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of weight 1 

Chapter 1. Higher Reciprocity Laws 

Letf(x) be a monic irreducible polynomial with integer coefficients 
and let p be a prime number. Reducing the coefficients of f(x) modulo 
p, we obtain a polynomial fp(x) with coefficients in the p-element field FP. 
We define Spl {f(x)} to be the set of all primes such that the polynomial 
fp(x) factors into a product of distinct linear polynomials over the field Fp. 
What is a rule to determine the primes belonging to Spl {f(x)}? We may 
call its answer a higher reciprocity law for the polymomial f(x). For 
example, the usual law of quadratic reciprocity in the elementary number 
theory gives a 'reciprocity law' in the above sense: Let q be an odd prime. 
Then the set Spl {x2 - q} can be described by congruence conditions 
modulo q if q = I (mod 4) and modulo 4q if q = 3 (mod 4). The poly
nomial f(x) is called an abelian polynomial if its Galois group is abelian. 
Then, the next theorem, a natural consequence from class field theory over 
the rational number field Q, is known: 

Theorem. The set Spl {f(x)} can be described by congruence relations 
for a modulus depending only on f(x) if and only if f(x) is abelian. 

If f(x) is a polynomial with non-abelian Galois group, then very little 
can be said about the set Spl {f(x)}. We may call any rule to determine 
the set Spl {f(x)} a higher reciprocity law for non-abelian polynomial/(x). 
The main purpose of this chapter is to give some examples of higher 
reciprocity law for non-abelian polynomials arising from the dihedral cusp 
forms of weight 1. 

§ 1.1. Some examples of non-abelian case 

Example 1. f(x)=x 3 -d 

El.I. Spl {x3 -2} 
Let cv=(-l+,v-3)/2 and cosider the ring Z[cv]={a+bcv\a, be Z}. 



Automorphic Forms of Weight I 505 

Let rr be a prime in Z[w]. If N(rr)=/=3, the cubic residue of a modulo rr is 
given by 

(i) (a/rr)3=0ifrrla, 
(ii) a<N<•J-lJ/3=(a/1r) 3 (mod rr), with (a/rr)3 equal to 1, w or w2• 

A prime rr is called primary if rr=2 (mod 3). Then we can state 

Theorem (Cubic Reciprocity Law). Let rr1 and rr2 be primary, N(rr 1), 

N(rr2)=/=3, and N(rr1)=/=N(rr2). Then 

Now we have the following by the above cubic reciprocity law: 

Theorem 1.1. Spl{x 3-2} 

={p IP= 1 (mod 3), p=x 2 +27y2, x, y E Z} 

={PIP= 1 (mod 3), ( ! \ = 1 for p=rrft} 

={P IP=l (mod 3), a(p)=2}, 

where a(p) denotes the pth coefficient of the expansion 

7](6r)7](18r)= I; a(n)qn, q=e2.;, 
n=l 

with the Dedekind eta function 1)( r ). 

Proof The first half. Let p be a rational prime such that p = l 
(mod 3). Then p=rrft in Z[w]. Suppose that rr is primary. Then, by 
the law of cubic reciprocity, we have the following two facts: 

(1) x 8=2 (mod rr) is solvable if and only if rr=l (mod 2); 
(2) If p= 1 (mod 3), then X3c=2 (mod p) is solvable if and only if 

there are integers x and y such that p = x2 + 27 y2• 

By (1) and (2), we have the first half of Theorem I.I. 
The latter half. By the Euler pentagonal number theorem, we have 

7J(6r)7J(18r)= I: (- l)m+nq{(6m+l)2+3(6n+1)2)/4_ 
m,nEZ 

Let denote by A(p) the number of solutions (m, n) of 

(6m+ 1)2+3(6n+ 1)2=4p. 

Then we have easily the following assertions: 
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( i) A(p)=2 and m+n is even if p=x 2 +27y 2 ; 

(ii) A(p)= 1 and m+n is odd if p*x 2 +27y 2• 

Therefore we have the latter half of Theorem 1.1. 

El.2. Cubic residuacity 
Let d be a non-cubic integer and put K=k(fd) for k=Q(,v -3). 

Then Kis a splitting field of f(x)=x 3 -d over Q with the Galois group 
Gal (K/Q)~S 3, the symmetric group of order 3, and K/k is a cyclic exten
sion of degree 3. Hence K is the class field over k with conductor f =(3d). 
We denote by T1 the ideal group corresponding to K. 

For any odd prime p except the divisors off, we know that f mod p 
can factor over the p-element field FP in one of three ways: 

( i) (Linear) (Quadratic) if p=2 (mod 3), 

(ii) Three linear factors if p= 1 (mod 3) and (: \ = 1, 

(iii) Irreducible otherwise. 
If p= 1 (mod 3), then p splits ink as p=j)ppp, and we obtain 

j)P e Tr~---~Pv splits completely in K 

+---+ f(x) has exactly 3 linear factors mod p 

+---+f(x)===O (modp) has an integral solution 

Now put 

l 1={(a)l(a, f)=ll, 

J1={(a) e Iila=a (mod f) for some a e Z}; 

P 1={(a)el 11a=l (modf)}. 

Then we have the following table: 

field 
I 

corresponding ideal group 

maximal ray class field P, 

ring class field J, 

K r, 

k I, 

I 
index 

d+( :) 

!(d-(:)) 

3 
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Hence we observe the group T1 as the union of ! ( d -( : ) ) cosets of J 1• 

And if dis prime then it follows that Iif P1 is the direct product of two 
cyclic groups or a cyclic group according as d= 1 (mod 3) or not. 

Let X be an ideal character of IifT 1, and put 

L(s, X)= ~ X(a)Nk1Q(a)-• = ~ ann-•, 
a. n=l 

where a runs all integral ideals in / 1• Since L(s, X) has an Euler product 
expansion 

we have 

ap=O if P=2 (mod 3), 

ap=2 ifp-=l{mod3) and (:t=l, 
aP= -1 if P= 1 (mod 3) and (; t * 1. 

Therefore, 

Put q=e 2•i• for Im (T)>O. Then the corresponding form 

~ 

0(!')= ~ X(a)qN(a) = ~ anqn 
a n=l 

of L(s, X) is a cusp form of weight 1 and character ( -: 3 ) for the congru

ence subgroup I'o{33d2). Hence we can obtain that the cubic residuacity 
of dis determined by the reduction modulo 2 of the Fourier coefficients 
of the above 0. Then we set 

Problem. Express 0(T) explicitly by using the known functions and 
consider the cubic residuacity more concretely. 

Example 12• d=2. 
In this case it follows that T1=J,=P 1, and we have 
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where 1:)7=(2+,v-3). By a simple calculation, we see that 

a+bw e Pr~---->a=O and b= I (mod 6) 

and 

a+hw e p1P1+----->a=3 and h=l (mod 6), 

where w =(I+ J -3)/2. Thus we can exchange a and b for 3a and 6b + I 
respectively. And since 

N(3a+(6b+ I)w)={(6(a+h)+ 1)2+3(6b+ 1)2}/4, 

we obtain that 

B(r)= E qNC•>- E qNC•> 
01,Pf oep1Pj 

= E (- l)°'qNC8a+(6b+l)a,) 

a,beZ 

= ~ (- I)°'+bq((6a+1)•+8(6b+l)•)l4 

a,beZ 

= 7](67:')7](18r-). 

Example 13• d=3. 
In this case T1 = J1, and we have 

lrfJ,=(P1f1)

For an integral ideal a belonging to 11, we set 

a=(a) and a=(x+3y,v-3)j':., 

where x=2 (mod 3) and x=y (mod 2). 
Then, by the easy calculation we see that 

Hence we obtain 

(a) e J1 +-----> Y=O (mod 3), 

(a) e p~1~Y=l (mod 3), 

(a) e p~1+-----> y=2 (mod 3). 

for {;=e 2ri13, and hence 

8(7:')= E e;11q<x•+21v•Jt4 
3'52(3) 
3'51/(2) 

= _!_{ E e;11q<x•+21v•114+ ~ (- Iy+11e;vqcx•+2111•11•} 
2 3'52(3) xee2(3) 

II y 
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=_!_{ I; qx•/4. I; 'Yq27y2/4+ I; (-l)xqx'/4. I; (-l)Y,Yq27y2/4} 
2 xee2(3} y xee2(3} y 

1 = 8{ (Og( -r /2) -8,(9-r /2) )(38,(243-r /2) -8,(27-r/2)) 

+(8 0(-r/2)-eo(9-r/2))(38o(243-r/2)-8o(27-r/2))} 

= ! {(Oa(2-r)-0a(l8-r))(30,(486-r)-Oa(54-r)) 

+ (Oz(2-r )-Oz(l 8-r))(30z( 486-r )-Oz(54-r))}, 

Oo(-r)= I; (-I)mqm•12, Oh)= I; qm•12 and 
mEZ mEZ 

Oz(-r)= I; q<m+112)•;2_ 
mEZ 

Moreover we can obtain other expression as below: 

and 

0(-r) = 1}( 6-r )21)(9-r )1)(36-r )1)(27-r )7)(108-r }17(162-r )2 

1)(3-r )1)(12-r )1)(18-r )1)( 54-r )11(8 l -r )11(324-r) 

1)(12-r )11(18-r )211( 54-r )2r;(324-r) 
1)( 6-r )11(36-r )1)( 108-r )11(162-r) 

509 

0(,H'"'[ n6r\O) ·O"'[ ~ ](s,i,I ! )+o'"[ n3,\0) O'"[i]( 21,1 ; ) 

- ; \o"' [i](; r\O )-0<•'[ ~ ](2; ,1 ! ) 

+B"H ](; ·I ; )-0'''[ ~ ](2; ·I ! ) l· 
where 

e<n)[: ]c-r I z) = :z::; e"in{<m+a/n)'r+2(m+a/n)•,i. 

Q mEZ 

Example 2. f(x)=4x'-4x 2+ 1. 

E2.1. We put 
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00 

r;{t-)211(11-r-)2 = I; b(n )q ", 
n=l 

By the Euler pentagonal number theorem, we have 

00 I: b(n)qn= I: q{(6n+l)'+l1(6v+l)2}/12 (mod 2). 
n=l u, vez 

Let B(n) be the number of solutions (u, v) of 

(6u+ 1)2+ 11(6v+ 1)2 = 12n. 

when n is a prime p=2, 6, 7, 8, 10 (mod 11), we see that B(p)=O. For 
the remaining cases, we have the following 

Lemma. Let p be a prime such that p= 1, 3, 5, 9 (mod 11). Then 
either p=x 2 +1ly 2 or p=3u 2 +2uv+4v2, and two cases are mutually ex
clusive, namely, either p or 3p is of the form x2+ Ily 2 for some integers x 
and y. Moreover, the following assertions hold: 

( i) B(p)=2 and u+v is even if p=x 2 + Ily 2 ; 

(ii) B(p)= 1 and u+v is odd if 3p=X 2 + Il Y2• 

Proof The first half. Since ( -11 / p) = 1, we have 

p=a 2 +ah+3b 2 

for some integers a and b. If b is even, then 

(x,y e Z). 

For b odd, 

( a ) 2 ( a )2 3p= 3b+2 +11 2 . (a: even) 

or 

3p=(3b- a;b )2+11( a;b r (a: odd), 

and hence 3p=X 2+ 11 Y2 for some integers X and Y. Since matrices 

(6 11) and (i }) are not equivalent, the two cases are mutually exclusive. 

The latter half. Put 
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D(p)={(s, t)js 2+1lt 2=4p, s+t=2 (mod 12)}. 

Then we see at once that B(p)=#D(p). If p=x 2 +1Iy2, then there are 
four solutions of the equation s2 +1lt 2 =4p. Moreover, s+t=2 (mod 4) 
and s+t:;E0(mod3). Therefore #D(p)=2. If 3p=X 2 +11Y2, then 
X= Y (mod 3), X=;E Y (mod 2) and 

4p=( x+3llyr +11( x;y r 
Hence there is the only solution of s 2 + llt 2 =4p such that s+t=2 (mod 4) 
and s+t=2 (mod 3). Therefore #D(p)= 1. Hence we have 

{
2, 

B(p)= 
1, 

if p=x 2 + lly2, 

if 3p=X 2 + 11 Y2. 

Next it is obvious that 

p=(3u 2+u)+ 11(3v2 +v)+ 1 

=( u+2llv +1 r +11( v;u r 
Therefore, if u + v is even then 

(x, y E Z). 

On the other hand, 

3p=3(3u 2+u)+33(3v 2 +v)+3 

=( -5u+~lv+ll r+ll( u+~+l r 
Therefore, if u+v is odd then 3p=X 2 + 11 Y2 (X, Ye Z). 

Let E be the elliptic curve over Q defined by 

Y2 =f(x), 

which is derived from Tate's form y 2 +y=x 8 -x 2• Let p be a good prime 
for E and EP denote the reduction modulo p of E which is an elliptic curve 
over Fp- It is a special (proved) case of the Taniyama-Weil conjecture 
that the number NP of FP-rational points of Ev is given by 

Then it is clear that (1) NP is even if f(x) is irreducible (mod p), (2) NP is 
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odd if f(x) has exactly one or three linear factors (mod p). Therefore we 
have the following ((7)) 

Theorem 1.2. Let p be any odd prime, except 11 and put fp(x) = f(x) 
modp. Thenfp(x) can factor over FP in one of three ways: 

( i ) exactly one linear factor if ( -pl l ) = -1 ; 

(ii) exactly 3 linear factors if ( -pl l ) = 1 and p = x2 + I Iy 2(x, y e Z); 

(iii) no linear factor if ( -pl l ) = 1 and 3p = X 2 + 11 Y2 (X, Ye Z ). 

Corollary. Spl{4x 3 -4x 2 +1} 

={Pl(-pll )=l,p=xz+11y2} 

={PJ(-pll )=I, b(p)=O (mod2)}. 

E.2.2. We start with 
00 

17(21:)1)(221:-)=q fl (I -q2n)(l -q22n) 
n=l 

= q I:; (- l)u+vq(8u•+u)+11(3v•+v) 
u,vez 

= I:; (-l)u+vq{(6u+1)•+11(6v+1J•)/12. 

u,vEZ 

= I:; c(n)qn, 
n=l 

where q=e 2st '. Then, by Lemma, it is immediate that 

0, if ( -pll )= -I, 

( ) 2 "f ( -11) cp= , 1 -p- =landp=x 2 +1ly 2 (x,yeZ), 

-1, if(-) 1 )=I and 3p=X 2 +1IY 2 (X,Ye Z). 

We can now state 

Theorem 1.3 ([21]). Let p be any odd prime, except I I. Then we 
have the following arithmetic congruence relation 
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~{x E FP J 4x3-4x 2 + I =0}=c(p)-( -pll )=c(p)2+ I. 

Proof In place off(x)=4x 3-4x 2 +1, we shall consider 

( 1-x) h(x)=2f - 2- =x 3 -x 2 -x-l. 

The polynomial h(x) has discriminant -44. Let hp(x) be a reduction 
modulo p of h(x) and let K1i be a splitting field of hp(x) over the field FP. 
Then it can easily be seen that 

(-11) -p- =-l~[K1i: Fp]=2 

-hp(x) has exactly one linear factor over FP. 

Next we consider the case of ( -pl l ) = 1. Let L1i be a splitting field of 

h(x) over Q. Put k = Q( ,/ -11 ), and observe that L1i is an abelian exten
sion over k of degree 3. Considering L1i as a class field of k, we denote 
by Hits corresponding class group and by f a conductor of H. Since 2 
is only ramified in L1i, we thus obtain/=(2). Hence 

H={(a): ideals in kJa:=l (mod2)}. 

By the assumption ( -pl l ) = 1, we also have 

P=ti.P ink, 

where ti denotes a prime ideal in k and ,p a conjugate of ti; and moreover 

ti e H -ti splits completely in L1i. 

Now we put ti=(n-) with n-=a+bill, where ill=(-1 +,/-11)/2, a and b 
are rational integers. Then we see from the above result that 

tie H-n-= 1 (mod 2) 

-<---+b=O (mod 2) 

-<---+p=N(n-)=x 2 + lly 2 (x, y E Z) 

<---+ ti splits completely in L1i 

-<---+h(x) has exactly 3 linear factors (mod ti) 

-<---+hp(x) has exactly 3 linear factors over FP. 



514 T. Hiramatsu 

Finally, we suppose bis an odd integer in the expression p=N(ir:)=a 2 + 
ab+ 3b2• Then, 3p = X 2 + 11 Y2 for some integers X and Y, and hence 

3p=X 2 + 11 Y2~hp(x) has no linear factor over FP. 

Corollary. Spl{4x3 -4x 2 +l}={plc(p)=2,p=;i:2, 11}. 

Remark 1. Let 

(a, b, c E Z) 

be an irreducible polynomial whose splitting field K1 is a Galois extension 
over Q with Gal (K1/Q)~S 3 and contains an imaginary quadratic field k. 
Let L(s, p) be the Artin L-function associated with the representation 

with conductor N. Then there exists normalized new form F(z) on I'o(N) 
of weight 1 and character det p. Now, bringing two objects E2.l and 
E.2.2 into unity, Koike obtained the following arithmetic congruence 
relation for f(x) ([38]): 

Theorem. Let M be the product of all primes which appear in a, band 
c and let p be any prime such that p ,t MN. Then we have 

where -D denotes the discriminant of k and a(p) denotes the pth Fourier 
coefficient of F(z): 

00 

F(z)= I: a(n)e2~tn•_ 
n=l 

Corollary. Let p be any prime such that p ,t / MN. then 

Spl {f(x)}={p: prime I a(p)=2} 

up to finite set of primes. 

Example 3. f(x)=x 4 -2x 4+2 
First let us recall some known results which appeared in Smith's 

Number Theory Report. 1J 

1> H.J. S. Smith: Report on the theory of numbers VI, Reports of the British 
Association for 1865, pp. 322-375, §128: Theorems of Jacobi on Simultaneous 
Quadratic Forms. 
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7](8r)7](16r)= I; (- l)bq(4a+i)•+ab• 
a,bEZ 

= I: (-l)a+fiq(4a+1)2+16fi', 
a,fiEZ 

515 

(ii) Let d(n) be the nth Fourier coefficient of 7J(8)7](16r) at oo. Then 
d(n) is multiplicative and has the following properties: 

(1) d(p)=2.s(-l)<P- 1>t5 if p= 1 (mod 8), here .s:=2<P-1>t4 (mod p); 
(2) d(p 2")=(-W if P=3 (mod 8); 
(3) d(p 2") = 1 if p= 5, 7 (mod 8). 

The result (ii) is the first instance of an explicit computation of the Fourier 
coefficients of a cusp form of weight 1 which is of interest from the point 
of view of history. Let k be an imaginary quadratic field, say k=Q(../ -p) 
with a prime number p= 1 (mod 8), and let h be the class number of k. 
We put 

Then it is easy to see that 

b=O (mod 2)~a+f3=0 (mod 2) 

~( ~4t=l 

~h=O{mod 8), 

where (pt denotes the octic residue symbol modulo p. The identity (i) 

gives a generalization of the above equivalence. 
We can now state 

Theorem 1.4 ([41]). Let p be any odd prime. Then we have the fol
lowing arithmetic congruence relation 

#{x e FP I x'-2x 2 +2=0}= 1 +( ~ 1 )+d(p). 

Corollary. Spl {x4-2x 2 +2}={p IP= 1 (mod 8), d(p)=2}. 

Remark 2. The function 7](6r)7J(18r), 7](2r)7](22r) and 7J(8r)7](16r) are 
cusp forms of weight 1 on I'o(108), I'o(44) and I'o(l28) respectively. Also 
Tunell ([55]) proved that 7J(8r)7J(16r) is the unique normalized newform of 
weight 1, level 128 and character X_2 corresponding to Q(../-2). A. Weil 
characterized the Dirichlet series corresponding to modular forms for 
I'o(N) by functional equations for many associated Dirichlet series ([57]). 
Its Fourier coefficients are effective to describe the set Spl {f}. 
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Remark 3. Let TI be the set of all prime numbers and Tc TI be 
any subset. For any real x> 1, we put 

a(x, T)= Card {p e T \p<x}. 
Card {p E TI \p <x} 

If Tis a set of primes such that lim.,,_00 o(x, T)=o(T)<oo, then T has 
density o(T). We have now the following theorem. 

Tchebotarev Density Theorem. Let f(x) be an irreducible polynomial 
in Z[x] with Galois group G, and let C be a fixed conjugacy class of elements 
in G. Let S be the set of primes p whose Artin symbol CP equals to C. 
Then S has a density, and 

o(S)= Card (C) . 
Card(G) 

In particular, if C={l}, then S=Spl {f} and o(S)= I/Card (G). If 
f(x)=x 5 -x-l, then the Galois group of f(x) is the symmetric group S5• 

Therefore f(x) is one of non-solvable polynomials. What is a rule to 
determine the set Spl { x5 - x - l}? Wyman ([58]) discussed the relative size 

. of Spl{x 5 -x-l}. 

§ 1.2. The Langlands conjecture and Spl {/} 

Suppose F is a number field and K is a finite Galois extension of F 
with Galois group G=Gal (K/F). Let 

a: G~GL(n, C) 

be an n-dimensional representation of G. For each place v of F let av 
denote the restriction of a to the decomposition group of G at v. The 
Artin L-function attached to a is given by the following 

L(s, a)= TI L(s, a0 ) 

V 

extending over all the places of F. If v is unramified in K, and c. denotes 
a Frobenius element over v, then 

L(s, av)=[det (J-a(C.)N;;-')]- 1• 

For each place v of F let Fv denote the completion of Fat v. Let 
AF denote the adele ring of F and GA the adele ring 

GL(n, A)= TI GL(n, F.) (a restricted direct product). 
V 
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Let 11: be any irreducible unitary representation of GA- If 11: can be realized 
by right translation operators in the space of automorphic (resp. cuspidal 
automorphic) forms on GL(n), we call 11: an automorphic (resp. cuspidal) 
representation of GL(n). Then, there is associated to 11: a family of local 
representations 1Cv which is uniquely determined by 11: and has the follow
ing properties: 

(1) 11:v is irreducible for every v; 
(2) 11:v is unramified for almost every v; 
(3) 11:=©v 11:v· 

Langlands' Reciprocity Conjecture. For each Galois representation a, 
there exists an automorphic representation 11:(a) of GL(n, AF) such that 
L(s, a)=L(s, 11:(a)). Moreover, if a is irreducible and non-trivial, then 11:(a) 
is cuspidal. 

Example 1. n=2 and F=Q. Suppose that 11:1 =© 11:P is generated 
by the classical modular form 

f(z) = I; a(n)e2,inz 
n=l 

of weight k. The decomposition 11: 1 = © 11:P corresponds to the fact that f 
is an eigenfunction for all Hecke operators TP. The unramified represen
tation 11:P then corresponds to the conjugacy class 

A =(av 0) 
p O /3p 

such that det (Av)= 1 and tr (Ap)=p-<k- 1)12aP. In this case, Langlands' 
reciprocity conjecture can be shown to be equivalent to Artin's conjecture 
for L(s, a). Let Q denote an algebraic closure of Q and let a be an 
irreducible 2-dimensional representation of Gal (Q / Q) taking complex 

conjugation to (6 _ ~)-Then the hypothetical representation 1e(a) corre

sponds to a cusp form of weight 1. Deligne and Serre ([8]) proved that 
all forms of weight l are so obtained (cf. § 4.1). 

Suppose that F = Q and we think of K as the splitting field of some 
monic polynomial/(x) with integer coefficients. For almost all primes p, 
we let CP denote the Frobenius automorphism in G=Gal (K/Q). Recall 
that the prime p splits completely in Kif and only if CP=Id., namely, fp(x) 
splits into linear factors. Let Spl (K) denote the set of primes p which 
split completely in K. Given a Galois extension K of Q as above, there 
exists a Galois representation 

a: Gal (Q/ Q)-------+GL(n, C) 
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with the property that Gal (Q/K) is the kernel of a. Thus we obtain a 
faithful representation, still denoted 

a: Gal (K/Q)~GL(n, C), 

to which we can associate the Artin L-function L(s, a). Then it is clear 
that 

Spl (K) = {p I a( Cp) = I}. 

Therefore, under the Langlands reciprocity conjecture, there exists an 
automorphic representation n=® "P of GL(n) such that A'P=a(Cp) for 
almost all p. In particular, 

Spl (K)={P I Ap(n(a))=l}. 

Consequently, Langlands' program reduces the problem of Spl (K) to the 
study of automorphic representations of GA. 

Example 2. n=2. Langlands' program brings the following: 

Spl {f}={p I p,j' D1, a(p)=2}, 

where DI denotes the discriminant off, ;r(a)=;rf. and a(p) the pth Fourier 
coefficient of a cusp form f. of weight l : 

~ 

f.(z)= I; a(n)eMn•. 
n=l 

Chapter 2. Hilbert Class Fields over Imaginary Quadratic Fields 

Let K be an imaginary quadratic field, say K = Q( ../ -q) with a prime 
number q= -1 mod 8, and let h be the class number of K. By a classical 
theory of complex multiplication, the Hilbert class field of L of K can be 
generated by any one of the class invariants over K, which is necessarily 
an algebraic integer, and a defining equation of which is denoted by 
!P(x)=O. The main purpose of this chapter is to establish the following 
theorem concerning the arithmetic congruence relation for !P(x) ([24)): 

Theorem 2.1. Let p be any prime not dividing the discriminant Dq) of 
!P(x), and FP the p-element field. Suppose that the ideal class group of K is 
cyclic. Then we have 

#{x e FP: !P(x)=O}= !!:...a(p)2 + !!:...a(p)-1-( -q )+1-, 
6 6 2 p 2 
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where(;) denotes the Legendre symbol and a(p) denotes the pth Fourier 

coefficient of a cusp form which will be defined by (I) in Section 2.2 below. 

One notes that in case p = 2, we have ( -;, q ) = 1. 

§ 2.1. The classical theory of complex multiplication ([10], [13], [61]) 

Let A be a lattice in the complex plane C, and define 

gz(A)=60G.(A), gs(A)= 140Ge(A), 

where / denotes a positive integer and the sum is taken over all non-zero 
co in A. The torus C / A is analytically isomorphic to the elliptic curve E 
defined by 

y 2 =4x 8-gz(A)x-gs(A) 

via the Weierstrass parametrization 

C / A :i z~(l:J(z), l:J'(z)) e E, 

where 

1 { 1 1 } l:J(z) = 2 + 2: ( )2 - -2 ' z .. ,.o z- co U) 

1:)'(z)=2: ( -2 
., z-co 

Let A and M be two lattices in C. Then the two tori C / A and C / M are 
isomorphic if and only if there exists a complex number a such that 
A=aM. If this condition is satisfied, then two lattices A and Mare said 
to be linearly equivalent, and we write A - M. If so, we have a bijection 
between the set of lattices in C modulo - and the set of isomorphism 
classes of elliptic curves. Let us define an invariant j depending only on 
the isomorphism classes of elliptic curves: 

In fact, j(aA)=j(A) for all a e C. Take a basis {co1, co2} of A over the 
ring of rational integers Z such that Im (co1/co2)>0 and write A=[co1, co2]. 

Since [co1, co2]-[co 1 /co2, l], the invariant j(A) is determined by -r=co1/co2 

which is called the moduli of E. Therefore we can write the following: 
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j(A)=j(,r). The lattice A has many different pairs of generators, the most 
general pair { Ct!i, wa with r-' in the upper half-plane having the form 

{
w~ = aw1 + bw2 

W2=Cw1+dw 2 

with ( ~ ~) e SL(2, Z), the special linear group of degree 2 with coefficients 

in Z. Thus the function j(r-) is a modular function with respect to 
SL(2, Z). It is well known that 

j(./=1)= 1728, j(e 2~./-=-'If3)=0, j( oo )= oo. 

The modular functionj(r-) can be characterized by the above properties. 
Let there be given a lattice A and the elliptic curve E as described in 

the above. If for some a e C - Z, p(az) is a function on C / A, then we 
say that E admits multiplication by a; and then a and w1/w2 are in the 
same quadratic field. If E admits multiplication by a 1 and a 2, then E 
admits multiplication by a 1 ±a 2 and a 1a 2• Thus the set of all such a is an 
order in an imaginary quadratic field K. Consider the case when E admits 
multiplication by the maximal order Ox in K. Then the invariantj defines 
a function on the ideal classes k 0, k1, • • ·, kh_ 1 of K (h being the class 
number of K) and the numbers j (ki) are called 'singular values' of j. Put 

A={(~!): ad=n>O,O~b<d,(a,b,d)=l,a,b,deZ}, 

and consider the polynomial 

Fn(t)= CT (t-j(az)). 
aEA 

We may view Fn(t) as a polynomial in two independent variables t andj 
over Z, and write it as 

Let us put Hn(J)=Fn(j,j). Then Hn(j) is a polynomial in j with coef
ficients in Z, and if n is not a square, then the leading coefficient of H/j) 
is ± 1. This equation 

is called the modular equation of order n. Now we can find an element 
w in ox such that the norm of w is square-free: 
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{
1+-J=l, if K=Q(-J=I), 

W= ../- m, if K=Q(../- m) with m> 1 and square-free. 

Let, {w1, w2} be a basis of an ideal in an ideal class ki such that Im (w1/w2) 

>O. Then 

{
ww1 = aw1 +bw 2 

WWz = CW1 + dw2 

with integers a, b, o, d and the norm of w is equal to ad-be. Thus a= 

(~ t) is primitive and a-r=-r. Hencej(-r)=j(kJ is a root of the modular 

equation Hn(j)=O. Therefore we have the following 
( i) j(ki) is an algebraic integer. 

Furthermore we know 
(ii) K(j(k)) is the Hilbert class field of K. 

By the class field theory, there exists a canonical isomorphism between the 
ideal class group CK of Kand the Galois group G of K(j(kJ)/K, and we 
have the following formulas which describe how it operates on the 
generator j (ki): 

(iii) Let ak be the element of G corresponding to an ideal class k by 
the canonical isomorphism. Then 

for any k' e CK. 
(iv) For each prime ideal p of K of degree 1, we have 

where N(p) denotes the norm of p. 

( v) The invariants j(ki), i = 0, 1, · · ·, h - l, of K form a complete 
set of conjugates over the field of rational numbers Q. 

§ 2.2. Proof of Theorem 2.1 

Let q be a prime number such that q=. -1 mod 8, K=Q(../-q) and 
let h be the class number of K, which is necessarily odd. For O::;;;.i <h-l, 
we denote by Qk,(x, y) the binary quadratic form corresponding to the 
ideal class ki (k0 : principal class) in Kand put 

(Im (-r)>O), 
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where Ak.(n) is the number of integral representations of n by the form 
Qk,· Then the following lemma is classical: 

Lemma 1. 1) If p is any odd prime, except q, then we have 

-Ak 0(p) + I: Ak 1(p)= 1 + - . 1 /l,-l (-q) 
2 i=l p 

2) If we identify opposite ideal classes by each other, there remain 
only Ak 0(p), Ak,(p), · · ·, Ak,A_,,1,(p), among which there is at most one non
zero element. 

Moreover, for each ideal class kin K, we have 

Lemma 2. 1) Ain)=2#{acox: a e k- 1, N(a)=n}, 

2) 2Aimn)= I: Ak,(m)Ak,(n) if (m, n)= L 
lc1/c2=/c 

k1,k2ECx 

Let X be any character ( =/= 1) on the group C x of ideal classes and put 

A(n)= __!_ I: X(kt)Ak.(n). 
2 lc;ECK 

Then we have the following multiplicative formulas. 

( 1) 

and 

(2) 

Lemma3. 1) A(mn)=A(m)A(n)if(m,n)=l, 

2) A(p)A(p')= A(p'+ 1) + ( -;,q )A(p'- 1)for prime p( =f=q) and r?: 1, 

3) A(qn)=A(q)A(n). 

We define here two functions f and F as follows: 

f(,r:) =Oh)-Oi(t-), 

h-1 00 

F(r)= I: X(kt)(}h:) = I: A(n)e 2~J=-In', 
i=O n=l 

where Oo(r:) is the theta-function corresponding to the principal class k0• 

Thenf(r) is a normalized cusp form on the congruence subgroup I' 0(q) of 

weight 1 and character ( -;,q ), and moreover, by Lemma 3, F(,r:) is a 

normalized new form on I'o(q) of weight 1 and character (-:)(cf. [17]). 

From now on, we assume that the ideal class group C x of K is cyclic. By 
Lemma 1, we shall calculate the Fourier coefficients of J(-r:) and F(-r:). Let 
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Then we can write the function F(i-) as 

(k-1);2 2rri 
F(i-)=0h)+2 I:: cos~O;(-r), 

i~l h 

where ki=kf ( 1~ i ~ ~ (h- 1)). If ( ~q )= -1, then A.(p)=0 for all 

k E Cx. If ( ~q) = 1, then (p)=,\:lP (,\:l:f:P) in K, where,\) denotes a prime 

ideal in Kand p a conjugate of j). We denote by kµ the ideal class such 
that 1J E kµ. If kµ is ambigous, then 

A.(p)= {
4, 

0, 

if k=k;1, 

otherwise. 

If k is not ambigous, then 

if k=kµ or k=k;1, 

otherwise. 

In the casep=q, put (p)=,\) 2 (1:J=P) with 1J E kp. Then we have 

A.(p)= . {
2, if k=kµ, 

0, otherwise. 

Let a(n) be the nth coefficient of the Fourier expansion for f(i-): 

00 

f(i-) = I:: a(n)e2• ,/~n,_ 

n=l 

By the above results, we have the following formulas for a(p) and A(p). 

Lemma 4. Suppose that the ideal class group C x of K is cyclic. Then, 
for each prime p, the Fourier coefficients a(p) and A(p) are given as follows: 

a(p)= 

and 

0, if( ~q)=-1, 

2, if( ~q)=l and p=x 2 +xy+ l!q y2 (x,yeZ), 

0 or l, if ( ~q) = 1 and kµ1=k0 with (p)=,\)P, ,\)Ekµ, 

1, if p=q, 
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0, if ( -/) = -1, 

A(p)= 
2, if ( ~q) = 1 and p=x 2 +xy+ l 1q y2 (x, y E Z), 

Let 

2 cos 2zn , if ( ~q) = 1 and kv=k! 1( =t=k0) with (p)=PP, 

l:) Ekµ (1 ;:;;n;:;;(h-1)/2). 

<P(x)=O 

be the defining equation of a generating element of the Hilbert class field 
Lover the imaginary quadratic field K=Q(../-q). Then the polynomial 
<P(x) is one of the irreducible factors of the modular polynomial H/x). 
We say simply <P(x) is a modular polynomial. Now, in order to prove 
Theorem 2.1, it is enough to show that if the ideal class group CK is a 
cyclic group of order h, then 

#{x E FPl<P(x)=O} 

1, if(~q)=-1, 

h, if( ~q )=1 and p=x 2 +xy l1q y2 (x, ye Z), 

0, if( ~q )=1 and kv=t=k0 with (p)=PP, p E kv. 

We denote by H the ideal group corresponding to the Hilbert class field 
L of K: 

H={(a): principal ideals in K}. 

Case 1. ( ~ q ) = 1. Let (p) = pp in K. Then we have the follow-

ing relation: 

and 

pEH~p=(rc), rc=a+bw (w=(l+../-q)/2,a,b=>Z) 

~p=N(P)=a 2 +ah+ l+q b2 

4 
(a, b E Z), 
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+J splits completely in L~</J(x) mod p has exactly h factors. 

Therefore 

p=a 2 +ab+ l+q b2 (a, be Z)-~</J(x)modp has exactly h factors. 
4 

On the other hand, it is obvious that 

+> it H ~ +> is a product of prime ideals of degree> 1 in L 

~</J(x) modp has no linear factors in Fp[x]. 

Case 2. ( ~q ) = - 1. The polynomial </J(x) splits completely 

modulo p in oK/(p) and the field oK/(p) is a quadratic extension of FP. 
Therefore 

and deg ht<2 (i= 1, 2, · · ·, t), where each hlx) is irreducible in FPlx]. 
Since the class number h of K is odd, there exist odd numbers of i such 
that deg ht= 1. In the following, we shall show that there exists one and 
only one of each i. The dihedral group D,, has 2h elements and is gener
ated by r, s with the defining relations 

Let K0 be the maximal real subfield of L. We have the following diagram: 

L=K(j(ki)) 

K=Q(,/=q) 

Q 

Let o Ko be the ring of algebraic integers in K0• Then the ideal po Ko 

decomposes into a product of distinct prime ideals in K0 : 

where 
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Moreover, if oL is the ring of algebraic integers in L, then 

(I<l<m), 

where each \J31 is a prime ideal in oL. On the other hand, the ideal poL 
has the following decomposition via the field K: 

ITT ITTr ITTrh-i pO L = 1-'11-'1 ' ' ' 1-'1 • 

Since pf=j:11, we have also \J3f=\J$1• Similarly, \JSf=\JSi (2<l<m). How
ever, since his odd and srs=Y-1, we deduce 

ITT r's_ ITTr-' -1-- ITTr' 
-,..:,1 -1-'1 T""'l-)1, (I~i~h-1). 

Since \J31=\J3r' for some i, we have m= 1. This completes the proof of 
Theorem 2.1. 

Corollary (Higher Reciprocity Law). 

Spl{<P(x)}={PIP{D!ll, ( ~q)=l and a(p)=2}. 

§ 2.3. Schliifli's modular equation 

The problem of determining the modular polynomial Fn(t, j) ex
plicitly for an arbitrary order n was treated by N. Yui ([59]). But, even 
forn=2, Fz(t,j) has an astronomically long form. We shall use here the 
Schliifli modular function ho{-t:) in place of j(r): 

ho(r)=e-nv'-=i/24 7j((r+l)/2) =e-•J-=i,/24 fr (l+e<2n-l)n./=1,), 
7J(r) n=l 

where 'f/ is the Dedekind eta function. This function ho(r) is the modular 
function for the principal congruence subgroup of level 48 and has the 
following properties: 

Lemma 5 ([56]). Let q be any prime number such that q= -1 (mod 8). 
Then 

1) -v'lho(M) e Q(j(,v -q)), 
2) -V 1 / 2 ho( ,v -q) is a unit of an algebraic number field. 

Put 
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1 ;-
X= ,./Zho(v -q). 

Then, by Lemma 5, 1 ), we have 

Q(x)=QU(J-q)). 

527 

The defining equation of x is called the Schlii,fli modular equation of order 
q ([56], §§ 73-75 and § 131). 

Example ([56]). n=47. Schlafli's modular equation of order 47 is 
given by 

§ 2.4. The case of q = 41 

Let oK be the principal order of the imaginary quadratic field K= 

Q(J-47) and put oK=[l, w] with w=(l +J-47)/2. The field K has 
class number 5. Let 

Qo(x, y)=x 2 +xy+ 12y2, 

Qi(x, y)=7x 2 +3xy+2y2, 

Qlx, y)=3x 2 -xy+4y2, 

be the binary quadratic forms corresponding to the ideals oK, [7, 1 +w], 
[3, w], respectively, and let 

be the theta-functions belonging to the above binary quadratic forms, 
respectively, where AQ,(n) denotes the number of integral representations 
of n by the form Qi. By Lemma 1, we have easily the following table: 

I 
AQ.(p) 

I 
AQ,(p) AQ.(p) 

( -p47 )= -1 0 0 0 

p=x 2 +47y 2 4 0 0 

(-p47 )=1 7p=x 2 +46y 2 0 2 0 

3p=x 2 +47y 2 0 0 2 
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For p=2, 47, we have 

AQ0(2) = AQ.(2) = 0, AQ,(2) = 2; 

AQ0(47)=2, AQ,(47)=AQ2(47)=0. 

Now we define two functions as follows: 

Fh)=0o{T:)-0i(,r:)= I; a(n)e2~.;-:::inr, 
n=l 

Fkr:) =0o{-r:)-0kr:). 

Then Fh) and Fk,:) are normalized cusp forms on the group I'o(47) of 

weight 1 and character ( -p47 )· Put e0= ~ (I +Js) and define 

Fa(r)=e 0F1(r)+e 0Flr)=F1(r)+e 0r;(r)r;(47r) 
00 

= I; A(n)e2~-1-:::in,. 
n=l 

Then the function Fs(r) is also a normalized cusp form of weight 1 and 

character ( -/ 7 ) on the group I'o(47), and the Fourier coefficient A(n) 

is multiplicative. The Fourier coefficients of Fh) and Fh) are obtained 
by the above table as follow, respectively. For each prime p( =!=-2, 47), we 
have 

0 if(-/ 7 )=-l, 

2 if (-p 47 )=1 and p=x 2 +47y 2 (x, ye Z), 
( 3) a(p)= 

0 if(-/ 7 )=1 and 3p=x 2 +47y 2 (x, ye Z), 

-1 if(-/ 7 )=1 and 7p=x 2 +47y 2 (x, ye Z), 

and 

0 'f ( _47) 1 -p- =-1, 

2 if (-/ 7 )=1 and p=x 2 +47y 2 (x, ye Z), 
(4) A(p)= 

-eo if(-/ 7 )=1 and 3p=x 2 +47y 2 (x, ye Z), 

-eo if (-p 47 )=1 and 7p=x 2 +47y 2 (x, ye Z). 
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Furthermore we have a(2)= -1, a(47)=A(47)= 1 and A(2)= -e 0• 

Put ho( -47) = ,/2 x. Then the class invariant x satisfies the follow
ing Schlafli's modular equation of order 47 (cf. § 2.3): 

( 5) fw(x)=x 5 -X 3 -2x 2 -2x-l =0 (D1w=47 2). 

Let L be the Hilbert class field over K. Then the field L is a splitting field 
for the polynomial 

( 6) fs(x)=x 5 -2x 4 +2x 3 -3x 2 -3x+6x-5 (D 1 H= 1 !2-472), 

and the Galois group G(L/Q) is equal to the dihedral group D5 ([14]), [15]). 
Put 

_ 1(47-5,/5+ -5+,/5 ,j n-) 1/o - 2 2 2 4 7 ,y 5 c:0 

and 

9353 + 422,/5 
Wo=---7--~ 715 + 325,/5 ,j ,/5 

4 47 5 c:0 , 

then from Hasse's result ([14]) we deduce that 

0H=__!_(.z!Wo - 5 1 - f wo +5 1/o +2) 
5 f W0 r;o .V Wo 

generates L/K. Consider the following equation ((1 l], p. 492): 

( 7) fAx)=x 5 -x 4 +x 3 +x 2 -2x+ 1 =0. 

It is known that there are two relations 

( 8) {
0s=50~-50w-2, 

0w= -{11,,-20F+ 1 

for the real roots Ow, OH and OF of (5), (6) and (7), respectively ([60]). Put 

f M(x) = X5 -2x 4 + 3x3 + x2 -x -1. 

The discriminant of our polynomial JM(x) is 52 • 472• By a simple calcu
lation, we can verify the following remarkable relation: 

( 9) 

where a and b denote any constants. If 0 is the real root of the equation 
JM(x)=0, then we obtain the following relations by making use of 
Newton's method: 
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0H=20t+0~+0}+20F-2, (by (8)) 

0 = -20}+0~-0}-30F+3, 

eF = - 1 (0t+01-+s01,+0H-2), 
11 

e = - 1-(0t-+01-+set-0H+9), 
11 

0F = _!__(04 -50 3 +80 2 -80-2), 
5 

OH= _!__(-0 4 +50 3 -80 2 +30+ 7). 
5 

Now we consider fAx) modp for any odd prime number p(*-47). 
Because of (9) and (10), the reduced polynomial fF mod p (p * 5, 11) can 
factor over the p-element field FP in one of three ways: 

1) Five linear factors, 
2) (linear) (Quadratic) (Quadratic). 
3) Quintic. 

The reduced polynomials fF mod 5 and fF mod 11 have the above type 2). 
When we combine these with (3), we are led to the another proof of the 
arithmetic congruence relation in the case of q=47. 

Theorem 2.2. Let p be any prime, except 47, and FP the field of p ele
ments. Let a(n) be the nth coefficient of the expansion 

Fi(T)= l::; a(n)e 2•.J~n,_ 
n=l 

Then the following congruence relation for fF(x) holds: 

#{x e Fp lfp(X)=O}= ~-a(p/ + 2-a(p) _ _!__( - 47 ) +_!__, 
6 6 2 p 2 

( -47) wherefor p=2, we understand - 2- =1. 

Proof In order to prove this, it is enough to show the following 
fact. Let LP be a splitting field of fF'(x) mod p over the field FP. Then it 
can easily be seen that 

( -47) -p- = -l~[Lp: Fp]=2 

~fF modp has exactly one linear factor over Fv 

~rF' modp can factor in type 2). 



Automorphic Forms of Weight 1 531 

Remark 1. Let p be a prime, except 5, 11, 47. Then, by the relation 
(10), IF modp, la modp, lw modp and fM modp can factor over FP in 
the same way. Using Fourier coefficients of Fz(r:), we have also the same 
arithmetic congruence relation for/F(x). On the other hand, using Fourier 
coefficients A(p) of Fh) (cf. (4)), we have the following relation: 

Mx e FPIJF(x)=0}=A(p)2+A(p)-( -p47 ). 

Finally the following higher reciprocity law for the Fricke polynomial 
fix) holds: 

Corollary. Spl {JF(x)}={P I (-47/p)= 1 and a(p)=2}. 

Remark 2. The dihedral group Dh has (h+3)/2 conjugate classes: 

{l}, {srill:'.Si<h}, {rJ, r-J}, j=l,2, · · ·, (h-1)/2. 

Thus we have (h-1)/2 irreducible representations of degree 2. Among 
them, here we consider the representation p given by the following 

p(r)=(~ ~), p(s)=(~ ~), 

where s=e 2~-1-=I1h. The corresponding character is given by the following 

{ 1} {rJ, r-J} {sri 11 <i<h} 

2 . 
p 2 2cos __!!l_ 0 

h 

. h-l 
j=l,2, · · ·, --. 

2 

Let <fi(s) be the Dirichlet series associated to the new form F(r) (cf. 
(2) in § 2.1) via the Mellin transform. Since the function F(r) is an eigen
function of all the Hecke operators Tv, Uv, the Dirichlet series ¢(s) has the 
following Euler product: 

<fi(s)= f; A(n)n-• = (l-A(q)q-•)- 1 CT (t -A(p)p-• + ( -q )p-2•)-1 
-1 Wq p 

=<1-q-•tl n <1-r2·t1 n <1-2r· +r2•)-1 
c-pq)=-l pEP1 

X CT 1+2cos _n_p-• +p- 2• , ( 2 n )- 1 

pEP2 h 

where 
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P 1={p[( ~q )=1,p=x 2 +xy+ l!q y2}, 

and 

P2= {pl ( ~q) = 1, p=jJP, ,p:;t=principal, ,p e kn} U {2}. 

Let L be the Hilbert class field of the imaginary quadratic field K, 
and assume that the Galois group G(L/ K) is a cyclic group of order h. 
Then L/Q is a non-abelian Galois extension with D" as Galois group. Let 
p be any prime number and a P a Frobenius map of p in L, and put 

1 
AP=- ~ p(apa), 

e aET 

where Tis the inertia group of p and # T = e. Then, for the Galois exten
sion L/Q, the Artin L-function is defined by 

L(s,p,L/Q)= Q det ((~ ~)-ApN(p)-•r\ Re(s)>l. 

A prime p factorizes in L in one of the following ways: 

Case I. ( ~q) = -1. Decomposition field= K0, aP = s, AP= 

(~ b). 
Case 2. p e P1. Decomposition field=L, aP= 1, AP= (6 ~). 
Case 3. p e P2• Decomposition field=K. If (p)=pp with ,p e k:;;1, 

then aP=rn and AP=(tn ~n)· 
Case 4. p=q. Ramification exponent=2. 

aq= 1, Aq=-(p(l)+p(s))=- . 1 1 (1 1) 
2 2 1 1 

In order to have the explicit form of L (s, p, L/Q), we use the above 
results and obtain 

L(s, p, L/Q) 

=Q detj((~ ~)-APN(p)-•r 1 

=<let((~ ~)-q-· ~ G ~)rlc~8~-1 det ((~ ~)-r·(~ ~)rl 
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X f1 <let ((1 0)-p-•(1 0))-i f1 <let ((1 0)-p-•(sn O ))- 1
• 

pEP1 0 1 Q 1 pEP2 Q 1 Q f;n 

It is clear that above Euler product, compared with the Euler product of 
<jJ(s), proves the following: 

L(s, p, LJQ)=<jJ(s). 

This is a constructive version for the dihedral case of the Deligne-Serre 
theorem ([8)). 

Chapter 3. Indefinite modular forms 

As show in Chapters 1 and 2, there are deep relations between the 
class fields over imaginary quadratic fields and cusp forms of weight 1. 
In the first half of this chapter, we study a similar problem for class fields 
over real quadratic field which satisfies a condition due to Shintani ([50]). 
In Section 3.1 we recall the definition of Hecke's indefinite modular forms 
of weight 1 which are associated to real quadratic fields ([16], [17], [ 40]). 
In Section 3.2 we summarize certain results of Shintani for the real quad
ratic problem which is transferable to the imaginary quadratic situation 
([50]). In Section 3.3 we apply the result of Shintani to our problem and 
obtain the three representations for some dihedral cusp forms of weight 1 
by positive definite theta -series and indefinite theta series. Kac and 
Peterson in [35] gave many examples of new identities for cusp forms of 
weight 1 which arise from the Dedekind eta function. In Section 3.4 we 
shall reconstruct these examples from our point of view, by using the 
results of Section 3.3. In Section 3.5 we establish the higher reciprocity 
law for a defining equation of ray class fields over some real quadratic 
fields. 

The second half of this chapter will be devoted to study a relation 
between quartic residuacity and Fourier coefficients of cusp forms of 
weight 1 ([23]). Let m be a positive square free integer and sm denote the 
fundamental unit of Q(-V m). We consider only those m for which s"' has 

norm + 1. If l is an odd prime such that (7) = (st)= I, we can ask 

for the value of the quartic residue symbol (st) 
4

• Let K be the Galois 

extension of degree 16 over Q generated by ./=-I and ,ti~. Then its 
Galois group G(K/Q) has just two irreducible representations of degree 2. 
We can define a cusp form of weight I by these representations, which 
will be denoted by 6(1:; K) and we shall show that 6(1:; K) has three ex
pressions by definite and indefinite theta series and that the value of the 
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symbol ( c7) 
4 

is expressed by the /th Fourier coefficient of 6(-r; K). These 

results offer us new criterions for cm to be a quartic residue modulo /. 

§ 3.1. Hecke's indefinite modular forms of weight 1 

Let Fbe a real quadratic field with discriminant D, and Op the ring 
of all integers in F. Let Q be a natural number and denote by U0 the 
group of totally positive unit c of Op such that c= 1 mod Q./ D. Let a be 
an integral ideal of Op, and put \N(a)\=A. Then the Hecke modular 
form for the ideal a is defined by 

,D.(r; p, a, Q./~= :z=; (sgn µ)qNCµ)/AQn, 
µEop 

µesp mod aQ ./I, 
u E o p/uo, N(µ).t">O 

where K= ± 1, pea, Im (r-)>O and q=e 2"t<• This is a holomorphic func
tion of r- and satisfies 

,[)±( ar+b ; p, a, Q./D) 
cr+d 

= ( \~\ )e"'z.iabpp'/AQD(cr + d),[)±(r; ap, a, Q./D) 

for all (~ ~) e I'o(QD) ([16], [17]).1l Therefore ,[)± is the cusp form of 

weight 1 for a certain congruence subgroup of level QD under the condi
tion ,[) ± =t 0. If in particular a= op, we put 

,D±(r; p, Q./D)=,D±(r; p, Op, Q./D). 

§ 3.2. Ray class fields over real quadratic fields 

Let there be given a real quadratic field Fas described in Section 3.1. 
Let f be a self conjugate integral ideal of o P which satisfies the condition: 

( 1) For any totally positive unit c of Op, s+ 1 ~ f. 
We denote by Hp(f) the narrow ray class group modulo f of F. Then, 
under the condition (1), the group Hp(f) has a character X of the following 
type: 

X((x))=sgn x or X((x))=sgn x' 

for x-1 e f, where x' denotes the conjugate of x. We denote the Hecke 
L-function of F attached to X by 

ll For a general treatment of this function via Weil representation, see [35] and 
[40]. 
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LF(s, X)= I; X(c) I; N(a)-• (Re (s)> 1). 
cEHF(f) a Ee 

aCOp 

Then the I'-factor in the functional equation of Lis, X) is of the form 

r( ~ )r( s1 I ). 

We put 

and assume that 

(2) 
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Let KF(t) denote the maximal narrow ray class field over F corre
sponding to HF(f) and a denote the Artin canonical isomorphism given 
by class field theory. Let L be the subfield of a(HAf) 0)-fixed elements of 
KF(f). Then, under the assumption (2), L is a composition of F with a 
suitable imaginary quadratic field k, and KF(f) is an abelian extension of k 
([50]). 

Therefore there exists an integral ideal c of k such that KF(f) is a class field 
over k with conductor c. Let f z be the conductor of X and X the primitive 
character of HAfx) corresponding to X. We denote by ~x one of the 
characters of the group Hie) determined by X in a natural manner. Let 
Cx be the conductor of ~x and ~x the primitive character of Hicx) corre
spondig to ~x- Then we have the following coincidence of two L-functions 
associated with the real quadratic field F and the imaginary quadratic field 
k ([50]): 

( 3) LF(s, X)=Lh, tz). 2l 

§ 3.3. Positive definite and indefinite modular forms of weight 1 

In this section we use the same symbols as in Section 3.2. We put 

2> H. Ishii proved that the coincidence (3) is equivalent to the condition (2) 
([29]). 
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and assume that K/k is a cyclic extension. We denote by {)(F/Q) and 
{)(k/Q) the different of F over Q and that of k over Q, respectively. Then 
we have the following relation between the conductor c of the cyclic ex
tension K/k and the finite part f for the conductor of the abelian extension 
K/F by Hasse's theorem: 

Lemma 1. f·{)(F/Q)=c·{)(k/Q) as ideals in L. 

Let us, temporarily, assume that K/Q is a dihedral extension. Then 
the Galois group G(K/Q) is the dihedral group D 4 of order 8 and we have 
the following diagram of fields: 

K 

I 
L 

(r2) 

(r',s> F~ E (r',s,) 

Q 
G=G(K/Q)=(r, s) 

Here E denotes the imaginary quadratic field determined by F and k. The 
conductor c of K/k is an ideal of Z by Satz 7 of Halter-Koch ([361). Now 
we put 

C=(c), CEZ. 

Since, f' = f, (f · {)(F/Q))2 is an ideal of Z, i.e., 

(f-{}(F/Q))2=(q 2 • d), 

where q is a positive integer and d is a positive square-free integer. K/k 
being a cyclic extension by assumption, we have the following by Lemma 
1. 

Lemma 2. 

where 

{
1 if d=. 3 (mod 4), 

ed,= 2 
otherwise. 
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We are going to discuss how to obtain an identity between cusp forms 
of weight 1. Take an integerµ of F such thatµ <O, µ'>O andµ= 1 mod f, 
and denote by the same letter µ the ray class modulo f represented by the 
principal ideal(µ). Then, by the condition (1), µ is an element of order 
2 of HAf), and by the condition (2), we have 

Let <µµ') be the subgroup of HF(f)0 generated by µµ' and let R be a 
complete set of representatives of HAf) 0 mod<µµ'). Since<µµ') is the 
subgroup of order 2 of HAf) 0 , we have 

HAf)=R URµ URµ' URµµ' (disjoint). 

Force HF(f), we put 

,F(s, c)= I; N(at•. 
•Ee 

QCOp 

Then it is easily checked that 

,F(s, aµ)=,F(s, aµ') 

for a e R. Let X be a character of H F(f) with conductor f( oo 1) satisfying 
the condition (1). Then the Hecke L-function of F attached to X has the 
following expression 

Let a be an element of Rand let a. be an integral ideal of a- 1• We put 

A:={a ea, ia=l mod f, a>O, a'>O}, 

A;;-={a E a,la=l mod f, a<O, a'<O} 

and 

Then it is easy to verify that 

A,={a E oFla=p. mod a,f, N(a)>O}, 

where p. denotes an element of a. such that p,= 1 mod f. Moreover, we 
have the following two bijections: 
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A; mod Ei 3 a mod Ei--.+aa;;- 1 E (J n OF 

and 

A;;-mod Ei 3 a mod Ei--.+aa;;- 1 Eaµµ' n OF, 

where 

From these correspondences, it is ea,y to see that 

(F(s, a)= :I; (N(a)/N(a.))-• 
aEAa+modEt 

and 

(F(s, aµµ')= :I; (N(a)/N(a.))-'. 
- + aEA 0 modEf 

Hence we obtain an explicit form of LF(s, X): 

LAs, X)= :I; X(a) :I; (sgn a)(N(a)/N(a.)t• 
a ER aEAumodE( 

= :I; X(a) :I; (sgn a)(N(a)/N(a.))-•, 
a ER a 

where a in the summation runs over, all integers of F such that a=.p 0 

mod a.f, a mod Ei and N(a)>O. We apply the inverse Mellin transfor
mation on the above L-function and obtain the following indefinite cusp 
form of weight 1 : 

OF(-r)= :I; X(a) :I; (sgn a)qN(a)/N(aa) 

qER a 

= :I; X(a)0(QD1-r; p., a., f), 
a ER 

0(-r; Pa, a., f)= :I; (sgn a)qN(a)/N(aa)QD,_ 

a 

In particular, if we put f 1 = vD, then the above function 0 is just the 
Hecke indefinite modular form defined in Section 3.1. 

On the other hand, since K/k is a cyclic extension, we can put 

H,o(c)/C=<J.), 

where C denotes the subgroup of Hie) corresponding to K. The generator 
}. is an element of order 4m. The restriction of the representation of 
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Gal (K/Q) induced from X to Gal (K/k) is a direct sum of two distinct 
primitive characters ~ and e of H/c)/C via the Artin map. Then we 
consider the Hecke L-function of k attached to ~: 

Lh, ~)= I; ~(a)N(ats 
aCOk 

4m-1 

= I; ~().)1 I; N(a)-s. 
j=O aEJj 

aCok 

For every oddj, the correspondence 

is bijective and ~OY=(-1) 1~(;l)C2m+lJJ_ Hence 

2m-1 

L,Js, ~) = I; ~().2) 1 I; N(ats 
j=O uEA2j 

!lCOk 

m-1 

= J~ ~(Az)J {.~; N(ats - ,e,~+2; N(ats}. 
UC Ok UC Ok 

Applying the inverse Mellin transformation on the above L-function 
L(s, ~), we have the following positive definite modular form of weight 1: 

where 

m-1 

Bir-)= I; 17(A2) 1{B2/-r)-B2,n+2lr)}, 
j~o 

8/-r)= I: qN(o) 

aE 2J 
UCOk 

It is now clear that the above results, combined with the coincidence (3) 
in Section 3.2, prove the following identity: 

Bp(-r)=B,h). 

From now on, we assume again that K/Q is a dihedral extension. 
Then m=l and 

(}F(-r)=B(QD1-r; 1, OF, f) 
=t- 1,fJ.(QD1-r; p, Q-vD), 

where K= ± 1, N(p)K>O, fp=(Q-VD) and t=[Ei: U0]. Consequently we 
have 

Theorem 3.1 ([25]). The notation and assumptions being as above, we 
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have the following identity between positive definite and indefinite cusp forms 
of weight 1: 

(4) 

Theorem 3.1 gives a number theoretic explanation of the identities 
discovered by Kac-Peterson ([35]). 

§ 3.4. Numerical examples 

In this section we shall give some numerical examples based on 
Lemma 2 and Theorem 3.1 in Section 3.3. As the method for making of 
the examples is the same for each, we shall give the details only for the 
first example. 

1. For the first example we set F=Q(../3") and f=(2../3"). The 
fundamental unit of Fis totally positive and is given by e = 2 + ../3". It is 
easy to see that e2= 1 mod f. Putµ= (7 -6../3"). Then the group HF(f) 
is an abelian group of type (2, 2): 

HF(f)={l, µ, µ', µµ'}; 

and 

Hp(f)0 ={l, µµ'}. 

Hence the field F and the conductor f satisfy the conditions (1) and (2) in 
Section 3.2. By Lemma 2 we know that k= Q(./=T) and c=(6). Further
more, since Hie) is a group of order 4, we have C={l}, and so 

Hie)=().), -<=(2+-v=-f). 

K=Q(./=T, -t/12) 
bicyclic 12 L cyclic~ --1----LT=_Q_(-l=T, '\f-3) 

F=Q(../3") k=Q(-v=-1") E=Q(\1-3) 
f=(2,/3") e=(6) g=(4'\f-3) 

Q 

In the following we shall look for the explicit forms of 0~ and OF. 
First we treat the function Oii-). It is easy to see that 

{
a e (l)~a=(a), a= 1 (mod 6), 

a e -<2 ~a=(a), a=2+3./=T (mod 6). 
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Hence, if 1X=x+3-l=Ty ((x, 3)= 1), then we have 

Therefore 

{
(IX) e (l)~x= 1 (mod 2) and Y=0 (mod 2), 

(1X) e 12 ~x=0 (mod 2) and y=l (mod 2). 

Oh·)=_!_ I; (- l)vqx•+av• 
2 x,yEZ 

(x,S) =1,x$y(mod 2) 

Next, for the function OF(r), 

{
a e (1) ~a=(1X), IX>0, 1X'>0 and 1X-l (mod 2./3), 

a e µµ'~a=(1X), IX >O, 1X'>0 and IX= -1 (mod 2./3). 

Therefore, if 1X=x+2./3 y (x= ± 1 (mod 6)), we have 

{
(IX) e (1) ~-----H= 1 (mod 3), 

(1X) e µµ'~x=-1 (mod 6). 

541 

Since 1Xe±2 =(7x±24y)+(14y±4x)./3, we have the following as a funda
mental domain: 

x>4\y\, 

so that 

Another form of OF(r) is obtained as follows. Let p be any positive 
integer in F. Then it is easy to see that 

OF(r)= I; (sgn [3)qN<PJtNCp), 
p 

where f3 in the sum runs over all integers of F such thet f3=P mod fp, 
[3modE 1 and N([3)N(p)>0. Now we set p=l+./3. Put 

{
x+y./3, if [3>0, 

/3= 
x-y./3, if [3<0 

•> Hecke also found this expression ([16], pp. 425-426). 
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for rational integers x and y. Then, for the case [3>0, 

y>O, x:== 1 (mod 6) and x:==y (mod 4). 

Therefore we can put 

x=6l+l, y=2k+l with k:==l(mod2) 

for rational integers k and!. Since [3e±2 =(7x±l2y)+(7y+4x)./3, we 
have 7y±4x>y, i.e., 3y:2::2\x\; and hence k>2\l\. For the case [3<0, 
we have y>O, x:== 1 (mod 6) and x:==y+2 (mod 4). Hence we put 

x=6l+l, y=2k+l with k:;i:l(mod2) 

for rational integers k and !. Since [3e±2 =(7x+ l2y)+(- 7y±4x)./3, 
we also have the following as a fundamental domain: k>2\l\. Therefore 
we obtain the following expression of 0 F(r): 

OF(r)= I: (-l)k+iqcsc2k+1)•-ca1+1)•ii2.4J 

k,!EZ 
k.;:21i1 

For comparison, we write down the expression of the above right-hand 
side by Hecke's modular form: 

,9_(12!'; 1 +./3, (1 +./3), v'l2)= I: (-l)k+lq(3(2k+l)2-(6L+1)2)/2. 

k,!EZ 
k.;:2111 

By combining the above results and the identity (4), we have the following 
remarkable identities: 

= I: (- l)k+!q(3(2k+1)2-(6!+1)')/2. 

k,!EZ 
k.l;21ll 

1 
=OiT)=-

2 I: 
x,yEZ 

(x,3) =1,x:=y(mod 2) 

where 7)(!') is Dedekind's eta function. In exactly the same way as for 
OiT), we obtain 

where 

OE(!')= I: (- I)k+lq(6k+l)2+12l' 

k,LEZ 

<>Cf.Rogers ([45), p.323). 
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Oo(-r:)= ~ (- l)me~'m"'. 
mEZ 

2. We set F=Q(,/2) and f=(4). The fundamental unit of Fis 
given bys= 1 +fl and satisfies N(s)= -1 and s4= 1 mod f. Thus, in 
the same way as fot the first example, we have 

{
k =Q(../-2), C=(4), 

E=Q(,vCT), g=(4(1+-i=T)), 

K=k(../7°); 

and obtain the following identities: 

~ ( -1 )qx•-s2y• = ~ (-l)nq(2n+IJ•-32m• 
x,yEZ . X m,nEZ 

x.:61yl, (x,2) =1 n2:31ml 

=0k(r)= ~ (-l)Yqx•+By• 
x,yEZ 

X=l(mod 4) 

= ~ (-l)nq(4m+l)•+Bn•=7](8r-)7J(l6r) 
m,nEZ 

=0E(1:)= ~ (-l)m+nq(4m+l)•+l6n2_ 

3. 

m,neZ 

F=Q(../5), 

k =Q(../-5), 

E=Q(,vCT), 

K=k(../7). 

- . - 1 + ../5 ( - 6- d • f-(4),s----,Ns)--1,s=lmo 1, 

2 

C=(2), 

g=(lO), 

OF(1:) = _!_,9 +(41:; (5+../5)/2, 4../5) 
2 

_ ~ (- l)Y+(x-l)f2qx•-2oy• 
:x:,yEZ 

x2;61yl ,(z,2) =1 

= ~ (-llq(5(2k+1)•-(2!+1)2)/4 
k,!EZ 
2k.:;l.:;0 

The second expression of O;t(1:) is obtained as follows: It is clear 
that H;t(c) is a cyclic group of order 4 and 

H/c)=().), A=[3, 1+../-5]. 
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By the result in Section 3.3., we have also 

(5) Lh, ~)= I; N(a)-•- I; N(a)-•. 
aE(l) ae,• 
aCOk aC07i: 

In the following we shall calculate the right-hand side of this equality. We 
can put 

a=(µ), µ=a+b./ -5 (a, be Z). 

Thus 

{
a e (1)~µ= 1 (mod 2) ~a= l and b=0 (mod 2), 

a e 42 ~µ=2-,/5 (mod 2) ~a=0 and b_ l (mod 2). 

The contribution of ideals a divided by l to the first sum in (5) cancels 
that to the second sum in (5). Therefore we may consider the ideals a 
with (a, A)= 1 in the above sum (5). Hence, if we put µ=(2a+ 1) + 
2b./-5 (a, be Z), we have 2(a-b)+ 1=0 (mod 3). On the other hand, 

(1-./-5)µ=(2a+ IOb+ 1)+(2(b-a)-1).,/ -5. 

Put s=b-a and t=a+Sb, then t=Ss (mod 6). Therefore we puts= 
u+8m and t=v+6n. Then V=5u (mod 6) (0<u, u::;;;5). Hence 

2(b-a)=l(mod3) 2u-l=0(mod3) u=2,5. 

Therefore 

(u, v)=(0, 0), (1, 5), (3, 3) and (4, 2); 

and 

N(µ)={(12n+2v+ 1)2+5(12m+2u-1)2}/6 

Now we obtain 

I: N(a)-• =.l{ I: 2((12n+ 7)2 +5(12m+ 7)2 )-• 

aE(l) 2 m,nez 6 
aco1e 

(a,l)-1 

+ I: 2((12n+ 1)2 +5(12m+ 1)2 )-'} 

m,nez 6 

I; (- l)m+n( (6n+ 1)2 + 5(6m+ 1)2 )-• 

m,nEZ 6 
m=n(mod2) 

In the same way as above , we obtain 
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I:; N(a)-• = 
aEA2 
OCOk 

(o,J) =1 

I:; 
m,nEZ 

m+n=l (mod 2) 

Therefore we have 

Hence 

4. 

L.(s, !;) = I:; ( -1r+n( (6n+ 1)2 + 5(6m+ 1)2 )-s 
m,nEZ 6 

Oir)= I:; (- l)m+nq((6n+1)2+5(6m+1)2)/6 
m,nEZ 

= r;( 4-r )r;(20r ). 

F=Q(,v 21), t=( 3+;21); 

k= Q( ,v - 7), C= (3), 

E=Q(,v-3), 

3+-/21 a=----. 
2 

K=k(,va), 

5+-/ 21 -1 df z=---- mo , 
2 

545 

Op(r)= I:; (- 3x)qcx2-21x'l/4= 21 ,,9+(3-r; (7+,v 2 l)/2, ,/ 21) 
x,yEZ 

xe:;7[y[ ,X=Y (mod 2) 

where 

=Ok(r) = _l I:; a(x, y)q<x'+1 Y') 14, 
2 'x,yEZ 

x=y(mod 2) 

1
1, if3!y and 3,j'x, 

a(x,y)= -1, if3!x and 3,j'y, 

0, otherwise. 

On the other hand, after a computation similar to that in Example 3, we 
find 

Oir)= I:; (-l)m+nqc<em+1i2+1cen-1i2i;s 
m,nEZ 

=r;(3r)r;(21r). 

Remark 2. The indefiinite representations in Example 1-3 were dis
covered by Kac-Peterson ([35]) by using the general theory of string func
tions for infinite-dimensional affine Lie algebras. A similar result was 
obtained for some other cases ([33)). 
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Remark 3. rj(r)7J(23i-), 7J(2i-)7J(22-c) and 7J(6i-)7J(18i-) are of D3-type and 
hence can not be expressed by indefinite theta series. 

Remark 4. Bi quadratic residue mod p and cusp forms of weight 1. 
In example 2, we have obtained the following identity 

( 6) ~ ( - 1rq(4m+1) 2 +8n'= ~ ( - l)m+nq(4m+l)•+l6n•, 

m,nEZ m,nEZ 

by intermediating the function OF(i-). This identity appeared for the first 
time in Jacobi's memoir and gives a generalization of the equivalence of 
Gauss' two criteria for the biquadratic residuacity of 2. In the following, 
we shall discuss more precisely this fact from our point of view. Consider 
the following diagram: 

E=~(i) 

Q 

k=Q(~) K=Q(i, ,/7), e=l+J2 

K' = Q(i, -V2), i=.J-=1 

Then, at the same time, Q is the maximal ray class field over F 

mod 4J2 ( 00 1)( 00 2), over k mod 4,/ - 2 and over E mod 8. Let p and r 

be distinct primes suet that P=='=:= 1 (mod 4). We write (; \ = 1 or -1, 

according as r is or is not a fourth-power residue mod p. Then it is easily 
checked that 

p splits completely in L+-+( ~ l ) = ( ~ 2 ) = 1 

+-+P= 1 (mod 8)+-+p=(4a+ 1)2+8b2+-+p=(4a+ l)2 +16.S2 ; 

and moreover 

(7) 

and 

(8) 

(; )= l+-+p splits completely in K 

+-+b=.0 (mod 2)+-+a+.S=O (mod 2), 

(; ) 
4 
= 1 +-+ p splits completely in K' 

+-+a=.0 (mod 2)+-+.S=0 (mod 2). 
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The above dentity (6) gives a generalization of the equivalence (7); and 
the following identity gives a generalization of (8): 

,I; (- l)fiq(4-+1)•+1sp•= ,I; ( - l)aq(4a+l)•+sb• 
a,~EZ . a,bEZ · 

where 

(}z(,r:)= ,I; enim•,14. 
mal(mod 2) 

We shall discuss a more general case in the second half of this chapter. 

§ 3.5. Higher reciprocity laws for some real quadratic fields 

Let F be a real quadratic field satisfying the conditions (1) and (2). 
Then there exists an imaginary · quadratic field k, and two £-functions 
associated with F and k are coincident. Suppose that K/k is a cyclic 
extension and K/Q a dihedral extension. Letf(x) be a defining polynomial 
with integer coefficients of K/Q through the real quadratic field F. Then 
we have the following higher reciprocity law for f(x): 

Theorem 3.2. Spl {f(x)}={p: prime I p,t' D 1 , a(p)=2}, where D 1 de
notes the discriminant off, and a(p) denotes pth Fourier coefficient of 
Hecke's indefinite modular form (}F(,r:) associated with F. 

Proof We put 
= 

(}h:)= I: g(a)qN(•)= I: b(n)qn. 
Q:COJ: n=l 

Let i., be any prime ideal of k unramified for K/k. Then we know that 
( i) g(i.,)= l~i., e (l)~p splits completely in K; 
(ii) g(p)= - l~j.) e i!2~j.) splits completely in L/k and remains 

prime in K/ L; 
(iii) g(p)=i or -i~p e i!2 or p e i!3~j.) remains prime in K. 

Letp be a prime number andp=Pl" ink, where P' denotes the conjugate 
ofµ. Then 

p e (l)~b(p)=2; 

and vice versa. Let F(x) be a defining polynomial with integer coefficients 
of K/k. Then it is easy to see that 

Spl {F(x)}={PI P{ DF, b(p)=2}; 

where DF denotes the discriminant of F. On the other hand, 
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Spl {f(x)} U {p IP unramified, p,t' D1} 

=Spl {F(x)} U {PIP unramified, p,t'DF}; 

and by Theorem 3.1, b(p)=a(p) for allp. Hence we obtain 

Spl {f(x)}={PI p 1D 1 , a(p)=2}. 

Example 5. We shall use the same symbols as in Example 1. Then 
we have the following defining equation of K/k: 

F(x)=:X 4 -6x 2 -3. 

On the other hand a defining equation of K/ Fis given by 

Therefore the following is a defining equation on K/Q through the field F: 

f(x)= J;(x) ·fi(x)' 

Hence 

where 

=x 8 -8x 6 +24x 4 + l60x 2+ 16. 

Spl {F(x)}=Spl {/(x)}={P I a(p)=2} 

={plp=u 2 +v2, u=O (mod 6), u, v e Z}, 

OF(r)= ..9+(12!'; 1, ,vl2)= f; a(n)qn. 
n=l 

Remark 5. For the defining polynomial f(x) in Theorem 3.2, the 
following assertions hold: 

1) f(x) modp has exactly 2 distinct quartic factors over FP 
++a(p)=O and a(p2)= -1; 

2) f(x) mod p has exactly 4 distinct quadratic factors over FP 
++'a(p)= -2' or 'a(p)=O and a(p2)= l'. 

§ 3.6. Cusp forms of weight 1 related to quartic reisduacity 

Let m be a positive square-free integer and e,,. be the fundamental 
unit of the real quadratic field Q( ,v1 m ). We consider only those m for 
which e,.. has norm + 1. Let K be the Galois extension of degree 16 over 
Q generated by ,v'=1 and -V' e,,. and we put G = Gal (K/ Q). Then the 
group G is generated by three elements a, <fi and p in such way that 
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o-( Ve,;)= .f=1 Ve,;, 
</>(~)=~-!' 

p(.f=1)=-r-i", 
and has defining relations: 

0'4=</>2=/= 1, </>p=p</>, po-p=</>O'</>=O'a. 
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The group G has three abelian subgroups of index 2 in G, which are the 
following: 

Hk=(o-,</>p) +--),k=Q(,v-m), 

HF=(o-2, </>, P> +--),F=Q(-vt+l), 

HE=(o- 2, o-<fi, o-p) +--),E=Q(J-m(t+2)), 

where t=tr(em)- Let/and e be the square-free part of t+2 and m(t+2), 
respectively, and put 

K'=Q(r-f, Je,;), 
L' =Q(J-m, J f ), 

L=Q(,f=-1, .J-m ), 

L"=Q(,v-m, J-f). 

Then we have the following diagram: 

K 
I 
K' 

L' L L" 
~~--r---_ 

F = Q( fl) E = Q( J=e) Q(,f=-1) k Q( ../m) Q( ve) Q(./ f) 
- ~ '::::--..._;;:;;~LI c:::::::==-::::::::,;;;;;;;;;;;~=======-----

Q 
Bv this diagram, we have the following equivalence for any odd prime/: 

(9) /splits completelyinK'+--),( ~l )=(-f)=( ;)=l, 

where ( ; ) denotes the Legendre symbol. The group G has the following 

eight representations rt of degree 1, where j= l, · · . , 8. 

I r1 r2 ra r4 rs ra r1 ra 
O' 1 1 1 1 -1 -1 -1 -1 
</> 1 1 -1 -1 1 1 -1 -1 
p 1 -1 1 -1 1 -1 1 -1 
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The group G has just two irreducible representations of degree 2, which 
have determinant r4• If we denote by ,fl-0 the one of these, then the other 
is +0©r8• Let a1 denote the Frobenius substitution associated with / in 
K. Then we have the following table which gives the correspondence 
between quadratic subfields of Kand rtC2<j<8). 

I r2 rs r4 rs rs r1 rs 

Q(-1=1) Q(,./ m) k F Q(,./-n Q(-v'e) E 

r;(ai) ( ~1) (7) (~m) ({) ( ~f) (;) ( ~e) 
Put ,fl-1=,JJ-0©rs and let L(s, ,fl-0, K/Q) (resp. L(s, ,fl-1, K/Q)) denote the Artin 
L-function associated with ,fl-0 (resp. ,fl-1), and let 6l(t'; ,fl-0) (resp. 6l(t'; ,fl-1)) 

denote the Mellin transformation of L(s, ,fl-0, K/Q) (resp. L(s, ,fl-1, K/Q)). 
Then we can define the following function: 

1 6>(t'; K)= 2 {6l(t'; ,JJ-o)+6l(t"; ,fl-,)}. 

Let N denote the L.C.M. of the conductor of ,fl-0 and that of ,JJ-1• Then 
the function 6l(t'; K) is a cusp form of weight 1 on the congruence sub-

group I'o(N) with the character ( ~m). 
Let M be one of the three quadratic fields k, E and F. Then K is 

abelian over M. Let o M be the ring of integers of M and a an ideal of o M· 

If Mis imaginary (resp. real), then Hy(a) denotes the group of ray classes 
(resp. narrow ray classes) modulo a of M. Let o be an ideal of M prime 
to a and [o] the class in Hy(a) represented by o. If in particular bis an 
element of M, then the ideal class [(b )] represented by the principal ideal 
(b) is abbreviated as [b]. Let f(K/M) (resp. f(K/M)) be the conductor 
(resp. the finite part of conductor) of Kover M. Furthermore we denote 
by Cy(K) (resp. Cy(K')) the subgroup of Hy(f(K/M)) corresponding to K 
(resp. K'). The restriction ,fl-0 (resp. ,fl-1) to the abelian Galois group 
G(K/M) decomposes into distinct linear representations $y and ~~ (resp. 
$M©rs and $~©rs) of G(K/M): 

(i=O, 1). 

By Artin reciprocity law, we can identify $M and$~ with characters of 
Hy(f(K/M)) trivial on Cy(K) and so we denote these characters by the 
same notation. Let Cy be the finite part of conductor of $y. We assume 

~ 

that the finite part of conductor of$ y@r 8 is equal to c M· Let C y(K) (resp. 
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,-.....J 

CM(K')) be the image of CM(K) (resp. CM(K')) by the canonical homomor-
phism of HM(f(K/M)) to HM(cM). Since K is the class field over M with 
conductor f(K/M), the Artin £-function L(s, vo, K/Q) (resp. L(s, v1, K/Q)) 

- ,-.....J 

is coincident with the £-function LM(s, ?M) (resp. LM(s, ?M®r3)) of M 
- ~ - ~ 

associated with the character ?M (resp. ?M®rs), where ?M (resp. ?M®rs) 
denotes the primitive character corresponding to ~ M (resp. ~ M®r8). There
fore we have three expressions of 8(-z:-; K). 

Proposition 3.1. The notation and the assumption being as above, we 
have 

(10) 

where 

8(-z:-; K)= I; XM(a)qNM;a<•l 
acoy 

[a]eC;iK') 

XM(a)= { 
1, 

-1, 

~ 

if [a] e CM(K), 

otherwise; 

and NM1a(a) denotes the norm of a with respect to M/Q. 

The proof of Proposition 3.1 is quite similar to that appeared in 
Section 3.3. 

Letf(x) be a defining polynomial of -tfS:-over Q. Then it is easy 
to see that 

f(x)=(x 4 -em)(x 4 -e;;;,1)=X8 -tx•+ 1. 

Let a(n) be the nth Fourier coefficient of the expression 

8(-z:-; K)= I; a(n)qn. 
n=l 

Then we have the following relation: 

Proposition 3.2. Let p be any prime not dividing the discriminant D 1 

off(x) and FP thep-elementfield. Then we have 

(11) #{x e FPlf(x)=O} = 1 +(;)+(;)+(; )+2a(p). 

Proof Let H be the group generated by p, say H = (p ). Then H 
isl.the subgroup of G corresponding to Q(-tf--;:-). We denote by lithe 
character of G induced by the identity character of H. Then we have the 
following scalar product formulas: 
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(liJrt)= . {
1, if i= 1, 3, 5, 7, 

0, otherwise; 

oi I xi)= 1 (i=o, 1), 

where X0 (resp. X1) denotes the character of ,Jr0 (resp. ,fr1). Therefore, we 
have 

= 1+(;)+(~)+(; )+2a(p). 

On the other hand, it is easy to see that the left hand side of (11) is equal 
to 1i(ap). This proves our proposition. 

By Propositions 3.1 and 3.2 we have the following 

Corollary. Spl{f(x)}={pJp,j'D 1 , a(p)=2}. 

§ 3.7. Fundamental Lemmas 

In this section, we shall determine the conductors f(K/M), f(K'/M), 
f(L'/M) and f(L/M). Let~ • .2 and tY be fields such that ~:::::),2:::::){Y and 
[.2: tYJ=2. Assume that~ is abelian over tY· We denote by b(.2/{Y) the 
different of .2 over tY· For a prime ideal g of .2, let/(g) (resp. g(g)) denote 
the g-exponent of f(~/.2) (resp. b(.2/{Y)) and put 

e(g)=max {O, g(g)- /(g)}. 

Then we have the following 

Lemma 1. t<~1m = f<~1.2)b(.21m n g•<0>. 

We assume that .2 is a Galois extension over Q. Let 02 be the ring 
of integers fo .2 and let p be a prime ideal of 0 2 dividing 2. We denote 
by e2 the ramification exponent of p. Let Oµ denote the completion of o2 

with respect to p and IIµ a prime element of Oµ. Furthermore, for ~ e o;, 
we put 

Sµ(~)=max {t e z+ !~-square mod II!}

Then we have 

Lemma 2. If Sµ(,;) <2e 2, then there exists uniquely the odd integer 
t( <2e 2) such that · 



Automorphic Forms of Weight I 

('1), o E O;); 

and this uniquely determined t is equal to Sv(.;). 

Lemma 3. Put 

If Sp(,;) <2e 2 , then we have 
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Let a be an element of o2 such that (a) is a square-free ideal with 
((a), 2)= 1 and put ~=2(-v'a). We assume that~ is a Galois extension 
over Q. Then Sp(a) is independent of ,):l chosen. Since~ and ,2 are the 
Galois extension over Q, the ,):)-exponent /(,j:J) of f(~/2) does not depend 
on ,):l chosen. Thus we can put Sia)=Sv(a) and/(2)=/(,):l). 

Lemma 4. (i) The prime ideal,):) is ramified.for ~/,2 if and only if 
Sia)<2e 2 • 

(ii) If Sia) <2e 2 , then Sia) is equal to the odd number t( <2e 2) 

determined by 

a=r; 2 +0Il; (r;, o E o;); 

and moreover 

Proof By the assumption on a,we have 

Denote by )j3 a prime ideal of ~ dividing ,):l. Let a be an ideal of~ and 
denote by m313(a) the )j3-exponent of a, and let e be a generator of G(~/2). 
Then, by the definition of/(,):)), 

(12) /(2)=min m3/.;-,;'). 
f E. Ok 

Denote by X (resp. X~) the group of all elements b of o2 satisfying the con
dition 

ab2::::square mod 4 (resp. mod ,j:)2'2). 
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Let m3p(b) denote the p-exponeht of (b). Then, by (12), we have 

f(2)=2 min m3ib)=2 min m3ib). 
bEX bEXp 

Therefore, 

lJ is unramified for Sf/E~f(2)=0 

~a is square mod p2 ·~ Sla)>2e~. 

If !J is ramified for Sf /E, then 

min m\(b)=tp(a). 
bEXp 

By Lemma 3, Ss(a)=2e 2 + 1-f(2). Hence by Lemma 2 the assertion (ii) 
is proved. 

Now we assume that E(fa) is a Galois extension over Q. It is easy 
to see that there exists a subgroup R of o; with order #(o2/p )-1 such that 
R* =RU {O} is a complete system of coset representatives of o2 mod p. 
Put 

t=min {2e2 , S.a{a)} and u=[(t+ 1)/2]. 

Then there exists elements a0, a1, • • ·, a,,,_1 of R* such that 

Lemma 5. ( i) If p is unramified for Sf /E and there exists a nonzero 
element in {a, Ii: odd}, then 

S/,va)=min {i: oddlat=;t=O}. 

(ii) If lJ is ramified for Sf/E and there exists a prime element IIP of Op 

such that IIP=II~ mod [1~+1, then 

Now we put 

E=L or K', and a=em. 

From now on we assume that m is prime number p with p. 3 (mod 4). 
We put eP~e=A+B.Jp. Then it is easy to verify that A is an even 
number. Since A 2 -pB 2 =1, we have (A+l)(A-l)=pB 2• Therefore we 
can put 
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A-l=r 2u, 

A+l=s 2v, 
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with (ru, sv)= I, rs=B and uv=p (r, s, u, v e z+). Hence, 2=s 2u-r 1u. 
By considering this relation mod 8, we have 

( ) -{(1,p), if p==.3(mod8), 
U, V -

(p, 1), if p==.7 (mod 8). 

Since t=tr(s)=2A, we have t+2=2s 2v. Hence 

(f, e)= . {
(2p, 2), if p=3 (mod 8), 

(2, 2p), 1f p==.7 (mod 8). 

Therefore we have the following lemma. 

Lemma 6. With F and E as in Section 3.6, we have 

{
(Q(-./2p ), Q(-./ -2)), if p==.3 (mod 8) 

(F,E)= ~ 
(Q(v2), Q(-./-2p)), if p=7 (mod 8). 

Now we shall calculate the conductors f(K/M), f(K'/M), f(L/M) and 
f(L' / M). Because the method of calculation is very similar for each of 
three cases, we shall give the details only for the case of M = k. If we put 
'i3=L, then K'=L(-v'e). We can take eL=2 and Ilv=l--./p. There
fore, s==.1-Ilv (mod 2). By Lemma 4, Sis)= 1 and hence SK,(-v'e)= 1 
by (ii) of Lemma 5. Therefore, again by Lemma 4, we have JK,(2)= 
5 - 1 = 4. Since prime factors of 2 are only ramified for K' / L, we have 
f(K'/L)=(4), and hence b(K'/L)=(3). By eK,=4,fK(2)=9-I =8. There
fore f(K/K')=(4). Consequently, by Lemma 1, we have 

f(K/ L) = f(K/ K')b(K/ L) 

= ( 4)(2) = (8). 

Thus we obtain the following: 

{
f(K/k)=f(K/L)b(L/k)=(l6), 

f(K' /k) = f(K' / L)b(L/k) = (8), 

f(L/k)= b(L/k)2=(4). 

Therefore our required conductors are as follows. 
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M f(K/M) f(K'/M) f(L'/M) f(L/M) Cy 

k 16 8 8 4 16 

F 
p=3 (mod 8) 4t>2001002 (2)001002 001002 4+>2 

p=7 (mod 8) (4,/2 p)oo 1002 (2p)oo1002 (p)oo1002 4µ 

E 
p=3 (mod 8) 4,v-2p 2p p 4µ 

p=1 (mod 8) 41,">2 2 1 41)2 

In the above table, +' denotes a prime ideal of M dividing p, and µ2 

denotes a prime ideal of M dividing 2. Further oo; (i= 1, 2) denote 
two infinite places of F. 

§ 3.8. Three expressions of 8( 't"; K) 

For an integral ideal a of M, if M is imaginary (resp. real), then 
Py(a) denotes the subgroup of Hy(a) generated by principal classes (resp. 
principal classes represented by totally positive elements). We write 
simply HM and PM in place of HM(f(K/M)) and PM(f(K/M)) respectively. 
Suppose that a divides f(K/M). Then we denote by K(a) the kernel of 
the canonical homomorphism: PM-PM(a). Moreover we put CM( )*= 
PM n CM( ). In the following, we shall obtain C M(K) and C M(K') under 
the assumption p=7 (mod 8). 

Case I. M=k (=Q(.J-p)). 

By the assumption, we have 2=1) 2.p2, where .p2 denotes the conjugate 
of µ2• Take the two elements µ and 1.1 of ok such that 

Then we have 

{
W= 5 mod µ:, 
µ=l mod .p:, 

{
1.1 - 1 mo_~ µ;, 
1.1= 1 mod lJ2• 

CiL)* = ([µ], [.a]), 

CiK')* = ([µ] 2, [p]2, [µ][p]), 

CiK)* '/, [µ]2, [µ]2. 

Since G(K/Q) is non-abelian and G(K/k)~Pk/CiK)*, we see [µ]- 1[µ] ~ 
CiK)*. Therefore, [µ][p] e CiK)*. Hence we have 

CiK)* = ([µ][p]) = ([5]). 

We put 
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where S denotes the index set of integral ideals o. Then 

CiK')= CiK)+ C/K)[µ]2, 

CiK)= I; [oJ-4C/K)*. 
uES 
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Put w=(l + ./ -p )/2 and let a be an ideal of o" with (a, (2))= 1. Then, 
by the above relations, we have [et] e CiK') if and only if there exists o e S 
and r;=x+ yw e o4 such that x= I (mod 2), Y=O (mod 8) and et= r,-•(r;). 
Moreover 

[a] e C/K)+-----+Y=O (mod 16). 

Therefore, if M = k, then the right hand side of (10) is as follows: 

(13) B(r; K)= I: I: (- I)Yq{(4x+l)2+16py2)/NktQ(&)•. 

&ES 4x+I+4yJ-p E&• 

Case 2. M=F(=Q(,.fz)). 
Let a be an element of oF. Then there exists an element a* of oF 

such that 

{
a* is totally positive, 

a*=a mod 4,/2, 
a*=l modp. 

Let p = pp in F, and r(j)) denotes a generator of the multiplicative group 
(oF/lJ)X. Take a totally positive element ;i of oF such that 

Then we obtain 

{
A= 1 mod 4.(2, 

;l~r(j.J) m~d j), 

A= 1 mod j). 

Since the Galois group G(K'/Q) is isomorphic to PF/CF(K'), we have 

Hence 

CF(K')=<[.sf]2, [3*], [5*], [A]2, [A]2, [A][J]). 
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Also we have 

CF(K)=<[st]2, [2]2, [,{]2, [3*][2][A], [5*][J.][A]), 

CF(K')= CF(K)+CAK)[5*]. 

Let r be a rational integer with r2::=2 (modp) and µ=x+y./2 be a totally 
positive element of Op such that (2p, µ)= 1. Then we have 

( xz-p2y2 )--1. [µ] e CF(K)~-----H: odd, y: even and 

Further 

We put 

{
E+={s e of;; [s: totally positive}, 

E 0 ={s E £+ [s-1 E T(K/F)}, 

and e= [E+: E 0]. Then, the right hand side of (10) has the following ex
pression for M = F: 

(14) 6(-r;K)=e--- 1 .:z:= _(sgnx)(-w(2ry+x)(3-)qx2 ---8Y 2• 

µ-x+Zy.12 p X 
x=l(mod 4) 
NF(Q(µ)>O 
µ mod EO 

Case 3. M=E (=Q(,v -2p)). 
By a calculation similar to that of Case 2, we have the following 

(15) 6(-r; K)= .:z:= .:z:= (-l)"+Yq{(4x+1)2+8y2)/NE1Q(a', 

n 4x+1+2y~~PEa 

where {a} denotes the set of integral ideals of E which are representatives 
of all square classes in HE/ PE. 

Summing up (13), (14) and (15), we obtain the following theorem 
which is our main purpose. 

Theorem 3.3. Let p be any prime with p = 7 (mod 8). Then, the 
notation and the assumption being kept as above, we have the three expres
sions of 6(-r; K): 

6(-r; K)= .:z:= .:z:= (-l)x+yq{(4x+1)2+Bpy)/NEIQ(a) 

a 4x+1+2y.'-2pEa 

= .:z:= .:z:= (- l)Yq{4x+l)2+16py2)/N,1Q(6)• 

6 4x+l+ 4y .1-pE6' 

(via E) 

(via k) 
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=e- 1 I; _(sgnx)(-l)Y( 2ry+x)(~)qx•-ay• (viaF). 
µ=x+2y./2 p X 
xsl(mod 4) 
NFfQ(µ)>O 
µ mod EO 

Let l be an odd prime number satisfying the conditions ( ~ ) = 1 and 

l = l (mod 8). Then we have ( ~P) = 1 by (9), and we have also the fol

lowing from the theorem above: 

l={(4a+ l)2 +8pb 2}/NE1o(a), 

l={(4a+ 1)2+ l6p/f}/Nk 1Q(6)4, 

( x2-p3y2)=l; l=x 2 -8y2, x= l (mod 4), 

a(l)= ±2. 

Moreover, we have the following criterions for ev to be a quartic residue 
modulo / which are our conclusion. 

(el\= l~a+b: even 

~-'>-/3: even 

~(sgn x)(- l)Y( 2ryp+ x )( ~) = 1 and X= l (mod 4) 

~a(l)=2. 

For prime p with p=3 (mod 8), we shall only state the result as a 
remark. 

Remark 6. Letp=3 (mod 8) andp:,t:3. Then, the following may be 
obtained in a way similar to the proof of the above theorem. 

8(-r;K)= I; (-I)<"'-t)/4+y(x-2ry)qx•+ay• 
;;,fl(!od 4) p 

= I;{ I; ( _ l)(a-1)/4+(NkfQ(>)-1)/8q(a 2+pp 2)/4N;1Q(&) 4 

& v=(a+fi ./-p)/2E64 
NFfQ(>)sl(mod 8) 

asl (mod 4) 

=e-J I: I: (sgn X)(-ly+yq{(4x+1)2-8py2)/NFJQ(a). 
a µ=4x+1+2y ,!2pE a 

NFfQ(µ)>O 
µ mod EO 
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Chapter 4. 2-dimensional Galois Respresentations and 
the Stark Conjecture 

§ 4.1. Results of Deligne-Serre 

Let Q denote an algebraic closure of Q and put G=Gal (Q/Q). Then 
we have the following two theorems: 

Theorem (Weil-Langlands). Let a be an irreducible 2-dimensional 
Galois representation of G with conductor N and e=det (a) odd. Assume 
that a satisfies the condition 

(A): The Artin-L-function L(s, a®l) is an entire function for all twists 
a®l of a by one dimensional representation l of G. Suppose L(s, a)= 
I;;= 1 a(n)n-•, and let f(z)= I;;= 1 a(n)e2.in,. Then f(z) is a normalized 
newform on I'o(N) of weight I and character e, 

Theorem (Deligne-Serre, [8]). Let f be a normalized newform on 
I'o(N) of weight 1 and character e, Then there exists an irreducible odd 
2-dimensional Galois representation a of G with the conductor N and det (a) 
=E, such that Lis)=L(s, a). 

In other words, there is a 1-to-1 correspondence between the set of 
normalized newforms on I'o(N) of weight 1 and character e, and the set 
of isomorphism classes of irreducible 2-dimensional representations of G 
with conductor N, determinant odd character e, satisfying the condition 
(A). The finite subgroups of GL(2, C) were classified by Kelin; the image 
of 

must be 

a: G---+PGL(2, C) 

dihedral group, 

tetrahedral group, 

octahedral group, 

icosahedral group. 

Remark 1. Langlands and Tunnel ([54]) proved the Artin conjecture 
for all tetrahedral and octahedral a by combining the above result of 
Deligne and Serre with a generalization of the theory of lifting automorhpic 
forms due to Saito and Shintani. 

Remark 2 (Buhler [5]). There is an icosahedral form of level 800. 



Automorphic Forms of Weight I 561 

Let a be an irreducible 2-dimensional Galois representation of G 
with prime conductor p such that e=det (a) is odd and assume a is non
dihedral. Then, if p = 3 (mod 4), a is of type S4 or A5, and e is the 

Legendre symbol (; ). Now we put 

Then, Serre ([48]) obtained the following dimension formula: 

(*) 1 d1 =-(h-1)+2(s+2a), 
2 

where h denotes the class number of the imaginary quadratic field 
Q(../ -p), s (resp. a) is the number of the normal closure of a quartic (resp. 
non-real quintic) fields with discriminant -p (resp. p 2) whose associated 
representations satisfy the condition (A). 

§ 4.2. The Stark conjecture in the case of weight 1 

Let a* (l) be an integral ideal in k = Q( ../d) where d( < 0) is the dis
criminant of k. If X is a ray class character of k mod a, then we may 
write 

L(s, X)= 1:: X(C)Z(s, C), 
C 

where C runs through the ray classes mod a and 

Z(s, C)= 1:: N(o)-•. 
tee 

Define gx(z) by the Mellin transform, 

(2ir)-'I'(s)L(s, X)= f yHgx(iy)dy, 

Then, gz(z) is a modular form of weight 1 on I'i(N) with N=\d\N(a) and 
we have 

L'(O, X)=f~ gx(iy) dy. 
0 y 

Now we are led to the following Stark conjecture ([51]). 

Conjecture. Letf(z) be a cusp form of weight 1 on I',(N). Then 
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Joo d n 
f(iy)2 I: P1 log e1, 

0 y j=l 

where the e1 are algebraic integers and the p1 lie in the field generated over 
Q by adjoining the Fourier coefficients of f(z) at oo. 

As an example, let X be either one of the two cubic ideal class char
acters of Q( ../ - 23) so that 

gx(z)=r;(z)r;(23z), 

where r;(z) denotes the Dedekind eta function. Then we have 

L'(O, X)=f 00 gx(iy) dy =log e0, 
0 y 

where e~ is the real root of x3 -x-1 =0. 
According to the Deligne-Serre theorem, there is a normal extension 

K of Q and an irreducible two-dimensional Galois representation a of 
Gal (K/Q) such that the Dirichlet series corresponding to f(z) gives the 
Artin L-function L(s, a, K/Q). However from the Deligne-Serre theorem, 
we can expect nothing to solve the problem explicitly determining the field 
K by f(z). The conjecture was proved by Stark when K is an abelian 
extension of k and it aids materially in explicitly determining K from f(z). 

In [6], Chinburg formulated Stark conjecture "over Z" as follows. 
Let d = I:. d. · a be a finite linear combination of p of dimension n and we 
assume I:.d.·a=I:.d:·aP for any peAut(C/Q). We define L'(s,d) 
= I:. d. · L'(s, a) and L:h)= I:. d. · L'(s, a)pr. where pr.= I:gEGal(KIQ> 
X.(g)g. Then for n= 1 or 2, exp (L'(O, d))=e(d) is a real unit in Kand 
L~(O)v0 = I:vEsoo log II e(d)llv · v, where Soo is the set of infinite place of K, 
\\ llv is the normalized absolute value for v e S00 and v0 is a fixed embedding 
of Kinto C. 

Moreover, Tanigawa gave an example for two dimensional represen
tation of S4-type ([52]). He considered the space of cusp forms of weight 

1 on I'o(283) with the character (-; 83). This space has one primitive 

form h of S3-type and two primitive forms f and P of S4-type, where -r is 
a complex conjugate. And let Vand Wbe Galois representations attached 
to f and h respectively. Then L~(O) is generated by a linear combination 
of L~(O) for the following d: 

( i) d=oV +o'V< for o e Diifi=2>, 
(ii) d= w, 
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(iii) d=_!_(V+ V')+.!.. W, 
4 2 

here D,. is the different of the field k. Furthermore, he gave the minimal 
polynomial of e(d) for the above d and checked that e(d) is indeed a real 
unit in K. 

Remark 3. The value of L( ~ , e) 
Let e be an abelian character of a class group of a complex quadratic 

extension of a totally real field and L(s, e) the Artin L-function associated 

with e. Then Moreno asked the values of L( ~ , e) and obtained the fol-

lowing result ([42]). 
Let a be an irreducible two-dimensional linear representation of G = 

Gal (Q/Q) and L(s, a) be the Artin L-function associated with a. We put 

~ 

L(s, a)=(2n-)- 1I'(s) I: a(n)n-•. 
n=l 

If <1 is a lifting of the projective representation ii of G and Im (ii)=S 3, 

then by the theorem of Hecke, the function 

f(z)= I: a(n)e2•in• 
n=l 

is a normalized newform on I' o(N) of weight 1 and character e( = det (<1 )), 

where N denotes the conductor of <1. 

On the other hand, let E(s, z, I'o(N)) be the non-holomorphic 
Eisenstein series for I' 0(N) corresponding to the cusp at oo. The Maclaurin 
expansion of E(s, z, I'o(N)) about s=0 is 

E(s, z, I' 0(N))=f*(z)s+O(s 2), 

wheref*(z) is a real analytic automorphic form for I'o(N) with the eigen-

value -1/4 for the Laplacian y2(~+ ~)- Then he obtained 
ax2 oy2 

where, ( , ) denotes the Petersson inner product, k the complex quadratic 
field corresponding to e, Ah) the Dedekind zeta function of k and 
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( 1) (1-e(p)p-112)(1-a(p)p-112) 
C 2 = JJ,. (l+p-1/2)(1-a(p)Zp-t/2) • 

p:pr1me 

Now we ask the following non-abelian problem. We suppose that Im(a) 
=S 4• Then, by the theorem of Weil-Langlands-Tunnel, thefunctionf(z) 
correponding to L(s, u) by the Mellin transformation is a normalized 
newform on I'o(N) of weight 1 and character e. We may naturally ask the 
following question: 

Can one express the value of L( ; , u) as a sum of values of a non-

holomorphic modular form at special points? 

Chapter 5. Dimension Formulas and tr (T(I'aI')) 
in the Case of Weight 1 

Let I' be a fuchsian group of the first kind. We shall denote by d1 

the dimension of the linear space of cusp forms of weight 1 on the group 
I'. It is not effective to compute the number d1 by means of the Riemann
Roch theorem. Hejhal said in his book ([18]), it is impossible to calculate 
d1 using only the basic algebraic properties of I'. Because of this reason, 
it is an interesting problem in its own right to determine the number d1 by 
some other method. 

On the other hand, the trace of the Hecke operator acting on the 
space of cusp forms on the group I' has been calculated in most of the 
cases, but not yet for the case of weight 1. In this chapter we give some 
formula of d1 and an explicit formula of the trace for the above remaining 
case, by using the Selberg trace formula ([1], [20], [22], [26], [27], [28], [53]). 

§ 5.1. The Selberg eigenspace m(k, l) 

Let S denote the complex upper half-plane and we put G=SL(2, R). 
Consider direct products 

where T denotes the real torus. The operation of (g, a) e G on S is re
presented as follows: 

Se (z, cp)~(g, a)(z, <fa)= ( az+b, <fa+arg (cz+d)-a) e S, 
cz+d 

where g=(~ ~) e G. The space Sis a wealky symmetric Riemannian 

space with the G-invariant metric 
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ds2= dx2+dy2 + (d0- dx )2. 
y2 2y 

and with the isometry µ defined by µ(z, </>)=(-z, -</>). The G-invariant 
measure d(z, </>) associated to the G-invariant metric is given by 

-1 dx/\dy/\d</> u(z, </>)=d(x, y, </>)=----'------'--. 
y 

The ring of G-invariant differential operators on Sis generated by _j_ and 
. o</> 

N ( a2 a2 ) s a2 a a 
Ll=yz axz + ayz +4 o</>2 +Ya¢~· 

Let I' be a fuchsian group of the first kind not containing the element 

(-6 _ ?). By the correspondence 

G :) g+--)>(g, O) e G, 

we identify the group G with a subgroup G X {O} of G, and so the subgroup 
I' identify with a subgroup I' x {O} of G. For an element (g, a) e G, we 
define a mapping T<g,al of L2(S) into itself by (Tc8 ,af)(z, </>) = f((g, a)(z, </>)). 
For an element g e G, we put Tc8 ,o>=T8 • Then we have 

(T6 f)(z, </>)=!( az+b, </>+arg(cz+d)), 
cz+d 

where g= (~ ~). We denote by IDir(k, l)=IDi(k, l) the set of all func

tions f(z, </>) satisfying the following conditions: 

(i) f(z, </>) e L2(I'\S), 
(ii) ilf(z, </>)=lf(z, </>), (o/o</>)f(z, </>)= -ikf(z, </>). 

We call IDi(k, l) the Selberg eigenspace of r. We denote by S1(I') the 
space of cusp forms of weight 1 for I' and put 

Then the following equality holds ([19], [26]): 

Theorem 5.1. The notation and the assumption being as above, we 
have 
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m( 1, - ; )={e-t;y11 2F(z)\F(z) e Si{I')}, 

and hence 

( 1) 

(2) 

Proof For each F(z) e S1(I') we denote f(z, <p) on S by 

f(z, <p)=e-i\ly112p(z). 

Then the function f(z, <fi) satisfies the conditions: 
1) f(g(z, <p))=f(z, <p) for all g e I'; 
2) (o/o<fi)f(z, <fa)= -if(z, <fi); 
3) JJ(z, rp)= -(3/2)f(z, <fi) by regularity of F(z) on S; 
4) Since y112\F(z)j is bounded on S, 

llfl\=-1-J \e-i\ly112p(z)j2 dxdyd<fi 
2ir I'\B y2 

=J \y1i2F(z)j2 dxdy <oo. 
I'\S y2 

Therefore, by 1)-4), the function f(z, <p) belongs to IDi(l, -(3/2)). 
We now prove conversely that any function in IDi(l, -(3/2)) must be of 
the form (2) with F(z) e Si(I'). Letf(z, <fi) be a function in IDi{l, -(3/2)). 
Put 

Then the I'-invariance of f(z, <fi) is equivalent to a transformation low for 
F(z): 

F(g(z))=(cz+d)F(z) 

for all g= (~ ~) e I'. Therefore, it is sufficient for the proof of the latter 

half of our theorem, to show that F(z) is holomorphic with respect to the 
complex variable z on S, and F(z) is holomorphic and vanishes at every 
cusp of r. 

Let g be the Lie algebra of SLlR) ( = G). Then we can take the 
basis a of g such that the Lie derivatives associated with the elements of 
a are given by the following invariant differential operators: 
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X=y cos 2<fi _i__y sin 2<fi_i_+.l (cos 2<fi-l)_i_, 
ax ay 2 a<jJ 

Y = y sin 2<fi _i_ + y cos 2<fi_i_ +_!_sin 2<fi_i_, 
ax ay 2 a<jJ 

It is easily to see that 

J=(x+ ~ w)2 +P+<fi2. 

Now we put 

Then, the function F(z) is holomorphic on S if and only if 

(3) 

To prove (3), first note that the operation of A- depends only on the re
presentations of the Lie algebra g. Let L~(I'\ G) be the discrete part of 
the space L2(I'\G). Then/ e L~(I'\G). Let 

LJ(I' \ G) = L, Vi 
i 

be the irreducible splitting of the space L~(I'\ G) and put 

Then, if /4 *O, we have 

Therefore, each subspace Vi such that /4 * 0 is isomorphic to the space H1 

of the irreducible representation of the limit of discrete series. Hence it 
is sufficient for the proof of (3), to show that for any highest weight vector 
<pin H 1, 

(4) 

For example, by Lemma 5.6 in [32), the relation (4) is well known. 
Next we shall see the condition for F(z) at every cusp of I'. Lets be 



568 T. Hiramatsu 

a cusp of I'. We may assume thats= oo and the intersection of a funda
mental domain for I' and a neighborhood of oo is the following type 

{z=x+iy\0::Sx~ I, y> M}, 

where M denotes a positive constant. Then, by the condition f(z, <fi) e 

L2(I'\S), we have 

J:{J>IF(z)\2dx}; <oo. 

Let 

F(z)= I:; anez•in, 
n=-oo 

be the Fourier expansion of Fat oo. Then, we have 

f l\F(z)j2dx=fl (I:; ane2•inz) (I:: ame-Mmz)dx 
O O n m 

= I:: anam fl e2•i(n-m)x-2•(n+m)ydX 
n,m O 

= I:: \an \2e-hny. 
n 

Therefore 

If n:S:0, then 

So that an =0 for all n<O. Q.E.D. 

§ 5.2. The compact case 

In this section we suppose that the group I' has a compact funda
mental domain in the upper half-plane S. It is well known that every 
eigenspace W'l(k, .il) defined in Section 5.1 is finite dimensional and ortho
gonal to each other, and also the eigenspaces span together the space 
L2(I'\S). We put A=(k, .il). For every invariant integral operator with a 
kernel function k(z, <fi; z', <fi') on W'l(k, .il), we have 
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f _/(z, if>; z', </>')f(z', </>')d(z', </>')=h(i)J(z, </>), 

for f e IDi(k, 1). Note that h(i) does not depend on f so long as f is in 
IDi(k, 1). We also know that there is a basis {J<">};=1 of the space L2(I'\S) 
such that eachj<"> satisfies the condition (ii) in Section 5.1. Then we put 
;.<11>=(k, l) for such a spectra. We now obtain the following Selberg trace 
formula for L2(I'\S): 

(5) :E h(;.<11>)= I: f k(z, if>; M(z, </>))d(z, </>), 
n=l Mer D 

where D denotes a compact fundamental domain of I' in S and 
k(z, if>; z',</>') is a point-pair invariant kernel of (a)-(b) type in the sense of 
Selberg such that the series on the left-hand side of (5) is absolutely con.,. 
vergent ([46]). Denote by I'(M) the centralizer of Min I' and put DM= 
I'(M)\S. Then 

(6) I: f k(z, if>; M(z, </>))d((z, </>)= I: f k(z, if>; Mi(z, <fi))d(z, </>), 
Mer D i DM 

where the sum over {M1} is taken over the distinct conjugacy classes of I'. 
We consider an invariant integral operator on the Selberg eigenspace 

IDi(k, l) defined by 

a, (z ,1,.. z' ,1,.')= YY YY e-i(~-~'> I 
( ')112 la ( ')112 

6 ''t'• ''t' (z-:t')/2i (z-:t')/2i ' 
(o> 1). 

It is easy to see that our kernel wa is a point-pair invariant kernel of (a)
(b) type under the condition o> 1 and vanishes on IDi(k, 1) for all k=I= 1. 
Since I'\ G is compact, the distribution of spectra (k, l) is discrete and so 
we put 

(;3= 1, 2, · · · ). 

Then the left-hand side of the trace formula (5) equals to I:'.:-1 dpAp,where 
Ap denotes the eigenvalue of wa in IDi(l, µp). For the eigenvalue Ap, using 
the special eigenfunction 

f(z, </>)=e-t~ y"P, 

for a spectrum (1, µp) in L2(S), we obtain 
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A = 22+81rr(I/2)T((l+o)/2) r(o-I+v )r(o+I_v ). 
/J I'(o)I'(l +(o/2)) 2 /l 2 /J 

If we put Vp= 1/2+irp, then 

(7) A =2wicI'(I/2)I'((l+o)/2 r(i_+ir )r(i_-ir )· 
/l I'(o)I'(l +(o/2)) 2 /l 2 /l 

In general, it is known that the series I:;=1 dpAp is absolutely convergent 
for o> 1. By the Stirling formula, we see that the above series is also ab
solutely and uniformly convergent for all bounded o except o = ± (2v p -1 ). 

The components of trace appearing in the right-hand side of (6) are 
obtained already in [27] and we shall only state the results in the following. 

1) Unit class: M=l=(6 ~)-

J(l)=J d(z, </>)= J d(z, </>)<oo. 
iix D 

2) The hyperbolic contribution J(P) is expressed by the following 

J(P)= I; I;J(P!) 
a=l k=l 

where {Pa} denotes a complete system of representatives of the primitive 
hyperbolic conjugacy classes in I' and lo,a the eigenvalue (llo,al> 1) of Pa. 

3) There is no contribution from elliptic classes to d1• 

Now we put 

(8) "*(o)= ~ ~ (sgn lo,a)k log \lo,al \l"' +i-k\-a. 
'ol L.J L.J \ '"' ,-k \ O,a O,a 

a=1 k=1 Ao,a-AO,a 

Then, by the trace formula (5), the Dirichlet series C:i"(s) extends to a mero
morphic function on the whole o-plane and has a simple pole at o = 0 
whose residue will appear in (9) below. Finally, multiply the both sides of 
(5) by o and tend o to zero, then the limit is expressed, by the above 1),2) 
and 3), as follows: 

dim m(1, -~)=_!_ Res i;t(o). 
2 2 8=0 

Theorem 5.2. Let I' be a fuchsian group of the first kind not contain-

(- I 0) ing the element O _ 1 and suppose that I' has a compact fundamental 
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domain in the upper half-plane. Let d1 be the dimension for the linear space 
consisting of all holomorphic automorphic forms of weight I with respect to 
the group I'. Then the number di is given by the formula: 

(9) di=_!_ Res (t(s), 
2 ,-o 

where (t(s) denotes the Se/berg type zeta-function defined by (8). 

Remark 1. Let I' be a fuchsian group of the first kind and assume 

that I' contains the element (- 6 _ ?) , and X be a unitary representation 

of I' of degree 1 such that x( (-6 -D) = -1. Let Si(I', X) be the linear 

space of cusp forms of weight 1 on the group I' with character X, and de
note by d1 the dimension of the linear space Si(I', X). When the group I' 
has a compact fundamenal domain in the upper half plane S, we have the 

following dimension formula in the same way as in the case I' i ( - d _ ?) : 
(10) 

where the sum over {M} is taken over the distinct elliptic conjugacy 

classes of n{ ±(6 ?)}, I'(M) denotes the centralizer of Min I',~ is one 

of the eigenvalues of M, and r;:(s) denotes the Selberg type zeta-function 
defined by 

(11) ,..*(s)= ~ ~ X(pa)k log Ao,a \l1c +i-k1-•. 
',,2 L.J L.J ik i-k O,a O,a 

a=l k=l Ao,a -Ao,a 

Here Ao,a denotes the eigenvalue Oo,a> 1) of representative Pa of the primi

tive hyperbolic conjugacy classes {Pa} in I'/ { ±(6 ?) }· 

§ 5.3. The Arf invariant and di mod 2 

The purpose of this section is to prove that di mod 2 is just the Arf 
invariant of some quadratic form over a field of characteristic 2. 

1. The Arf invariant of quadratic forms mod 2 
Let V be a vector space of dimension m over a field F of characteristic 

2, Q a quadratic form on V. Then the associated polar form 
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B(x, y)=Q(x+y)+Q(x)+Q(y) 

is an alternating bilinear form. Let x1, • • • , x,,, be a symplectic basis of V 
with respect to B. It is known that the quadratic form Q(x) is equivalent 
to 

n m 

~{Q(xt)a!+atan+t+Q(xn+i)a!+t}+ ~ Q(xt)a! 
i•l i=2n+l 

for x= ~~1 atxt e V. By the radical of V we mean the subspace 

rad V={x e V\B(x, V)=O}. 

We shall say that Vis a completely regular space if rad V={O}. We now 
define the Arf invariant of Q(x) ([2]). Take a 2-dimensional completely 
regular space U over F and a basis x1, x2 for U. Thus 

Define a multiplication on these basis elements by the following relations: 

Here we put 

X~=X1@X1 = Q(X1), 

X~=X2@X2= Q(X2), 

x 1x 2+x 2x 1 =B(x 1, x 2) (= 1). 

Then we obtain the quaternion algebra C(U) with respect to U: 

C(U)=F· 1 +F·O+F·(J)+F·O(J). 

It is clear that 

where a= Q(x 1) ( *O) and c= Q(x 2). Therefore, in the separable quadratic 
field F((J)) over F, we have the norm 

N(a+ f3(J))=a2+af3+acf3 2 

for every a, f3 in F. Let p+ be the additive group of F, and <fi a homo
morphism 

and put 
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(=ac=N(w)). 

Then we call the class .d(U) mod rp(F+) the Arfinvariant of U. In general, 
let 

n 
V = J_ ui J_ rad v 

i=l 

be the orghogonal splitting of the space V into 2-dimensional completely 
regular subspaces Ui, · · ·, Un. Put 

n 

.d( V) = I: .d( Ui). 
i=l 

Then it is obvious that for a symplectic basis {x1, • • ·, xm} of V, 

n 

.d(V)= I: Q(x;)Q(xn+J· 
i=l 

Now the class .d(V) mod rp(F+) does not depend on the symplectic basis 
chosen and is called the Arf invariant of Q or the pseudo-discriminant of 
Q, and is denoted by J(Q). In this situation, we have 

Theorem 5.3.1l Let F be a perfect field, and let V be a completely 
regular space, so that m=2n. Then the following assertions hold: 

(1) Two nondegenerate quadratic forms Qi(x), Qlx) on V are equiva
lent if and only if Ll(Q1)=Ll(Q2). 

(2) Q(x)= I:l=1Xixn+i+v(x~+x;n); 
and therefore, Ll(Q)=v 2• 

2. The Atiyah invariant on spin structures 
Let M be a smooth closed oriented surface of genus g and F2 the 2-

element field. We write H1 and H 1 for H 1(M, F2) and H 1(M, F2) respec
tively. Let UM be the principal tangential S1-bundle of M. H1 and H1 

mean Hi(UM, F2) and H 1 (UM, F2), respectively. Then the sequences 

0---+F2---+ H1---+ H1---+0, 

- 0 
0---+ H 1---+ H 1---+ F2---+0 

are exact. A spin structure of M is a cohomology class ~ e H 1 whose 
restriction to each fiber is the generator of F2 : o(~)= 1. We denote by </J 
the set of spin structures of M. Let a be any homology class in H 1 and 

1> For the proof, see Dye ([9]). 
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let ii be the canonical lifting of a to fI 1 (see [34, p. 368]). If a, b are in 
H,, then we have 

,-...J -

(a+h)=ii+h+(a · b)z, 

where z denotes the generator of F2 as the fiber class and a· b denotes the 
intersection number of a, b. We define a quadratic form on the symplectic 
space H 1 over F2 as a function w: Hi--~F2 such that 

w(a+h)=w(a)+w(b) +a· b. 

Now for e E <J>, we put 

w,(a)=<e, a), 

where< , ) denotes the dual pairing of fI 1 and fI 1• Then the function w. 
is a quadratic form on H 1 in the above sense. Indeed, since <e, z)= l, 
we have 

,-...J 

w.(a+h)=<e, a+b) 

=<e, a+G+(a·b)z)) 

=<e, ii)+<e, b)+(a·h)<e, z) 

=w.(a)+w/b)+a-b. 

Let Q be the set of quadratic forms on H 1• Then, D. Johnson proved in 
[34]: 

Lemma. The mapping e-w. gives a bijection from <J) to Q. 

Next we give the Arf invariant of w<. For the canonical lifting a of 
a in Hi, the mapping on fI 1 

a: x~<x, ii) 

is linear and we denote by a the restriction of ii to <J>. Let at, h; (i= 1, 
· · ·, g) be a symplectic basis of H1, i.e., 

where o;j denotes the Kronecker symbol. We put 

Then 
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g - g ~ 

a(~)= I: al~)bl~)= E <~. a.)<~, b1) 
i=l i=l 

g 

= I:; me(ai)me(b,). 
i=l 

Therefore, a(~) mod 2 is the Arf invariant of m •. 
From now on we consider the surface Mas a closed Riemann surface 

of genus g and introduce the Atiyah invariant on M ([4], [43]). Let K be 
a canonical line bundle on M, and denote by S(M) the set of holomorphic 
line bundles L on M such that L®L~K. The elements of S(M) are 
called theta-characteristic of M. Let D be a divisor on M and let .fl'(D) 
denote the space of meromorphic functions f on M such that D + (f) ~ 0. 
We define the complete linear system of D by 

IDl={D+(f)\f e .fl'(D)}. 

Then, we have 

dim ID I= dim fl'( D) - 1. 

Let L be the associated line bundle to an effective divisor D and let I'(L) 
denote the space of holomorphic section of L. Then, since !DI is the 
projective space associated to I'(L), we have 

dim IDl=dim I'(L)-1. 

Theorem 5.4. The notation being as above, we have the following 
assertions. 

(I) For each theta-characteristic L of M, dim I'(L) mod 2 is stable 
under deformations of M and L. 

(2) The set <J) for M corresponds bijectively to the set of isomorphism 
classes in S(M). 

(3) #{Le S(M)ldim I'(L)=O mod 2}=2 8 - 1(2tr + 1). 

The first assertion (I) in Theorem 5.4 is due to Riemann. For the 
proofs of Theorem 5.4, refer to Atiyah ([4]) and Mumford ([43]). By (I) 
in Theorem 5.4, dim I'(L) mod 2 is independent of the choice of the 
complex structure on M. Now, by combining Lemma and (2) in Theorem 
5.4, we have the following diagram: 

(2) -
~ · .l dim I'(L) mod 2 

Lemma!// 
me a(~) 
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Therefore, intermediating the spin structures{.;} of M, there is a bijection 
between the isomorphic classes { l} of theta-characteristic and the quadratic 
forms {(l)e} on H 1• It is obvious that the Arf invariant a(.;) mod 2 has 
2g- 1(2g + 1) zeros. Therefore the Arf invariant a(.;) mod 2 is equal to the 
Atiyah invariant dim I'(L) mod 2. 

3. The Arf invariant and d1 mod 2 

Let M be a closed Riemann surface of genus g and K a canonical 
divisor on M. Then, an effective divisor D on M such that dim 
Y(K-D)=l=O is called special. For every special divisor D, we have O< 
deg D ~ 2g-2. Therefore, the Rimenn-Roch theorem says little for 
special divisors. 

Now, let I' be a fuchsian group of the first kind not containing the 

element (-6 -~), and suppose that the fundamental domain I'\S of I' 

is a closed Riemann surface of genus g, where S denotes the upper half
plane. We denote by P1, • • ·, P1 the point of I'\S corresponding to all 
the elliptic points of I', of order e1, • • ·, e1, respectively. Let Ai(I') denote 
the space of meromorphic automorphic forms of weight 1 with respect to 
I' and Si(I') the space of holomorphic automorphic forms of weight 1 for 
I'. We put 

For a non-zero elementfo of A 1(I'), we have 

and 

Si(I') ~ Y([ div (fo)]), 

where [D]= .6i [ni]Pi for D= .6i ntPi. Put D0 =[div (lo)]. Then 

Therefore we have deg D 0 =g- l. Hence, under d1 =1=0, the divisor D 0 is 
special and 

by the Riemann-Roch theorem. Let L0 be the associated line bundle of 
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D0• Then it is obviosu that the line bundle L 0 is a theta-characteristic on 
M. Therefore, we have 

d1 mod 2=dim 2(D 0) mod 2 

= dim I'(L 0) mod 2 

=a(~ 0) mod 2 

for the spin structure ~o corresponding to L 0• We have thus the following 

Theorem 5.5. The notation and the assumption being as above, we 
have the relation 

Remark 2. We know from Theorem 5.5 that d1 mod 2 is the number 
expressed the topological side of d1• 

Remark 3. By Clifford's theorem for special divisors, we have 

0:S::dim 2(D 0):S:: g+ 1 . 
- - 2 

But it is impossible to determine dim 2(D 0) using only the genus g of 
I'\S. For g= 1, using the above result and Theorem 5.4 we have d1 =0. 

Now, we may naturally ask the following question: 
Can one determine the Arf invariant a(~0) by the basic topological 

properties of I'? 

§ 5.4. The finite case 

Let I' be a fuchsian group of the first kind and assume that I' con

tains the element -I ( / = (6 ~)) and has a non-compact fundamental 

domain Din the space S. Let X be a unitary representation of I' of degree 
1 such that X(-1)= -1. We denote by Si(I', X) the linear space of cusp 
forms of weight 1 on the group I' with the character X and d1 the dimen
sion of the space S1(I', X). In this section we shall give a similar formula 
of the number d1 when the group I' is of finite type reduced at infinity and 
x2=1= 1. 

Since I' is of finite type reduced at oo, oo is a cusp of I' and the 

stabilizer I' 00 of oo in I' is equal to ±I'o with I' 0 = { (6 f) Im E Z }· The 

Eisenstein series Ex(z, <fa; s) attached to oo and X is then defined by 
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Ex(z, <); s)= E X(M)y• e-t<sl+arg(cz+d)), 

MEI'oo\I' \cz+d\ 28 

M=(; a) 

where s=a+ir with a> 1. The constant term in the Fourier expansion 
of Ex(z, <fi; s) at oo is given by 

ao(y, <); s)=e- v'=Isl(y• +1'rx(s)y1-•), 

,frz(s)= -,/=T J1r I'(s) E X(c, d). 

r( + 1) c>O \c\2' S - dmodc 
2 C ,j)er 

In the following we only consider the case x( (6 D) = 1. As shown 

in [26], the parabolic component J( oo) in the trace formula is given by 

J(oo)= lim {fyf 1f" 2 I: w.(z, <fi; M(z,<fi))d(z, <fi)-f fi.(z,<fi; z, <fi)d(z, ¢)} 
Y-oo O O O MEI' iJy 

M*I 

=- 1-f00 h(r) +;(!+ir) dr-1-h(O)vx(.l)+.s(o) 
47t' - 00 1/rx(½+ir) 4 2 

as lim6_ 0 o.s(o)=O. When we combine this with the formula (10), we are 
led to the following theorem which is our main purpose in this section. 

Theorem 5.6. Let I' be a fuchsian group of the first kind containing 
the element -I and suppose that I' is reduced at infinity. Let X be a one
dimensional unitary representation of I' such that X( - I)= -1, X2 ::;t: 1 and 

x( (6 D) = 1. We denote by d1 the dimension for the linear space consisting 

of cusp forms of weight 1 with respect to I' with X. Then the dimension d1 

is given by 

(12) 

where the sum over { M} is taken over the distinct elliptic conjugacy classes 
of I'/{±l}, I'(M) denotes the centralizer of Min I',, is one of the eigen
values of M, and t;[(s) denotes the Se/berg type zeta-function defined by (11) 
in Section 5.2. 

Remark 4. For a general discontinuous group I' of finite type con
taining the element -I, we obtain the contribution from parabolic classes 
to d1 in the same way as in the case of reduced at oo. 
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Remark 5. Let I' be a general discontinuous group of finite type 
not containing the element -I. Let d1 be the dimension for the space 
consisting of all cusp forms of weight 1 with respect to I'. Then we have 
the following dimension formula in a similar way as in the above case: 

(13) d1 =__!_ Res G'(s), 
2 s-o 

where l;;f(s) denotes the Selberg type zeta-function appeared in (8) of 
Section 5.2. 

We may call the formulas (12) and (13) a kind of Riemann-Roch 
type theorem for automorphic forms of weight 1 respectively. 

Remark 6. Let p be a prime number such that p = 3 mod 4, p =I= 3 
and let <Po(p) be the group generated by the group I\(p) and the element 

K=(Jp -,.;~-} Let e be the Legendre symbol on I'o(p): e(L)=(;) 

for L= (~ ~) E I' 0(p). Since e(K2)=c:(-I)= -1, we can define the odd 

character e± on the Fricke group <Po(p) such that e±(K)= ±i. Then we 
have 

We put 

Then 

d1 = dim S1(I'o(p), e) = µ:{ + µ:;. 

If a*(p) is the parabolic class number of <Po(p)/{±I}, then a*(p)= 1. As 
shown in [27], the contribution from elliptic classes to µf is given by 

__!_:z::; l ' e±(M)=+__!_h 
2 {M} [I'(M): ±I] 1-, 2 4 ' 

where h denotes the class number of Q(,./p). We also have <p,±(1/2)= 
+ 1. Let {Pa} be a complete system of representatives of the primitive 
hyperbolic conjugacy classes in I'o(p)/{±l} and let 20,a be the eigenvalue 
(20,a> 1) of representative Pa. We put 

.st*(o)=" "e(Pa)k Iog2o,a \lk +i-k\-a. 
L., L., ik i-k O,a O,a 
a=1 k=1 Ao,a-AO,a 

Then we have the following formula for d1 by Theorem 5.6: 
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(14) 
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d1 = µt +µ:;=_!_Res ,qz'*(o) 
2 o=O 

Combining the above (14) with Serre's result(:(*) in Section 4.1), we have 
the following remarkable equality 

Res ,qz'*(o)= (h-1) +4(s+ 2a). 
o=O 

§ 5.5. The trace of Hecke operators on the space of cusp forms of weight 1 

Let I' be a fuchsian group of the first kind and assume that I' does 

not contain the element (- 6 _ ~) ( = -I). Let a be an element in 

SL(2, R) ( = G) such that ara- 1 is commensurable with I' and denote by 
I'' the subgroup of G generated by I' and a. Let X be a unitary repre
sentation of I'' of degree 2.1 such that the kernel I' x of X in I' is of finite 
index in I'. We denote by L2(I'\S, X) the following set of functions f 
taking values in the representation space of X: 

{f e L2(I'\S)\f(r(z, if>))=X(r)f(z, ¢>) for all re I'}, 

and by Wcx(k, 1) the set of functions f satisfying the following conditions: 
(i) f(z, if>) E L2(I'\S, X), 
(ii) Zlf(z, cp)=Af(z, ¢>), (a/acp)f(z, ¢>)= -v=-Tkf(z, if>). 

Let SiI', X) be the linear space of cusp forms of odd weight k on the 
group I' with X taking values in the representation space of X and put 

Then 

and in particular 

Now we define the Hecke operator T(I'aI') in SiI', X). Let I'aI' 
= U i MiI' be a disjoint sum. For f(z, ¢>) E WcJk, -k(k+(l/2))), we set 
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where M-;1 = (~; ~:)· Then by the relation (15), it equals to 

e- "-lk~yk!Z I; X(M;)F( aiz+h; ) (c;z+d;)-k. 
i ciz+d; 

Therefore it induces the Hecke operator T(I'aI') acting on Sil', X): 
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In the following we shall only state the result for its trace on S1(I', X)(c.f. 
[1]). Let Ki (1 <i<h) be a complete system of I'-inequivalent cusps of I' 
and let I't be the stabilizer in I' of Kt· We put I't,o=I'tnI' 1 and denote 
by I'f,o a subgroup of index 2 in I'i,o· We take an element <1; e G such 

that a too =Ki and such that a:;1I'i<1t is generated by (b D or (-b = D 
over Z according to tc1, regular or irregular. Let E;(z, <ft; s) be the Eisenstein 
series attached to the cusp K; and X, and denote by ~!(s) the constant term 
of the Fourier expansion at K; of I;, X(M1)EtCM;1(z, <ft); s). Then we 
have the following 

Theorem 5.7. Suppose that I' does not contain the element -J. 1> 

Then the following trace formula holds: 

tr(T(I'aI'))=_!_ I; trX(M) 1 +1-Res,*(s) 
2 [M]r:elllptlc [I'(M): /] , _, 2 s-o 

- I; {./=-1 I; s(M) tr X(M) cot (rrµ(M) )} 
•;: regular 4r; {M) EB;/I';,o ri 

- I; {./=-1 I; s(M) tr X(M) cot ( rrµ(M) )} 
•;: irregular 8ri {M) EB;/I'i,o r; 

_ _!_ I;tr~t(1-). 
4 i 2 

The notation used here is defined as follows: 

[M]r: the elliptic conjugacy class in I'al', 

I'(M): the centralizer of Min I', 

,, C: the eigenvalues of M, 

rt= [I';: I';.~], 

,:, For the case I' e -I, refer to [1]. 
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if ri: even, 
if rt: odd, 

T. Hiramatsu 

Bi={M E I'aI'\Miri=iri, parabolic or/}, 

s(M) and µ(M) are defined by a;-1Mai=s(M)(6 µ(f)), s(M)= ± 1; 

* _ I: sgn A-tr X(M) log\A0 \ 

' (s)- {M)r:hyperbolic \A-A- I I \A+ A-1 \8 , 

where the sum over {M}r is taken over the distinct hyperbolic conjugacy 
classes of I'aI', A is one of the eigenvalues of M and A0 is the eigenvalue 
(> 1) of generator of I'(M). 
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