

o~x~An~µx(P)~O. 

(Note that E 2(X)=0 and E 1(X):E 2(µx(P)):µx(P)v in the last case). 
This regives results of Iwasawa [lw] Theorem 21 and Dummit [Du], cf. also 
[Jl] 4.3. 

c) If G has an open subgroup U = z;, with p,t'(G: U), and if µx(P) 
is infinite, then H 2(G, µx(P))*:Hom 0 (µx(P), QvfZv)=O, and one easily 
shows [J,lab(P)=A<.1-1• Thus 

by the second description of 4.5 b). For example, if G:Z;, then X: 
M'EBAn- 1, where M' is given by the exact sequence 

O~A~A 2~M'~O 

l~(a-X(a), i--X(i-)) 

with a, i- generators of G and X: G~Z; the cyclotomic character. 
d) If G is a p-adic Lie group, then the methods of [S2] sometimes 

show that H 2(G, µx(P)) is finite. In this case there is an injection 

XEBAa~[J,l•b(p )EBY 
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with cokernel of finite exponent. 
Now let k be a finite extension of Q, and let Q be as above. Let k 8 

be the maximal S-ramified extension of k, and set <§8 =Ga1(k 8 /k), .Yf'8 = 
Gal(k 8 /K). Then X=X 8 =.Yf'ab(p)=.Yf'1b(p) is the Galois group over K 
of the maximal abelian S-ramified pro-p-extension of K. 

5.3. Lemma. 
a) Jfp~2 or if p=2 and k is totally imaginary, then cdP (<§):S2. 
b) If an open subgroup of<:§ is a pro-p-group, then <§ is finitely gene

rated as a profinite group. 

Proof a) For a p-torsion '§-module A the inflation 

(5.3.1) 
inf 

Hr(<:§, A)--+Hr(<:§s, A) 

is an isomorphism for all r>O, and this implies the claim (see [Neu]). 
b) This follows, e.g., from [JI] 3.2 b). 

In the following we shall assume that cdP (<§).S::2 and that <§ has 
finitely many topological generators. Let - for a suitable d-:F, ~ and 
JV be chosen as in § 4, and let Y = Y8 =l(<:§).,,, as in 4.2. It is easy to see 
that Y~J(<:§8 ).,,, 8 , in particular this A-module only depends on Kand S, 
and by 4.3 we have a diagram of A-modules 

since Hz(.Yf'8 , Zp)=H 2(Jif'8 , QP/Zp)v ~H 2(.Yf', Qp/ZP) by the argument of 
5.3 a). Here I and ~ab(p) only depend on the structure of G as an ab
stract group and X8 and Y8 on the invariants described in Theorem 4.5. It 
is conjectured that H2(.Yf'8 , QP/ZP) vanishes; for a finite extension K/k this 
is equivalent to the Leopoldt conjecture for K and p (compare 5.4 a) 
below), on the other hand this vanishing is known, if K contains the cyclo
tomic ZP-extension of k (cf. [Sch] 4.7). 

Let X 2 = Gal (L/ K) and X3 = Gal (L' / K) where L is the maximal 
abelian unramified pro-p-extension of Kand L'/K is the maximal sub
extension in which every prime above S is completely decomposed. For 
K/k finite let S/K) be the set of finite primes in K lying above S, and for 
\ls e S/K) let K'<! be the completion of Kat Jls. Then define 
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A=As= CT Ap, 
!llES1(K) 

U=Us= CT Up, 
!llESf(K) 
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where A!ll (resp. U!ll) is the p-completion of K~ (resp. of the group of units 
in K!ll). Let(!) K (resp. 0s) be the ring of integers (resp. S-integrers) in K 
and set 

E=EK=0i®zZp, 

Es=Es,K=(!)~@zZp. 

For arbitrary K/k define the groups Ap, Up, A, U, E and Es as the inverse 
limits-via the norms-of the above groups for all finite intermediate 
layers L/k, L~K. 

The next theorem extends results of Kuz'min [Kuz], Nguyen-Quang
Do [NQD] and the author [JI]. 

5.4 Theorem. 
a) With the notations as above, there is a commutative exact diagram 

of A-modules · 

0-----+ H2(.YI' s, QP/ Z p) v-----+ E-----+ Us----+ Xs-----+ X2-----+0 

II 1 1 II 1 
0-----+ H 2( J/f s, QP/ Z p) v-----+ E8 -----+ A 8 -----+ Xs-----+ Xs-----+0. 

b) if d~ri+r 2 +l, there is an isomorphism 

%/[JV, ~](p)~ E8 Aw.>E8Ad-r1-r2-1, 
vES6o 

Here S~ is the set of real places of k which ramify (i.e., become complex) in 
K, ri is the cardinality of S~, and r2 is the number of complex places of k. 
For each v e S~, G" = (av) is a chosen decomposition group at v in G, and 
Aca.i=A/A(av-I) is the module of coinvariants for the right Gv-module 
structure of A, regarded as a left A-module. 

c) Let mPl(<§) be the dualizing module of<§. if µPr;;Q, then there 
is an exact sequence 

0-----+ µ(p )~ E8 Ind ~P (µ(p) )-----+ E ~Pl ( <§)-----+0 
pESf 

where,for each l) e S 1 =S/k), <§Pis a decomposition group at l) in<§, Ind!P 
means induction from <§P to <§, µ(p) is the '§-module of p-power roots of 
unity in an algebraic closure Q of Q, and t is the natural map. 
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d) Let W= W8 =EiPl(';9'}"" and Z=Z 8 = Wj as in §4-so that Y8 :::::: 

DZ 8 by 4.5 a). Then W8 ~EiPl(<iY8Y's, in particular, W8 and Z8 only depend 
on K and S. There is an exact sequence 

res 
O----+µx(P)----+ EB Indg/µx/P))----+ Ws----+H'(.Y'f's, µ(p))----+ 

pESf 

EB H'(Kp, µ(p)), 
pESr 

where, for each lJ e S1 , GP is the image of 'iYP in G, KP is the completion of K 
· inf 

at the prime \lS/lJ belonging to Gp, and res is induced by H 1(.Y'f'8 , µ(p))----+ 
H 1(K, µ(p))-H 1(Kp, µ(p)). In particular, if µx(p) is infinite, then there is 
an exact sequence 

O----+Xa(- l)----+Z 8 ----+ EB A0A<Gp)Zp(-l)----+Zp(- l)----+0, 
pESt 

where Zp(l)=limm µpm, and Xa(-l)=X 3Q9zPZp(- I)for Zp(-l)=HOmzP 
(Zp(l), Zv) is the usual Tate twist of X3• 

Proof a) This is clear from the cited references; we only remark 
that for K/k finite the lower sequence by Kummer theory can be identified 
with the exact sequence 

O----+H2(.Y'f'8 , Qp/Zp)V----+H1(.Y'f'8 , Zp(I)) 

(5.4.2) ----+ EB H'(K'f!, Zp(I))----+H 1(.Y'f'8 , Qp/Zv)V 
'f!ES1(K) 

--+Gal (L' /K)----+O 

coming from Tate's duality theorem ([Ta] 3.1, compare [Sch] 2.5) and the 
fact that H 2(Kp, Q/Zv)=O; here H 1(-, Zp(l))=lim H 1(-, µpm). The 
upper sequence is an easy consequence by class field theory, and the 
general case follows by passing to the limit over the intermediate finite 
layers, since this limit for H 2(.Y'f'8 , QPf Zv)v is taken via the duals of the 
restriction maps (cf. [Mi] I 4.19). 

b) We already know that JV/[%, ~](p) is a projective A-module, 
and for its description it suffices to consider the case of finite G (same 
argument as for 5.1 c)). For finite G the claim follows with the arguments 
in [JI] 3.3: By Swan's theorem it suffices to consider JV /[JV, ~](p)0zpQP. 
From a) we get the equality 

in the Grothendieck group Ko(QP[G]) of finitely generated Qv[G]-modules, 
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[A] denoting the class of such a module A. From a) we have 

and we may proceed as in [Jl]. 
c) From Tate's duality theorem we get an exact sequence for finite 

K/k, KCk 8 : 

(5.4.3) 
o__,,.µx(P)__,,. EB µx,/P)__,,.H 2(.7f's, Zp)V 

!l!eS1(K) 

__,,.H 1(.7f'8 , µ(p))__,,. EB H 1(K$, µ(p)). 
!l!ESt(K) 

By passing to the direct limit over all finite layers K/k contained in Q/k 
we obtain the result, since for H 2 (.7t'8 , Zp)v = fun,,, H 2(.7f',,, Z/p"')v = 
funm H 2(.7f', Z/p"')v the limit is taken via the duals of the corestrictions, 
while for H 1(.7f'8 , µ(p))~H 1(.7f', µ(p)) and the last group it is taken via the 
restrictions. 

The first exact sequence in d) now follows either by only passing to 
the limit over all finite layers in K/k, or by taking the .7f'8 -cohomology of 
a similar sequence for E!P>(tf§8 ) as the one for E!P>(tf§) inc). The second 
sequence is obtained by taking the Pontrjagin dual of the first one. Finally 
we immediatly obtain E!P>(tf§)~E~P>(tf§8) 0 a1 Ckst0 > from 5.3.1. 

5.5 Examples. (valid for the global and the local case) 
a) If G~Zp, it is well-known that I(G)~A. Hence Y~XEBA, and 

in particular, X -::=.DZ is completely determined by Z (compare [Jl] p. 123, 
124, where this was proved under too restrictive assumptions-and where 
the Zp(l)'s in (43) have to be replaced by Zp(- l)'s). A similar discussion 
holds for cdP (G)< 1 (cf. 5.2 b)). 

b) Assume that H 2(.7f', QP/ZP)=O. If cdP (G)S::3, then pd,1 (X)< 1 
(since pd,1 (Rab(p))< 1, cf. [Br] 4.4, and hence O-::::.Q(!,£ah(p)-:::::.QX, cf. 4.7 c)). 
Thus X-:::::.DE1(X) by Theorem 1.6, and by the arguments in 4.5 d) Xis 
determined up to isomorphism by E 1(X). By 4.3 we have an exact sequence 

E1(I)__,,. E 1( Y)__,,. E 1(X)__,,. E2(I)__,,.0, 
m m m 

E2(Zp) Z E 3(Zp) 

If cdP (G)=2, then E 1(X) is the cokernel of E!P>(G)V =E 2(Zp)__,,.z, and, 
in fact this map is just the element Xe H 2(G, W)V ~Homa (W, E~P>(G))~ 
Homa (E 2(Zp), Z). For example, if G~z;, then E 2(Zp)~Zv, and the 
map corresponds to an element in za~Homa (W, QP/Zv). If k is global 
and µx(P) is infinite, then the second exact sequence in 5.4 d) shows za~ 
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Xa(-l)G, 
lfcdp(G)=3 and G is strict p-Cohen-Macaulay, then we obtain an 

exact sequence 

whose extension class now is given by the element Xe H 2(G, W)V ~H!oni 
(G, Hom (W, E~P>(G)))~H~ont (G, Hom (E3(Zp), Z)). 

c) The invariant Xe H 2(G, W)v is zero if and only if every p
embedding problem is solvable for K/k and (§, i.e., if every diagram with 
exact row 

with finite abelian p-group A, can be completed by a homomorphism 
s: (§~E with ps=7e. This follows from the injection 

n2((§, A)~ n n2c(§, mP'), 
µEHom9'(A,E~P>) 

by the same arguments as in [JW]. 

5.6 Remark. In this and the following sections it is convenient to 
give all modules the left Galois module structures. In view of the discus
sion in 2.7 b) this means that cv =Hom 00 nt (C, QP/Zp), Homzv (C, D) etc. 
have the action given by (af)(c)=af(a· 1c), only then Tate's sequences 
5.4.2, 5.4.3 are Galois equivariant. In particular, the action on the Iwa
sawa adjoint E 1(X) is the one of [W2] and different from the one in [Iw]. 

§ 6. Some results for the cyclotomic Zp·extensions 

We consider a situation as in the previous section, with k a global 
field and K=k(µ(p)). Since there are only finitely many primes in Kover 
every prime of k, the sequence of 5.4 d) becomes 

(6.1) O~X 3 (-l)~Zs~ EB Indg/Zp(-l))~Zp(-1)~0. 
pESJ 

The following result was proved by K. Wingberg in [W2] up to quasi-iso
morphisms. 

6.2 Theorem. The sequence 6.1 can be identified with an exact 
sequence 
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induced from the exact sequence 

O~E 8 ~A~X 8 ~X 3~0. 

Proof Splitting the latter sequence into two short ones 

O~E 8 ~A~B~O 

O~B~X 8 ~X 3~0, 

we get a commutative exact diagram 

E1(.Xa)~E 1(X8)~E 1(B)~E 2(,¥s) 

E!l(X8 )~E~A) 

(6.2.1) l 
E 1(E8 ) 

l 
0, 
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where we have used that E 2(B) vanishes as quotient of E 2(X8 )=0. Now 
by the considerations in 4.5 and example 5.5 a), f3 can lie identified with 
the map a2 in 6.1. On the other hand, by the well-known local theory 
(compare 5.2 b)) we have 

A::'.Ti(A)ffiACk:Q], Ti(A)::'. Eb Indgp(Zp(l)). 
ves, 

Hence we get a commutative diagram 
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in which E 1(E8 )-E 1(Ti(E8 )) and E 1(E8 )-E 1(Zp(l)) are surjective, since 
E 2(M/T 1(M))=0 for any A-module and E 2(E8/Zp(1))=0, since E8 /Zp(l) 
has no non-zero finite submodule. 

Hence the surjections on the right are all isomorphisms which proves 
the claim. 

The next consequence has also been obtained by K. Wingberg 
(unpublished) by somewhat different means. 

6.3 Corollary. E8 ~ EBves~ A,0 ., EBZP(l), where S~ is the set of 
archimedean places of k and G.,for each v e S~, is the decomposion group 
of v in G. In particular, T1(E8)=Zp(l). 

Proof The exact sequence 

0=Zp(l)+--+E 1(E8 / Zp(l))--+E 1(E8)~E 1(Zp(l)) 

shows E 1(E8/Zp(l))=0. Since on the other hand pd,1 (E8 /Zp(l))< 1, be
cause this module does not contain any non-trivial finite submodule, we 
deduce from Theorem 1.6 that E8/Zp(l) is projective. Its isomorphism 
class is easily computed by the methods already used in the proof of 5.4 
b), by computing Ei2>QP for finite intermediate layers. 

6.4 Corollary. There is an exact sequence 

in particular, for T-=> S a finite set of primes one has an exact sequence 

0--+ EB Indgp(Zp(l))--+Ti(XT)--+Ti(X 8 )--+0. 
pET\S 

Proof Define Z; by the exact sequence 

0--+Zp(l)--+T 1(A8)--+Ti(X 8)--+Z;--+0. 

~/ 
R 

Splitting this sequence into two short exact sequences as indicated, we 
obtain a commutative exact diagram 

0--+E 1(Z;)--+E'(Ti(X 8))--+E 1(R)--+E 2(Z;)~O 

(6.4.1) 
II 1 

E 1(Ti(X 8)) ~E 1(Ti(A))--+E 1(Zp(l ))--+0 

! 
E 1(Zp(l)), 
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where we have used the facts that R+ =0=Zp(l)+ (since these are A-torsion 
modules) and 0=E 2(T 1(X 8 ))-»-E 2(R). The exactness of the second row 
follows from the proof of 6.3 since E 1(Ti(X 8))=E 1(X 8)/To(E 1(X 8 )) by 3.6 
ii). Since E 1(A)~E 1(Ti(A)) is torsion-free, a comparison of 6.4.1 with 6.2 
now shows 

E 1(Z;)=Xs(-1)/To(Xs(-l)), 

E 2(Z;)=0. 

In particular, pdA cz;)< 1, and z; = E'(E'(Z;)) by Theorem 1.6, since 
(z;y =0 (cf. also the statement about the self-duality for modules of type 
B) in §3). We conclude 

z;=E 1(Xs(-l)/To(Xa(- l)))=E'(Xa(- l)), 

cf. 3.3 a), hence the first claim. The obtained sequence is functorial in S, 
hence the second claim is an obvious consequence, by the exact sequence 

o~ EB Indgµ((l))~T1(AT)~TiCAs)~0. 
µET\S 

We finish by calculating for X 8 the A-modules associated to it by the 
general discussion in § 3. 

6.5 Corollary. a) E 0(X8)=Etlves~Aw.l, where S;, is the set of com

plex archimedean places of k, E 1(X8 )=Z 8 , E 2(X8 )=0. 
b) To(X8)=0, T1(X 8)=E 1(Z 8 ), TlX 8 )=To(Xs(-l))v. 
c) To(X3) = limn H 1(Gn, cffs(K)), where Gn = Gal (K/k(µpn+i)), cffs(K) 

= (()~,K is the group of S-units in K, and the limit is taken via the corestric
tions. 

Proof All formulae are clear from the previous discussion and the 
fact that X 8 -::::::.DZ8 , except for the claim inc). For this let kn =k(µpn+i) 
and let Cl8 (kn) (resp. Cls(K)) be the S-class group of kn (resp. K). There 
is a well-known commutative diagram of finite groups 

where cor is the corestriction, N the norm, and tr the trace of Gn/Gn+t· 
By passing to the inverse limit over n we obtain an exact sequence of G
modules 



206 U. Jannsen 

O~fun H 1(Gn, t&'s(K))~Xa~fun Cls (K) 6 n. 
n n 

Now funn H 1(Gn, t&'s(K)) is finite, since the order of H 1(Gn, t&'s(K)) is 
bounded independently of n [Iw] 5.2. Hence it suffices to show that the 
last group has no non-trivial finite G-submodule. It suffices to show the 
same for the fixed module under the pro-p-group G0, since for a finite G0-

module A~O one has A 60 ¾0. But 

(fun Cls (K)Gn )Go= lim Cls (K)Go' 
n n 

where the inverse limit is taken via the p-multiplication, so this group is 
uniquely p-divisible. 

6.6 Example. There is an exact sequence 

~E 1(Z 8)~X 8 ~ EB Aca.l~Hom(lim H 1(Gn, t&'s(K)), µ(p})-~O. 
ves~ n 

This should be compared with Iwasawa's results in [lw] 8.3. 
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