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The signs here correspond to the definition of the link variables and 
to the ordering of the talis described above. 

(26) 

Analogously: 

(27) 

(28) 

B:-!(¢+~ 

+*'+ir?) 
=!(~/+€/)=E 

J:]=;(1+:&)=3 
Expressions (25-28) reduce the derivation of the equations and their 

contact terms to the same manipulations which have been used in the 

case of the 2D IM. This is true, of course, for other orientations of LJ. 
This means that equations and contact terms for the 3D IM can be writ
ten down by using the corresponding expressions for the 2D IM, with 
obvious replacements-comp. eq. (16) with its 2D analogue, eq. (3). 

The contact terms for the contour equations follow from the results 
of the first part of this section (which deals with 2D IM). An example 
of the equation for the contact configuration is given in Fig. 11. In a 
more general case, given in Fig. 9, the equation for the link (x1, 3) will 
contain contact terms: 

(29) 
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Fig. 11 An equation for the contact configuration. It is as

sumed that inside the correlator ,i,ai-.. aL(C) the link 
variables are ordered as < · · · t;(x)t;•(x) · · · > 
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It is assumed here that inside the contour correlator t( C) the link vari
ables are ordered as: 

according to the ordering of the tails in Fig. 9. 
We remark, finally, that an alternative ordering is also possible, the 

one in which the product of link variables is ordered along the contour. 

§ 5. Path Integral formalism 

Path Integral formalism, which uses Grassmann anticommuting 
variables (fields on lattice), has been found for the 2D IM a long time 
ago [11]. In a more developed form it is given e.g. in [12, 13]. Recently 
the corresponding formalism has also been found for the 3D IM [13, 14). 
It happens that technically the derivation of equations in this formalism 
is simpler ( once the Path Integral representation has been proved to give 
the correct partition function). In this section we shall reproduce the 
results of Sections 2-4, using this formalism. We shall not go into much 
detail here, because the Grassmann variables (fields) of this formalism 
have already appeared in the preceding sections as the tailed objects, 
built explicitly of the original Ising spin variables. 

(30) 

2DIM 
We shall choose the Action for this model in the form: 

A[,r]= - ~ ~(ff)+~ f (f(x+&)Paf(x)) 

=_..!_I; t(x)C· 1t(x)+.3__ I; ,r(x+&)ftat(x) 
2 x 2 x,a 

= I; (tst1+t4tz+t1t2+tst4+tzts+t1t4) 
3' 

+l I; (,r3(x+ i)t 1(x)+t 4(x+2)t 2(x) 
3' 
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Here ,Jr"(x), a= I, 2, 3, 4 are four-component anticommuting 
Grassmann variables, defined at sites of the 2D square lattice. They 
have one to one correspondence with the tailed objects (2); C is a 4 X 4 
matrix (22): 

0 -1 1 -1 

1 0 -1 1 
-1 1 0 -1 
1 -1 1 0 

f=,JrC- 1 are conjugate variables (23). We have also introduced here 
the matrices {fi.}, which shall be used in the following sections: 

(blank cells correspond to zeros). 
Notice that I:,.fi.=A, see eq. (3). 

The partition function of the 2D IM is given by the functional Inte
gral over Grassmannian fields on lattice: 

(32) Z(A)= f ~,Jr exp {A[,Jr]} 

Here 

~'Y' = n ( -d,fr 1(x)d,Jr3(x)d,Jr2(x)d,Jr4(x)) 
X 

exp{A[,Jr]}= D exp {- ~ f(x),Jr(x)+J,Jr3(x+l),Jr 1(x)+J,Jr4(x+2),Jr 2(x)} 

= D ( 1- ~ f(x),Jr(x)-,Jr 3(x),Jr1(x),Jr4(x),Jr2(x)) 
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X TI (1 +l,fr 3(x+ i)t 1(x))(l + A,fr4(x+ 2),fr2(x)). 
X 

It can be proved that (32) provides the correct partition function of the 
IM. The correspondence is established through the high temperature 
expansion, with A= th /3. 

Let us consider now the correlation function: 

< ,fra•(x2),fra•(xs) · · · ,fra"(xn)) 

(33) = ! f ~,fr eA[,f,]ta•(x2),/ra3(Xs) · 0 0 ,/ra"(Xn) 

and let us perform a variation, under the functional integral (FI), of the 
variable ,fra'(x1): 

(34) 

Here 1:,P is an anticommuting parameter. Variation (34) under FI should 
not change the value of the correlation function. So it produces the 
equation: 

(35) 

ca,p< ::P~t~) ,fra•(x2) · · · ,fra"(xn)) 

+ ca•P< o,fr:(X1) ( ,fra•(x2) · . · ,fra"(xn)) )= 0 

Using the following expression for the variation of the Action: 

we find: 

(36) 

ca,P a~P~t~) = -,fra'(X1)+l ~Pat(x-a) 

= -,fra'(x1)+1Aa1P,frP(x-fi) 

< ,fra'( X1),fra•( X 2) · · · ,/ra"( Xn)) 

=AAa•P< ,frP(x1 -fi)ta•(x2) · 0 0 ta•(xn)) 

+o.,,,.,,.ca,a•< ta•(xs)t••(x4) · .. ,fra"(xn)) 

-o.,,,,,.ca,as<ta•(x2)ta•(x4)• 0 ·ta"(xn)>+ 0 0 0 

Thus we have got the equation for the correlators of the 2D IM, together 
with its contact terms, comp. eq. (22). 

3DIM 
The Action for the model can be given in the following form ( comp. 

[13, 14]): 
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1 -A[,fr]= -- I:; t,,(x),fr,,(x) 
2 x,µ=1,2,3 

+1 I:; (f.(x+ µ)fia,(iJ),fr,(x))(,f ,,(x+D)fia,,(,),fr,,(x)) 
x,µ<11 

+1 I:; (t~(x+2)ti(x)t~(x+ i)t~(x)+t~(x+3),fr~(x)tt(x+2)t:(x) 
:,; 

+t:(x+ i),tr~(x)tt(x+ 3),frf(x)) 

The anticommuting link variables in the Action above are in one to one 
correspondence with the tailed link objects, built in Section 3-see eq. (15) 
and Fig. 4b. 

The partition function is given by the FI 

Z(l)= f 2d,fr exp {A[t]} 

2dt= n ( -d,fr~(x)d,fr;(x)d,fr;(x)dt!(x)) 
x,µ 

(38) exp {A[,fr]}= CT (1-f ,,t,,-t;t~t!t!) 
x,µ 

X CT (l+lt~(x+2)ti(x)t~(x+ i)t~(x)) 
:,; 

X (1 + 1,fr~(x + 2),fr~(x)t:(x + 2)t:(x)) 

X (1 + 1,tr;(x+ i)t~(x)tt(x+ 3),fr~(x)) 

After integration we shall get a sum over closed contours, which is the 
same as that found in the high temperature expansion for the partition 
function of the 3D Gauge IM, with l=th fi (or low temperature expansion 
of the usual 3D IM, with l=exp (-2fi)). This can be checked as follows. 
First we remark that the integration of each term of the expansion of 
Z{A) in powers of 1 factorizes. into integrations in 2D planes of the 3D 
cubic lattice. In fact, the expression (38) has the form which allows 
grouping together the products of variables belonging to the same lattice 
plane (these are the variables which have in common one of the coordi
nate numbers x1, x2 or x3 and also the link index µ), without producing 
any sign changes. Moreover, the integration in each 2D plane of the 3D 
lattice is precisely the same as that for the 1-expansion of the 2D theory 
(32). So, if it is proved already that the integration of (32) provides the 
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correct signs for the expansion of the 2D IM partition function in the 
sum over closed contours, then it implies automatically that the integra
tion of (38) will provide the correct signs also for the expansion in closed 
surfaces of the 3D IM partition function. 

Next we consider the contour correlation function: 

,{ra,•••aL(C)=<q=p +;:(xk)) 
a 

(39) = ! f ~,fr eACtJ <lJ t;:(xk) 

We assume here that the product of anticommuting link variables is 
ordered along the contour. Suppose we want to derive equation for the 
link (x1, µ1) of the contour. In that case, we take the variable t;:(x 1) out 
of the product in (39), and get in the result the correlator for an open 
contour: 

(40) 

which vanishes of course, but it makes no difference for our present 
purpose. We perform a variation of the variable t;:(x 1) under the FI in 
( 40). This gives the equation: 

(41) ca,p< aA (Il't))+ca,p< a (fl't))=O 
a+~:(x1) a+~:(x1) 

The variation of the Action has the following form (see also Fig. 12): 

Fig. 12 The graphic form for the variation of the Action ( 42). 

(42) C aA[,fr] -,frµ(x 1)+l ~ .Paµ<•>,frµ(x-D)·(,fr/x+µ)fia,<;llt.(x)) 
a,trµ(X1) •U.ill 

Here the sum v (J_µ) is taken over all the lattice directions orthogonal 
to p.. E.g. if µ=1 then v=2, 3, -2, -3, ,fr_z(x)=tzCx-2), t-s(x)= 
,[rs(x-3). 

From (41) and (42) we find the equation 

< q::p ,fr)=< t;:(x1)t;:(x2) · · ·) 

(43) =A~ .Paµ,<•><tµ,(X1-D)(f.(x+f11).Pa,(µ,),fr,(x)),frµ,(X2)tµ.(Xs)·. ·> 
•(.Lil) 
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which is the same as our equation for the contour correlator (16). We 
remark only that, because of the ordering along the contour, which is 
assumed in this section, the sign of the first term in the r.h.s. of eq. ( 43) 
may be changed, if we arrange the three variables, making the configura-

tion r1 (see Fig. 12), according to the adopted ordering. 

If we had used an alternative ordering of the contour variables, the 
one that we used in Section 4 ( ordering in the groups of variables, belong
ing to the same 2D lattice plane) : 

(shown here is only one group of variables, see Fig. 9) we would have 
got precisely the contact terms (29). 

§ 6. Equipped paths. Continuum limit for the 2D Ising Model. The path 
amplitude for the spinor particle 

It is easy to check that the solution of the equation (24) for the two
point correlator can be represented as a sum over "equipped" paths: 

(44) G(x, X0)=(t(x)i/r{x 0)= I:; AL(il'l TI fi 
9"x,xo along 9" 

The sum here is taken over all the paths on the lattice, which joins the 
points x, x0 : L(PJl) is the length of the path g;; A is a scalar weight, and ft 
is a matrix corresponding to a particular link of the path g;. ft is one of the 
four matrices in (31), depending on the direction of the link-see Fig. 13. 

In fact, by its definition, the sum over paths ( 44) satisfies the linear 
equation 

(45) G(x, Xo)= I:: lfi.G(x-a, Xo)+ox,xo 
a=l,2,3,4 

which coincides with (24)-comp. A in (3) and {ft.} in (31). 
We remark that, in general, if the matrix function G··•(x, x0) satisfies 

linear equation relating its values in the point x to those in the neigh
bouring points on the lattice {x-l, l being the lattice vectors}, then the 
equation can always be given in the form: 

(46) G··•(x, Xo)= I:; M•fi(l)Gfi••(x-l, Xo)+ox,x.c··· 
i 

It assumes that its solution can be presented in the form of a sum over 
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equipped (with matrices M(i)) paths, joining the points x and x0 : 

(47) G···(x, Xo) = I: ( IT M(l))•fi. C fiao 
{@x,xol along g, 

We shall describe now in short the continuum limit for the sum over 
paths (44). 

Singularities in the thermodynamic functions of the 2D IM arise 
when one of the eigenvalues of the matrix 

1 1 0 -1 

AA=A 
1 1 1 0 

0 1 1 1 

-1 0 1 1 

(see eqs. (3) and (24)) becomes equal to 1. The matrix becomes diagonal 
in the representation of angular momenta: 

[ 

1 
(48) 

1 1 e±<t./4) 
_ e±<i~/2)_ 

V'±(l/2) -2 -2 e±(irr/2) 

e± (!3rr/4) 

[ 1 l 1 e± (!3rr/4) 
_ e±(i3t/2l _ t ± (3/2) - 2 - e± (i3rr/2) 

e± (i9rr/4) 

In this basis 

./2+1 
./2 +1 

-./2 +1 
-./2 +1 

From this diagonal form for the matrix A we find the phase transition 
point of the 2D IM: 

1 
A0 =:thp 0 = V2 + l 

For the continuum limit (which describe critical behaviour of the model 
in the vicinity of the phase transition point) only the components V'±(I/Zl 

(having eigen values close to 1) will be relevent. This implies that the 
4 X 4 matrices reduce to 2 X 2 ones. To the first order in (A-Ac) and k 
(the space momentum, after the Fourier transform): 
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(49) (9"1A(k)l9"')=- 1 __ i k (9", 9"'= ± 2
1 ) 

Ac 2Ac 

and the eq. (24), in the momentum representation 

G(k)=AA(k)G(k)+ 1 

reduces to the Dirac equation (in 2D Euclidian space-time): 

(50) (ik+m)G(k)=2 

Here k=kT; r1=(~ 6), r2=(~ -b); 

(51) 

m=20c-A)/Ac

lt is easy to check that 

here ia is a unit vector in the direction a (see Fig. 13). The sum over 
paths ( 44) reduces to 

(52) G(x, Xo) = ~ {i)Wl n 
91.:r:ixo 9':z:1:110 

l+i 
2 

and the equation ( 45) takes the form: 

(53) ( ) ~ - 1 +i ( + ) G X 1X 0 = L.J A --G x-t, X 0 
i 2 

It is easy to check that in the straightforward continuum limit this equa
tion reduces to (50) (with 2 in the r.h.s. replaced by 1, which corresponds 
to a simple change of the normalization). 

We shall make now a series of remarks on the Feynman representa
tion for the propagator of a free spinor particle, in the space time of any 
number of dimensions, not just 2D, as above. We remark that the path 
amplitude for the spinor particle in the expression for the propagator (52) 

A 
P,,..,.,-
A 
P2,..,_, j 
A 

Pa,.,_, -
A 

P4""' ! 

Xo ~1 X 

M lA 
~P2 

Fig. 13 The definition of the phase factor rr ......... P in eq. (44). 



2D and 3D Ising Models 

ll 

llo 

Fig. 14 The path of the propagating particle having the form 
of a broken line, which is made of straight segments 
of equal length. 
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is correct in the space of any number of dimensions. We just have to use 
the corresponding r-matrices. Also, the expression (52) applies to any 
regularization of the sum over paths, not just to the regular lattice case. 
It is easy to check e.g. that if we use in (52) the summation over paths 
made by broken lines (Fig. 14), we shall find, in the continuum limit, 
the same Dirac equation (50). 

An analogue of the proper time regularization ( often used for the 
scalar particle propagator) is also possible for the sum over paths (52): 

G(x, x 0)= r dr:e-m•ff,(x, x0) 

(54) ff.(x, X)=fx(O)=xo ~X(r:') exp{-..!.. f' :iz dr:'} .p exp{-_!_ frdx} 
x(r)=x a O 2 a 

Here P stands for the ordering along the paths; a is a cut-off scale in the 
coordinate space, which appears explicitly in this regularization in case of 
a spinor particle. 

The function ff,(x) satisfies the equation: 

(55) _§_ff.(x)= -a:F,(x)+~a 2:F(x) 
ar: 2 

with the initial condition ff .(x) \,_0-a(x). 
The representation (54) is derived as follows: 

G(k)= ik:m r dr:e-<m+tk), 

G(x)= r dr:e-m• f dzk etk,-t'ix 

We introduce next a cut-off at short distances: 
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=J 00 d-.e-m< J.x(O)=.fo=O ~X(-r') exp {-l. J' i 2 d-r'} .p exp {l. Jrax} 
o x<•J=.x a o 2 a 

We remark also, that for sufficiently smooth paths (which change 
substantially their direction at distances )> a) the spin or phase factor of 
the path amplitude in (54) can be transformed as follows: 

Pexp - rLlx ::::::: exp r- = ch-+r-sh-{ 1 J .. } fl {_, Llx } fl ( Llx .. Llx Llx) 
a "' a "' a Llx a 

(57) 
= ( fl ch Llx) · fl (1 + fi. th Llx):::::: exp { L(PJf) } fl 1 + fl 

"' a "' a a "' 2 

We again arrived at the phase factor in (52). Transformations (56), (57) 
can be regarded as its derivation. 

(58) 

Notice, finally, that for the smooth paths, the spinor phase factor 

<j>(PJJ)= fl 
.,.(along?) 

1 +l(g')f 
2 

can be given a more natural form of a path ordered product of rotational 
matrices: 

(59) 

Here 

I:µ•= _ }_ [rµ, r·] 
2 . 

dmµ,(.9')= [P(g') f\dt•(g')= tP(g')dt•(g')- t•(g')dt•(g') 

and Y is the length parameter along the path. We have used the follow
ing transformations in deriving (59): 

(60) 

l+l(Y+LIY) l+i(Y) ( l+i(Y) + dt(Y)) l+i(g') 
2 2 2 2 2 

= ( l + di~g')) 1 +;(g') ( l + die:) i(g')) 1 +;(g') 

=(1+ ! [rP,r•]dtP(.'/)t•(Y)) 1+;(Y) -+<J>(Y+d.9') 

= ( 1 + ! I:µ• dmµ.(g') )<!>(Y) 
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§ 7. Equipped surfaces 

As it was discussed in the preceding section, the solution of the 
linear equation on lattice can be represented by a sum over free (no 
additional weight on the path cross-sections) but, in general, equipped 
paths on lattice-see eq. (46) and its solution (47). 

Analogously, in case of contour linear equations on lattice, which, by 
definition, can be presented in the form: 

(61) 

their solution can be given by a sum over equipped surfaces, bounded by 
the contour of the correlator. The amplitude for a particular surface in 
the sum is given by the product of plaquette matrices 

(52) 

taken along the surface : 

(63) 

When taking this product, the internal indeces are contracted and sum
med over, while the external ones make the indeces of the contour cor
relator (Fig. 15). 

oo-ro 
Fig. 15 Product of plaquatte matrices taken along the surface. 

In our particular case of the contour correlators of the 3D IM, we 
have the eq. (16) (or (43)), which has the form of eq. (61) with the 
plaquette matrices 

(64) 

In conclusion, the contour correlators of the 3D IM, introduced in Sec
tion 3, can be given by the sum over free surfaces, equipped with matrices 
(64), -see also Fig. 16. 
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3 l ~ - "l "d8 " ro -!' ~ a tµ = '" P~i,) Pa11Cµ) WP 
Ciµ 6 

+ possible contact terms 
rJP,18 AaS Ar8 rf-, 

M ( 1, 2) = t-'1 t-'2 - Pl±Jcx 
6 

Gft Gf2 

Fig. 16 Contour equation and an example of the equipped sur
face for the contour correlators of the 3D Ising 
Model. 

§ 8. Appendix 

1. The quantity G21(0) is defined from the equations for the nearest 
neighbours in the following way (comp. with the derivation of equations 
in Section 2): 

--tx sh 2/3= - --i-x ch 2/3+ --.:d_ -- -® -- -® --i-® 

---x T sh 2/3 = + --~ ch 2/3- --!~ =F . --!-® -- -® 

-!.~i-® sh 2/3 = + --_:t-® ch 2/3- --.:is.~-® 

(65) 
-~-z<J-0 sh 2/3= +--=-~%-0 c.h 2/3---:_-:~--0 8 

--=--d-® sh2f3= ---:.-:z<~-® ch2f3+ ==t=6II 8 eo · 

(66) ~ sh2f3= + ~ ch2f3- x-l-x 8 
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--1...c sh2,8= - --tx ch2,8+-+ e 
----® ----0 ----® 

-+ sh2,8=+-+ ch2,8- --tx 8 
----0 ----® -----® 

-Tsh2fi=+-+ch2,8-_~ EB 
----® -----® ----0 

-*sh2fi=+ __ ¾ch2;9---+ 8 
----® ----0 ----® 

(67) 

-~ sh2,8= +--Z ch2,8+ --¼+< EB 
----® ----® ----® 

(68) --1x sh2,8= - --~-x ch2,8- -~ EB 
----® ----® ----0 

The signs in the contact configurations (65-68) are chosen so that 
the correct equation is found: 

It gives 

(69) G2'(0)= ! (-x-t-x -++ tf-x --tt) 
2. We can find now the component C21 in the eq. (22) from the 

equation for the contact configuration: 

-* sh2;9=- --~ ch2fi+_* EB 

. sh2;9= - -=r---® ch2;9+ --=-..:x,~® 8 - ---+< -* sh 2;9= - -~~f ~ ch 2;9+ -~~f _: EB ___ ,..., 
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~ sh2fi= + --f® ch2fi+ --r® E8 I i --- -~ ---,< 

~ sh2fi= - --f.-® ch2fi+ ----:r~ E8 -1T ---~ 

-~~J-® sh 2fi = + -¼ ch 2fi- -:::_{-® E8 

-¾ sh2fi= +-=~±~ ch2fi- -~~~~-0. 0 

-~ sh2fi= + -_-_-d...0 sh2fi- +. E8 ___ _.. 

4 sh2fi=-+ ch2fi+ ~ E8 -___ .... 

e 

¼sh2fi=-+ ch2fi+ -ti-E8 
-- -© 

-± sh2fi= - -4--ch2fi- + E8 ---=-F .JT 
By summing the above we find: 

h A27 Gn( , ) 1 ( x-:f-x x-h __Ly + ) t fi· · x0r,x 0 = 4 - 1 -JT- jT+3 

By using the expression (69) for G21(0) we finally get: 

G21(x0, x0)=th fi · A27 • Gr1(x0-f, X0)-1 

It gives C21 = -1, - comp. the eq. (21). 
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