On the Eighth Power Residue of Totally Positive Quadratic Units

Noburo Ishii

§ 0. Introduction

Let p be a prime number which is congruent to 3 modulo 4 and ε_{p} the totally positive fundamental unit of the real quadratic field $F=$ $\boldsymbol{Q}(\sqrt{p})$. Let q be a prime number which is split in F and is congruent to 1 modulo 2^{n}. Then we may define 2^{n}-th power residue symbol $\left(\varepsilon_{p} / q\right)_{2^{n}}$ of ε_{p} modulo q as follows. For a prime factor 2 of q in F, we choose an integer A such that

$$
\varepsilon_{p} \equiv A \quad \bmod 2 .
$$

The integer A is uniquely determined modulo q. The symbol $\left(\varepsilon_{p} / q\right)_{2 n}$ is defined only when A is a 2^{n-1}-th power residue modulo q and given by

$$
\left(\varepsilon_{p} / q\right)_{2 n}=\left\{\begin{array}{cl}
1 & \text { if } A \text { is a } 2^{n} \text {-th power residue modulo } q \\
-1 & \text { otherwise }
\end{array}\right.
$$

This definition is independent of the choice of the prime ideal 2 and the assumption imposed on q implies the following equivalence:

$$
\begin{aligned}
\left(\varepsilon_{p} / q\right)_{2 n}=1 \Longleftrightarrow & \text { the polynomial } x^{2 n}-A \text { factors into a product of dis- } \\
& \text { tinct } 2^{n} \text { linear polynomials modulo } q .
\end{aligned}
$$

The symbol $\left(\varepsilon_{p} / q\right)_{2}\left(\right.$ resp. $\left.\left(\varepsilon_{p} / q\right)_{4}\right)$ is usually called the quadratic symbol (resp. biquadratic symbol or quartic symbol) of ε_{p} modulo q. For the given q, it is comparatively easy to determine the sign of the quadratic symbol. Thus we have

$$
\left(\varepsilon_{p} / q\right)_{2}=1 \Longleftrightarrow q \equiv 1 \bmod 8 .
$$

The evaluation of the quartic residue symbol $\left(\varepsilon_{p} / q\right)_{4}$ are studied by many authors ([1], [2], [3], [4], [5], [7]). Here we shall quote one of their results. Let r be any positive odd multiples of the class number of the imaginary
quadratic field $k=Q(\sqrt{-p})$ and q a prime number of the properties: (p / q) $=(2 / q)=1$. Then a condition on q to be $\left(\varepsilon_{p} / q\right)_{4}=1$ is given as follows. (cf. [2], [3].)

$$
\left\{\begin{array}{c}
\text { If } p \equiv 7 \bmod 8, \text { then } \tag{1}\\
\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow \text { there exists two integers } x \text { and } y \text { such that } \\
q^{r}=x^{2}+64 p y^{2}, \quad x \equiv 1 \bmod 4, \quad(x, q)=1 . \\
\text { If } p \equiv 3 \bmod 8, \text { then } \\
\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow \text { there exists two integers } \xi \text { and } \eta \text { such that } \\
q^{r}=\xi^{2}+64 p \eta^{2}, \quad \xi \equiv 1 \bmod 4, \quad(\xi, q)=1 \\
\text { or there exists two integers } \xi_{0} \text { and } \eta_{0} \text { such that } \\
q^{r}=\left(\xi_{0}^{2}+p \eta_{0}^{2}\right) / 4, \quad \xi_{0} \equiv 1 \bmod 4, \quad\left(\xi_{0}, q\right)=1 .
\end{array}\right.
$$

The purpose of this note is to determine when $\left(\varepsilon_{p} / q\right)_{8}=1$ for the prime q given by the type in the right hand side of (1). We obtain the following results:

Let $p \equiv 7 \bmod 8$. Then under the notation in (1) we have

$$
\begin{equation*}
\left(\varepsilon_{p} / q\right)_{8}=(-1)^{y+(1 / 4)(x-1)} . \tag{2}
\end{equation*}
$$

Let $p \equiv 3 \bmod 8$. Put H the class number of the biquadratic field $L=$ $Q(\sqrt{-1}, \sqrt{-p})$. Since H is odd, by (1) for $r=H$, the number q^{H} is expressed in

$$
q^{H}=\xi^{2}+64 p \eta^{2} \quad \text { or } \quad q^{H}=\left(\xi_{0}^{2}+p \eta_{0}^{2}\right) / 4, \quad \xi \equiv \xi_{0} \equiv 1 \bmod 4, \quad\left(\xi \xi_{0}, q\right)=1 .
$$

Further we can write

$$
q^{H}=a^{2}+b^{2}, \quad a \equiv 1 \bmod 4, \quad(a, q)=1 .
$$

We have

$$
\left(\varepsilon_{p} / q\right)_{8}= \begin{cases}(-1)^{\eta+(\xi+a-2) / 8} & \text { if } q^{H}=\xi^{2}+64 p \eta^{2} \tag{3}\\ (-1)^{\left(\xi_{0}+a-2\right) / 8} & \text { if } q^{H}=\left(\xi_{0}^{2}+p \eta_{0}^{2}\right) / 4\end{cases}
$$

We shall explain the way of proof of our results. Consider the fields

$$
K_{3}=\boldsymbol{Q}\left(\sqrt{-1}, \sqrt[8]{\varepsilon_{p}}\right) \supset K_{2}=\boldsymbol{Q}\left(\sqrt{-1}, \sqrt[4]{\varepsilon_{p}}\right) \supset K_{1}=\boldsymbol{Q}\left(\sqrt{-1}, \sqrt{\varepsilon_{p}}\right)
$$

For a prime number q such that $q \equiv 1 \bmod 8$ and $(p / q)=1$, we know

$$
\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow \text { the prime } q \text { decomposes completely in } K_{2}
$$

(cf. [3]). The 8-th power residue symbol represents the decomposition
between K_{3} and K_{2} of q. If $p \equiv 7 \bmod 8$, then K_{3} is an abelian extension over $k=\boldsymbol{Q}(\sqrt{-p})$. By determining the class groups attached to K_{3} and K_{2} in k, the result (2) is obtained. In the case $p \equiv 3 \bmod 8, K_{3}$ has no quadratic subfields over which K_{3} is abelian. However K_{3} is a cyclic extension of degree 8 over L. By adapting the class field theory for K_{3} / L, the result (3) is obtained. This is the reason why some congruence conditions in the fields $Q(\sqrt{-1})$ and $Q(\sqrt{-p})$ appear at the same time in the formula (3). The results (2) and (3) are given in Theorem 1 of Section 2 and in Theorem 2 of Section 3 respectively. In Section 3, we shall also prove the strengthend form of the conjecture 1 of E. Lehmer in [6]. The author would like to express his hearty thanks to Dr. Y. Mimura for helpful discussions.

\S 1. The Galois group of $Q\left(\sqrt{-1}, \sqrt[8]{\varepsilon_{p}}\right) / Q$

Let p and ε_{p} be as in Section 0. Put $F=\boldsymbol{Q}(\sqrt{p})$ and

$$
\eta=\sqrt[8]{\varepsilon_{p}} \quad \text { and } \quad \zeta=\exp (2 \pi \sqrt{-1} / 8)=(1+\sqrt{-1}) / \sqrt{2} .
$$

By Fermat's method, we know there exists an integer $s \supsetneqq 0$ such that

$$
2^{-1} \operatorname{tr}_{F / Q}\left(\varepsilon_{p}\right)=s^{2}+(-1)^{(1 / 4)(p-3)} .
$$

(cf. p. 97 of [3], Lemma 3 of this note.) Since

$$
\eta^{8}+\eta^{-8}=\operatorname{tr}_{F / Q}\left(\varepsilon_{p}\right),
$$

we have the relation

$$
\begin{equation*}
s^{-1}\left(\eta^{4}+(-1)^{(1 / 4)(p-7)} \eta^{-4}\right)=\sqrt{2}=\zeta+\zeta^{-1} \tag{4}
\end{equation*}
$$

Let $K_{3}=\boldsymbol{Q}(\sqrt{-1}, \eta)$, Then K_{3} contains ζ. Therefore K_{3} is a Galois extension over \boldsymbol{Q} generated by η and ζ. We denote by G the Galois group $G\left(K_{3} / \boldsymbol{Q}\right)$ of K_{3} over \boldsymbol{Q}. We have

Proposition 1. Let the notation be as above. Then
(i) The group G is a group of degree 32 generated by the following three elements defined by

$$
\begin{aligned}
& \sigma(\eta)=\zeta \eta ; \sigma(\zeta)=-\zeta \\
& \rho(\eta)=\eta ; \rho(\zeta)=\zeta^{7}, \\
& \varphi(\eta)=\eta^{-1} ; \varphi(\zeta)=\zeta^{-p}
\end{aligned}
$$

Furthermore σ, φ and ρ satisfy the fundamental relations

$$
\begin{equation*}
\sigma^{8}=\rho^{2}=\varphi^{2}=1, \rho \sigma \rho^{-1}=\sigma^{3}, \varphi \sigma \varphi^{-1}=\sigma^{4+p}, \varphi \rho=\rho \varphi \tag{5}
\end{equation*}
$$

(ii) If $p \equiv 7 \bmod 8$, then G contains one and only one commutative subgroup of index 2. This subgroup is generated by σ and $\varphi \rho$. If $p \equiv 3$ mod 8, then G has no commutative subgroups of index 2.

Proof. Let $G(F)$ be the Galois group of K_{3} over F. If μ is an element of $G(F)$, then μ is determined uniquely by the actions on η and ζ. Let

$$
\mu(\eta)=\zeta^{m} \eta, \quad \mu(\zeta)=\zeta^{n},
$$

where m and n are integers such that $0 \leqq m, n<8,(n, 2)=1$. By acting μ on the both sides of (4), we have

$$
\zeta^{n}+\zeta^{-n}=(-1)^{m}\left(\zeta+\zeta^{-1}\right)
$$

This shows

$$
n=1,7(\text { resp. } 3,5) \Longleftrightarrow m: \text { even (resp. odd). }
$$

Therefore we define σ and ρ by

$$
\begin{aligned}
& \sigma(\eta)=\zeta \eta ; \sigma(\zeta)=\zeta^{5}=-\zeta \\
& \rho(\eta)=\eta ; \rho(\zeta)=\zeta^{7}
\end{aligned}
$$

We see easily

$$
\sigma^{8}=\rho^{2}=1, \quad \rho \sigma=\sigma^{3} \rho, \quad G(F)=\langle\rho, \sigma\rangle
$$

Let λ be an element of G not belonging to $G(F)$. Then

$$
\lambda\left(\eta^{8}\right)=\lambda\left(\varepsilon_{p}\right)=\varepsilon_{p}^{-1}=\eta^{-8}
$$

Thus we may put

$$
\lambda(\eta)=\zeta^{u} / \eta, \quad \lambda(\zeta)=\zeta^{v}
$$

where u and v are integers. By acting λ on (4) we obtain

$$
\zeta^{v}+\zeta^{-v}=(-1)^{u+(1 / 4)(p-7)}\left(\zeta+\zeta^{-1}\right) .
$$

From this we can take an element φ not belonging to $G(F)$ as

$$
\varphi(\eta)=\eta^{-1} ; \quad \varphi(\zeta)=\zeta^{-p}
$$

Immediately we have

$$
\varphi^{2}=1, \quad \varphi \rho=\rho \varphi, \quad \varphi \sigma=\sigma^{4+p} \varphi, \quad G=\langle\sigma, \rho, \varphi\rangle
$$

Next we shall prove (ii). Suppose that H is a commutative subgroup of G of index 2. Then H contains $\left\langle\sigma^{4}\right\rangle$. The factor group $\bar{H}=H /\left\langle\sigma^{4}\right\rangle$ is the commutative subgroup of the Galois group $G\left(K_{2} / Q\right)$ where K_{2} is a subfield of K_{3} generated by $\sqrt[4]{\varepsilon_{p}}$ and $\sqrt{-1}$. In Section 2 of [3], we know that there are only three commutative subgroups of index 2 in $G\left(K_{2} / \boldsymbol{Q}\right)$. They are given as follows.

$$
\langle\bar{\sigma}, \bar{\varphi} \bar{\rho}\rangle, \quad\left\langle\bar{\sigma}^{2}, \bar{\varphi}, \bar{\rho}\right\rangle, \quad\left\langle\bar{\sigma}^{2}, \bar{\sigma} \bar{\varphi}, \bar{\sigma} \bar{\rho}\right\rangle,
$$

where for the element α of $G, \bar{\alpha}$ denotes the restriction of α to K_{2}. Thus H coincides with one of the three subgroups

$$
\langle\sigma, \varphi \rho\rangle,\left\langle\sigma^{2}, \varphi, \rho\right\rangle,\left\langle\sigma^{2}, \sigma \varphi, \sigma \rho\right\rangle .
$$

By (5) we see

$$
\sigma \varphi \rho=\varphi \rho \sigma^{4+3 p}, \quad \sigma^{2} \rho=\rho \sigma^{6}, \quad \sigma^{2}(\sigma \rho)=(\sigma \rho) \sigma^{6} .
$$

This shows that $\left\langle\sigma^{2}, \varphi, \rho\right\rangle$ and $\left\langle\sigma^{2}, \sigma \varphi, \sigma \rho\right\rangle$ are non-commutative and that $\langle\sigma, \varphi \rho\rangle$ is commutative only when $p \equiv 7 \bmod 8$.
Q.E.D.

Corollary 1.

(i) If $p \equiv 7 \bmod 8, K_{3}$ contains one and only one quadratic subfield over which K_{3} is abelian. This quadratic subfield is $\boldsymbol{Q}(\sqrt{ } \overline{-p})$.
(ii) If $p \equiv 3 \bmod 8$, then K_{3} contains no quadratic subfields over which K_{3} is abelian. $\quad K_{3}$ is a cyclic extension of degree 8 over L.

Proof. In Section 2 of [3], we obtained the field of invariants of the group $\langle\bar{\sigma}, \bar{\varphi} \bar{\rho}\rangle$ is $\boldsymbol{Q}(\sqrt{-p})$. Therefore our statements follow from (ii) of Proposition 1.
Q.E.D.

We shall explain the notation to be used in the following. Let \mathscr{K} be a finite abelian extension over the number field \mathscr{F}. Then we denote by $f(\mathscr{K} \mid \mathscr{F})$ the conductor of \mathscr{K} over \mathscr{F}. For an integral ideal \mathfrak{a} of \mathscr{F}, we denote by $H_{s}(\mathfrak{a})$ the maximal ray class group defined $\bmod a$ and by $P_{s}(\mathfrak{a})$ the subgroup of $H_{\mathscr{F}}(\mathfrak{a})$ generated by the principal classes. For an integral ideal \mathfrak{b} prime to \mathfrak{a}, we denote by [$\mathfrak{b}]$ the class of $H_{\mathscr{F}}(\mathfrak{a})$ represented by \mathfrak{b}. If \mathfrak{b} is principal, i.e. $\mathfrak{b}=(b)$, then we write [b] instead of [(b)]. For an intermediate field \mathscr{L} of \mathscr{K} over \mathscr{F}, we denote by $C_{\mathscr{F}}(\mathscr{L})$ the subgroup of $H_{\mathscr{F}}(f(\mathscr{K} / \mathscr{F}))$ corresponding to \mathscr{L} by Artin reciprocity law. Further we put

$$
C_{\mathscr{F}}^{*}(\mathscr{L})=C_{\mathscr{F}}(\mathscr{L}) \cap P_{\mathscr{F}}(f(\mathscr{K} / \mathscr{F}))
$$

Consider the following sequence of subfields of K_{3},

$$
\begin{aligned}
K_{3} \supset K_{2} & =\boldsymbol{Q}\left(\sqrt{-1}, \sqrt[4]{\varepsilon_{p}}\right) \supset K_{1}=\boldsymbol{Q}\left(\sqrt{-1}, \sqrt{\varepsilon_{p}}\right) \supset L \\
& =\boldsymbol{Q}(\sqrt{-1}, \sqrt{-p}) \supset k=\boldsymbol{Q}(\sqrt{-p}) .
\end{aligned}
$$

Proposition 2. Let the notation be as above. Then
(i) If $p \equiv 7 \bmod 8$, then K_{3} is abelian over k and the conductors of intermediate fields over k are given as follows.

$$
f(L / k)=(4), f\left(K_{i} / k\right)=\left(2^{i+2}\right) \quad \text { for } i=1,2,3 .
$$

(ii) If $p \equiv 3 \bmod 8$, then K_{3} is abelian over L and the conductors of the intermediate fields over L are given as follows.

$$
f\left(K_{i} / L\right)=\left(2^{i+1}\right) \quad \text { for } i=1,2,3 .
$$

Proof. We know the exponent of quadratic defect $S_{L}\left(\varepsilon_{p}\right)$ of ε_{p} at L equals to 1 . Thus we see immediately $S_{K_{1}}\left(\sqrt{\varepsilon_{p}}\right)=S_{K_{2}}\left(\sqrt[4]{\varepsilon_{p}}\right)=1$. By Lemmas 1 and 4 of [3], we have our results.
Q.E.D.

§ 2. The case $\boldsymbol{p} \equiv \mathbf{7} \bmod 8$

Put $K_{0}=L$. For brevity's sake, we will write C_{i} instead of $C_{k}^{*}\left(K_{i}\right)$ for every $i \geqq 0$. Let h be the class number of k. Since h is odd, we have the following isomorphisms between groups;

$$
\begin{aligned}
& G\left(K_{3} / k\right) \underset{\text { Artin map }}{\sim} H_{k}((32)) / C_{k}\left(K_{3}\right) \xrightarrow{\sim} \\
& {[\mathfrak{a}] \longrightarrow } P_{k}((32)) / C_{3} . \\
& {[\mathfrak{a}]^{n} }
\end{aligned}
$$

Let (2) $=\mathscr{P} \mathscr{P}^{\prime}$ be the decomposition of the ideal (2) in k. Take two integers A and B of k such that

$$
\begin{array}{ll}
A \equiv 5 \bmod \mathscr{P}^{5} ; & A \equiv 1 \bmod \mathscr{P}^{15} \\
B \equiv-1 \bmod \mathscr{P}^{5} ; & B \equiv 1 \bmod \mathscr{P}^{15} .
\end{array}
$$

Then it is easy to see

$$
\left\{\begin{array}{l}
P_{k}((32))=\left\langle[A],\left[A^{\rho}\right],[B]\right\rangle, \tag{6}\\
{[A]\left[A^{\rho}\right]=[5],[A]^{8}=\left[A^{\rho}\right]^{8}=1,} \\
{[B]=\left[B^{\rho}\right],[B]^{2}=1 .}
\end{array}\right.
$$

Lemma 1. The class groups C_{2} and C_{3} are given by

$$
\begin{aligned}
& C_{2}=\left\langle[A]^{4},\left[A^{\rho}\right]^{4},[A] \cdot\left[A^{\rho}\right]\right\rangle, \\
& C_{3}=\left\langle[A]^{5} \cdot\left[A^{\rho}\right]\right\rangle .
\end{aligned}
$$

Proof. For an integer a dividing 32, put

$$
K(a)=\operatorname{Ker}\left(P_{k}((32)) \xrightarrow{\text { can. }} P_{k}((a))\right) .
$$

Then it is easy to see

$$
\begin{aligned}
& K(2)=P_{k}((32)) \\
& K\left(2^{i+1}\right)=\left\langle[A]^{2 i-1},\left[A^{\rho}\right]^{2 i-1}\right\rangle \quad(i=1,2,3 \text { and } 4) .
\end{aligned}
$$

By (i) of Proposition 2, we know

$$
C_{i} \supset K\left(2^{i+2}\right), \downarrow K\left(2^{i+1}\right), \quad \text { for every } i .
$$

This shows

$$
\begin{aligned}
& C_{0}=K(4)=\left\langle[A],\left[A^{\rho}\right]\right\rangle, \\
& C_{i} \ni[A]^{2 i}, \quad\left[A^{\rho}\right]^{2 i}, \quad \ngtr[A]^{2 i-1}, \quad\left[A^{\rho}\right]^{2 i-1}, \quad \text { for } i \geqq 1 .
\end{aligned}
$$

Further $G\left(K_{2} / \boldsymbol{Q}\right)$ is non-commutative. Therefore we have

$$
C_{2} \nRightarrow[A] \cdot\left[A^{\rho}\right]^{-1} .
$$

Since C_{i+1} is a subgroup of C_{i} of index 2 for every i, we see

$$
\begin{aligned}
& C_{1}=\left\langle[A]^{2},\left[A^{\rho}\right]^{2},[A] \cdot\left[A^{\rho}\right]\right\rangle, \\
& C_{2}=\left\langle[A]^{4},\left[A^{\rho}\right]^{4},[A] \cdot\left[A^{\rho}\right]\right\rangle=\left\langle[A]^{4},[A] \cdot\left[A^{\rho}\right]\right\rangle .
\end{aligned}
$$

From the relation $\rho \sigma \rho^{-1}=\sigma^{3}$ in G it follows

$$
\left[A^{\rho}\right] \cdot[A]^{-3} \in C_{3}
$$

Hence we have

$$
C_{3}=\left\langle[A]^{5} \cdot\left[A^{\rho}\right]\right\rangle .
$$

Q.E.D.

Lemma 2. Put $\omega=\frac{1}{2}(1+\sqrt{-p})$. Let $S=x+y \omega$ be an integer of k. Then
$[S] \in C_{2} \Longleftrightarrow x:$ odd, $y \equiv 0 \bmod 16$.
Let $[S] \in C_{2}$ and suppose $x \equiv 1 \bmod 4 . \quad$ Then

$$
[S] \in C_{3} \Longleftrightarrow \frac{1}{4}(x-1)+y / 16 \equiv 0 \bmod 2 .
$$

Proof. By easy calculation we know

$$
\begin{aligned}
& A A^{\rho} \equiv 5 \bmod 32, \quad A^{4} \equiv 17+16 \omega \bmod 32 \\
& A^{5} A^{\rho} \equiv 21+16 \omega \bmod 32
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{aligned}
C_{2} & =\langle[5],[17+16 \omega]\rangle=\{[x+y \omega] \mid x \equiv 1 \bmod 4, y \equiv 0 \bmod 16\}, \\
C_{3} & =\langle[21+16 \omega]\rangle \\
& =\left\{[x+y \omega] \left\lvert\, \begin{array}{l}
x \equiv 1 \bmod 4, y \equiv 0 \bmod 16, \\
x \text { is square } \bmod 32 \text { if and only if } y \equiv 0 \bmod 32
\end{array}\right.\right\} .
\end{aligned}
$$

If $x \equiv 1 \bmod 4$, then
x is square $\bmod 32 \Longleftrightarrow x \equiv 1 \bmod 8$.
Hence

$$
[S] \in C_{3} \Longleftrightarrow \frac{1}{4}(x-1) \equiv y / 16 \bmod 2 .
$$

Q.E.D.

Theorem 1. Let h be the class number of k and q a prime number such that $q \equiv 1 \bmod 4$ and $(p / q)=1$. Then we have $\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow\left\{\begin{array}{l}\text { there exists uniquely determined integers } a \text { and } b \text { such that } \\ q^{h}=a^{2}+64 p b^{2}, \quad a \equiv 1 \bmod 4, \quad(a, q)=1, \quad b>0 .\end{array}\right.$

Further, in the above case, we have

$$
\left(\varepsilon_{p} / q\right)_{8}=(-1)^{(1 / 4)(a-1)+b} .
$$

Proof. Let 2 be a prime factor of q in k and put

$$
\mathscr{2}^{h}=(x+y \omega), \quad x \equiv 1 \bmod 4 .
$$

Then we see

$$
\begin{aligned}
\left(\varepsilon_{p} / q\right)_{4}=1 & \Longleftrightarrow 2 \text { decomposes completely in } K_{2} \\
& \Longleftrightarrow[x+y \omega] \in C_{2} .
\end{aligned}
$$

By Lemma 2 we have $y=16 b$ for an integer b. Further we have

$$
x+y \omega=(x+8 b)+8 b \sqrt{-p} .
$$

Put $a=x+8 b$. Then $a \equiv 1 \bmod 4$ and $q^{h}=a^{2}+64 p b^{2}$. Again by Lemma 2,

$$
\begin{aligned}
\left(\varepsilon_{p} / q\right)_{8}=1 & \Longleftrightarrow 2 \text { decomposes completely in } K_{3} \\
& \Longleftrightarrow[a+8 b \sqrt{-p}] \in C_{3} \\
& \Longleftrightarrow \frac{1}{4}(a-1)+b \equiv 0 \bmod 2 .
\end{aligned}
$$

Remark. In [6], E. Lehmer conjectured

$$
\left(\varepsilon_{7} / q\right)_{8}=(-1)^{b+d}
$$

for the prime numbers q such that $q \equiv 1 \bmod 16$ and $\left(\varepsilon_{7} / q\right)_{4}=1$, where b and d are integers given by $q=a^{2}+16 b^{2}=c^{2}+448 d^{2}$. This conjecture does not hold for $q=449$, since in this case we have $b=5, d=1$ and $\left(\varepsilon_{7} / q\right)_{8}=$ -1 . See the next numerical examples.

Numerical examples. Let $p=7$.
(a) $q=449=1^{2}+448 \cdot 1^{2}:\left(\varepsilon_{7} / q\right)_{8}=-1$.

$$
\varepsilon_{7}=8+3 \sqrt{7} \equiv 8+3 \cdot 160 \equiv 39 \equiv 200^{2} \equiv 149^{4} \equiv \text { NO } \bmod 449 .
$$

Here the notation "NO" implies that 149 is not square mod 449 .
(b) $q=617=13^{2}+448 \cdot 1^{2}:\left(\varepsilon_{7} / q\right)_{8}=1$.

$$
\varepsilon_{7} \equiv 8+3 \cdot 161 \equiv 491 \equiv 209^{2} \equiv 120^{4} \equiv 103^{8} \bmod 617
$$

(c) $q=1801=(-3)^{2}+448 \cdot 2^{2}:\left(\varepsilon_{7} / q\right)_{8}=-1$.

$$
\varepsilon_{7} \equiv 8+3 \cdot 746 \equiv 445 \equiv 801^{2} \equiv 314^{4} \equiv \mathrm{NO} \bmod 1801
$$

§ 3. The case $\boldsymbol{p} \equiv \mathbf{3} \bmod 8$

Let R be the maximal order of L. Then R is a free module of rank 4 over Z generated by $1, \omega, \sqrt{-1}, \sqrt{-1} \omega$, where $\omega=\frac{1}{2}(1+\sqrt{-p})$.

The prime number 2 has unique prime divisor \mathscr{P} in L and decomposes in (2) $=\mathscr{P}^{2}$. The prime ideal \mathscr{P} is a free module over \boldsymbol{Z} generated by 2 , $1+\sqrt{-1}, 1+\sqrt{p}, 1+\sqrt{-p}$. Therefore we have,

$$
\begin{aligned}
& \text { for an integer } \alpha=X+\sqrt{-1} Y+(Z+\sqrt{-1} W) \omega \\
& \text { of } L(X, Y, Z, W \in Z),
\end{aligned}
$$

$$
\begin{align*}
\alpha \in\left(2^{e}\right) \Longleftrightarrow & X \equiv Y \equiv Z \equiv W \equiv 0 \bmod 2^{e}, \\
\alpha \in\left(2^{e}\right) \mathscr{P} \Longleftrightarrow & X \equiv Y \equiv Z \equiv W \equiv 0 \bmod 2^{e} \tag{7}\\
& X-Y \equiv Z-W \equiv 0 \bmod 2^{e+1} .
\end{align*}
$$

Since L has two archimedean places, the rank of the unit group R^{\times}of L equals to 1 . The fundamental unit E of L is given in the following

Lemma 3. Let p be a prime number such that $p \equiv 3 \bmod 4 . \quad$ Let ε_{p} be the totally positive fundamental unit of $F=\boldsymbol{Q}(\sqrt{p})$. Then there exists two positive odd integers s and t such that

$$
\varepsilon_{p}=s^{2}+(-1)^{(1 / 4)(p-3)}+s t \sqrt{p} .
$$

Further a fundamental unit E of L is given by

$$
E=\frac{1}{2}(s-t)+\frac{1}{2}(s+t) \sqrt{-1}+t(1-\sqrt{-1}) \omega
$$

Proof. Write

$$
\varepsilon_{p}=u E^{\imath}, \quad N_{L / F}(E)=\varepsilon_{p}^{k}
$$

where u is a root of unity contained in L and l and k are rational integers. Then we have $k l=2$ and we can assume $k>0$. Let H, h, h^{\prime} be the class number of L, k and F respectively. It is well-known that

$$
H k=h h^{\prime} .
$$

Since h and h^{\prime} are odd integers, we have $k=1$ and $l=2$. If $p=3$, then we may take $s=t=1$. Therefore we may assume $p>3$. Put

$$
E=\frac{1}{2}(X+\sqrt{-1} Y)+\frac{1}{2}(Z+\sqrt{-1} W) \sqrt{-p}
$$

where X, Y, Z and W are integers with properties:

$$
X-Z \equiv Y-W \equiv 0 \bmod 2
$$

If $Y=Z=0$ or $X=W=0$, then E is written in the product of a power of ε_{p} and a root of unity. Thus these cases are outside of our consideration. Since

$$
N_{L / Q(\sqrt{-1})}(E)=\frac{1}{4}\left(X^{2}-Y^{2}+p\left(Z^{2}-W^{2}\right)\right)+\frac{1}{2}(X Y+p Z W) \sqrt{-1} \in\langle\sqrt{-1}\rangle
$$

we have one of the next relations (8) and (9);

$$
\begin{align*}
& X^{2}-Y^{2}+p\left(Z^{2}-W^{2}\right)= \pm 4: X Y+p Z W=0 \tag{8}\\
& X^{2}-Y^{2}+p\left(Z^{2}-W^{2}\right)=0: X Y+p Z W= \pm 2 \tag{9}
\end{align*}
$$

Furthermore we have

$$
\begin{aligned}
E^{2}= & \frac{1}{4}\left(X^{2}-Y^{2}-p\left(Z^{2}-W^{2}\right)\right)-\frac{1}{2}(X W+Y Z) \sqrt{p} \\
& +\sqrt{-1}\left(\frac{1}{2}(X Y-p Z W)+\frac{1}{2}(X Z-W Y) \sqrt{p}\right) .
\end{aligned}
$$

Since $E^{2}=u \varepsilon_{p}$, where u is a 4-th root of unity, one of the following relations (10) and (11) holds true.

$$
\begin{gather*}
X^{2}-Y^{2}-p\left(Z^{2}-W^{2}\right)=0: \quad X W+Y Z=0 \tag{10}\\
X Y-p Z W=0: \quad X Z-W Y=0 \tag{11}
\end{gather*}
$$

Therefore we have four possibilities. By easy arguments, we know only the combination of (9) and (10) holds true. In this case we obtain

$$
\begin{aligned}
& X=-Y: Z=W \quad \text { or } \quad X=Y: Z=-W \\
& Y^{2}-p W^{2}=2(-1)^{(1 / 4)(p-7)} .
\end{aligned}
$$

Since

$$
\varepsilon_{p}=N_{L / F}(E)=\frac{1}{2}\left(Y^{2}+p W^{2}\right)+Y W \sqrt{p}=Y^{2}+(-1)^{(1 / 4)(p-3)}+Y W \sqrt{p},
$$

we may take $s=|Y|$ and $t=|W|$.
Q.E.D.

In the following, for $i=1,2$ and 3 , put $C_{i}=C_{L}^{*}\left(K_{i}\right)$. Since H is odd, we have the following isomorphisms between cyclic groups of order 8.

$$
\begin{aligned}
& G\left(K_{3} / L\right) \xrightarrow[\text { Artin map }]{\sim} H_{L}((16)) / C_{L}\left(K_{3}\right) \sim \\
& {[\mathfrak{a}] \longmapsto } P_{L}((16)) / C_{3} . \\
& {[\mathfrak{a}]^{H} }
\end{aligned}
$$

Let \hat{R} be the completion of R at \mathscr{P} and $\widehat{\mathscr{P}}$ the unique prime ideal of \hat{R}. Then $\pi=1+\sqrt{-1}$ is a prime element of \hat{R}. For every integer $n>0$, put

$$
U_{n}=1+\hat{\mathscr{P}}^{n}
$$

Let A be an integer of k such that $A^{3} \equiv 1 \bmod 16$. For example we can take A as

$$
A= \begin{cases}2 u-(1+4 u) \omega & \text { if } p=3+8 u \equiv 3 \bmod 16 \tag{12}\\ 2(u+2)+(7-4 u) \omega & \text { if } p=3+8 u \equiv 11 \bmod 16\end{cases}
$$

Since R^{\times}is contained in U_{1}, We have the following isomorphism:

$$
\begin{equation*}
P_{L}((16)) \xrightarrow{\sim}\langle\bar{A}\rangle \otimes\left(U_{1} / U_{8}\right) / V, \tag{13}
\end{equation*}
$$

where \bar{A} denotes the class of \hat{R}^{\times} / U_{8} represented by A and V denotes the subgroup of U_{1} / U_{8} generated by the classes represented by the elements of R^{\times}.

Lemma 4. Let E be the unit of L given in Lemma 3. Consider the
following five integers of L such that

$$
\begin{array}{ll}
B=1+A \pi^{4}, & D_{1}=1+\pi^{3}, \quad D_{2}=1+A \pi^{3} \\
S=1+\pi^{2}, & T=1-\pi=-\sqrt{-1}
\end{array}
$$

Then these six elements E, B, D_{1}, D_{2}, S and T generate $U_{1} \bmod U_{8}$. Further we have the following congruences;

$$
\begin{align*}
& S T^{2} \equiv B D_{2}^{2} \cdot\left(B D_{2}^{2}\right)^{\varphi} \bmod U_{8} \\
& D_{2}^{\varphi} D_{1} \equiv D_{2}^{7} \bmod U_{8} \tag{14}\\
& D_{2}^{\varphi \rho} \equiv D_{2}^{5} \cdot\left(B D_{2}^{2}\right)^{3} \cdot S^{2} \cdot D_{1}^{-2} \cdot\left(D_{1} D_{2}\right)^{4} \bmod U_{8}
\end{align*}
$$

Proof. By (12) we know

$$
\omega \equiv A \bmod \pi^{2} .
$$

Therefore from the Lemma 3 it follows

$$
E \equiv 1+A_{0} \pi \bmod \pi^{2}
$$

where A_{0} is A or A^{2}. From this we have

$$
E^{2} \equiv 1+A_{0}^{2} \pi^{2} \bmod \pi^{4}, \quad E^{4} \equiv 1+\pi^{4} \bmod \pi^{5}
$$

Let $\alpha=1+a \pi^{i} \in U_{i}$ with $a \in \hat{R}^{\times}$. Then we note for $i \geqq 3$,

$$
\alpha^{2} \equiv 1+a \pi^{i+2} \bmod \pi^{i+3}
$$

Since the group U_{i} / U_{i+1} is isomorphic to $Z /(2) \oplus Z /(2)$ for $i \geqq 1$, we have
E and T generate $U_{1} \bmod U_{2}$,
E^{2} and S generate $U_{2} \bmod U_{3}$,
D_{1} and D_{2} generate $U_{3} \bmod U_{4}$,
E^{4} and B generate $U_{4} \bmod U_{5}$,
D_{1}^{2} and D_{2}^{2} generate $U_{5} \bmod U_{6}$,
E^{8} and B^{2} generate $U_{6} \bmod U_{7}$,
D_{1}^{4} and D_{2}^{4} generate $U_{7} \bmod U_{8}$.
Hence we have inductively

$$
\left\{\begin{array}{l}
U_{7} / U_{8}=\left\langle\bar{D}_{1}^{4}, \bar{D}_{2}^{4}\right\rangle, \quad U_{6} / U_{8}=\left\langle\bar{E}^{8}, \bar{B}^{2}, \bar{D}_{1}^{4}, \bar{D}_{2}^{4}\right\rangle \tag{15}\\
U_{5} / U_{8}=\left\langle\bar{E}^{8}, \bar{B}^{2}, \bar{D}_{1}^{2}, \bar{D}_{2}^{2}\right\rangle, \quad U_{4} / U_{8}=\left\langle\bar{E}^{4}, \bar{B}, \bar{D}_{1}^{2}, \bar{D}_{2}^{2}\right\rangle \\
U_{3} / U_{8}=\left\langle\bar{E}^{4}, \bar{B}, \bar{D}_{1}, \bar{D}_{2}\right\rangle, \quad U_{2} / U_{8}=\left\langle\bar{E}^{2}, \bar{S}, \bar{B}, \bar{D}_{1}, \bar{D}_{2}\right\rangle, \\
U_{1} / U_{8}=\left\langle\bar{E}, \bar{T}, \bar{S}, \bar{B}, \bar{D}_{1}, \bar{D}_{2}\right\rangle
\end{array}\right.
$$

where $\bar{E}, \bar{B}, \cdots, \bar{S}$ and \bar{T} denote the classes of U_{1} / U_{8} represented by E, \cdots, S and T respectively. The relation (14) is obtained from the direct calculation.

Corollary 2. The degree of the class group $P_{L}((16))$ is 3.4^{5} and we have the following isomorphism:

$$
P_{L}((16)) \xrightarrow{\sim}\left\langle[B],\left[D_{1}\right],\left[D_{2}\right],[S]\right\rangle \otimes\langle[A]\rangle .
$$

Proof. This is obvious from (13) and Lemma 4.
Q.E.D.

Lemma 5. Let the notation be as above. Then

$$
\begin{aligned}
& C_{2}=\left\langle[B]\left[D_{2}\right]^{2},\left[D_{1}\right],\left[D_{2}\right]^{4},[S]\right\rangle \otimes\langle[A]\rangle, \\
& C_{3}=\left\langle[B]\left[D_{2}\right]^{6},\left[D_{1}\right],[S]\right\rangle \otimes\langle[A]\rangle .
\end{aligned}
$$

Proof. For $1 \leqq n \leqq 8$, put

$$
K\left(\mathscr{P}^{n}\right)=\operatorname{ker}\left(P_{L}((16)) \xrightarrow{\text { can. }} P_{L}\left(\mathscr{P}^{n}\right)\right) .
$$

Then obviously we see

$$
K\left(\mathscr{P}^{n}\right)=\langle[x]| x \in R, x \in U_{n}\left|U_{8}\right\rangle .
$$

By (15) we know $K\left(\mathscr{P}^{n}\right)$ explicitly. By (ii) of Proposition 2, we have

$$
\begin{equation*}
C_{i} \supset K\left(\mathscr{P}^{2 i+2}\right), \quad \not \supset K\left(\mathscr{P}^{2 i+1}\right) \quad(i=1,2,3) . \tag{16}
\end{equation*}
$$

We note that C_{i} is G-invariant and C_{i+1} is a subgroup of C_{i} of index 2 for every i. First of all we shall determine the group C_{1}. By (16) we know

$$
C_{1} \supset\left\langle[B],\left[D_{1}\right]^{2},\left[D_{2}\right]^{2}\right\rangle .
$$

Since $G\left(K_{1} / Q\right)$ is commutative, we see

$$
\left[D_{2}\right]^{\varphi} \cdot\left[D_{2}\right]^{-1} \in C_{1} .
$$

Thus, it follows from (14)

$$
\begin{aligned}
& {[S]=\left([B] \cdot\left[D_{2}\right]^{2}\right)\left([B] \cdot\left[D_{2}\right]^{2}\right)^{\varphi} \in C_{1},} \\
& {\left[D_{1}\right]=\left(\left[D_{2}\right]^{\varphi} \cdot\left[D_{2}\right]^{-1}\right)^{-1} \cdot\left[D_{2}\right]^{6} \in C_{1} .}
\end{aligned}
$$

By Corollary 2, we have

$$
C_{1}=\left\langle[B],\left[D_{1}\right],[S],\left[D_{2}\right]^{2}\right\rangle \otimes\langle[A]\rangle .
$$

Next we shall calculate C_{2}. Since $\left[D_{1}\right]^{2} \in C_{2}$, we deduce from (16)

$$
C_{2} \nexists\left[D_{2}\right]^{2} .
$$

This shows that $\left[D_{2}\right]$ generates $P_{L}((16)) \bmod C_{2}$. The relation (5) implies

$$
\left[D_{2}\right]^{\varphi} \cdot\left[D_{2}\right]^{-3}, \quad\left[D_{2}\right]^{\varphi \rho} \cdot\left[D_{2}\right]^{-1} \in C_{2} .
$$

This shows

$$
\left[D_{1}\right],[B] \cdot\left[D_{2}\right]^{2},[S] \in C_{2} .
$$

Therefore we have

$$
C_{2}=\left\langle[S],\left[D_{1}\right],[B] \cdot\left[D_{2}\right]^{2},\left[D_{2}\right]^{4}\right\rangle \otimes\langle[A]\rangle .
$$

Consider the group C_{3}. Since $\left[D_{1}\right]^{2} \in C_{3}$, we see by (16)

$$
\left[D_{2}\right]^{4} \notin C_{3} .
$$

Thus the class $\left[D_{2}\right]$ generates $P_{L}((16)) \bmod C_{3}$. By (5) we obtain

$$
\left[D_{2}\right]^{\varphi} \cdot\left[D_{2}\right]^{-7},\left[D_{2}\right]^{\varphi \rho} \cdot\left[D_{2}\right]^{-5} \in C_{3} .
$$

By the result for C_{2} and (14) we have

$$
\left[D_{1}\right]=\left(\left[D_{2}\right]^{\varphi} \cdot\left[D_{2}\right]^{-7}\right)^{-1},[S]^{2},\left([B] \cdot\left[D_{2}\right]^{2}\right)^{2} \in C_{3} .
$$

Thus

$$
[B] \cdot\left[D_{2}\right]^{6}=\left(\left[D_{2}\right]^{\varphi \rho} \cdot\left[D_{2}\right]^{-5}\right) \cdot\left[D_{1}\right]^{-2} \cdot[S]^{-2} \cdot\left([B] \cdot\left[D_{2}\right]^{2}\right)^{-2} \in C_{3} .
$$

From this especially we have, because of $\left[D_{2}\right]^{4} \notin C_{3}$,

$$
[B] \cdot\left[D_{2}\right]^{2},\left([B] \cdot\left[D_{2}\right]^{2}\right)^{\varphi} \notin C_{3} .
$$

Therefore

$$
[S] \in C_{3} .
$$

Hence

$$
C_{3}=\left\langle[B] \cdot\left[D_{2}\right]^{6},\left[D_{1}\right],[S]\right\rangle \otimes\langle[A]\rangle .
$$

Lemma 6. Let (α) be the principal integral ideal of L whose generator α satisfies the condition $\alpha \equiv 1 \bmod \mathscr{P}$. Then we have
$[\alpha] \in C_{2} \Longleftrightarrow$ The ideal (α) has the generator β of the following type: $\beta=x+2 y \sqrt{-1}+(8 z+4 \sqrt{-1} w) \omega, x, y, z, w \in Z, x \equiv 1 \bmod 4$.

Further suppose $[\alpha] \in C_{2}$ and (α) has the generator of the above type. Then

$$
[\alpha] \in C_{3} \Longleftrightarrow z \equiv y w \bmod 2 .
$$

Proof. By (7), we know that (α) has a generator of the form:

$$
X+Y \sqrt{-1}+(Z+\sqrt{-1} W) \omega, \quad X \equiv 1 \bmod 4, \quad Y \equiv Z-W \equiv 0 \bmod 2 .
$$

By the definitions of S and D_{1}, we see

$$
\left\langle[S],\left[D_{1}\right]\right\rangle=\{[X+\sqrt{-1} Y] \mid X \equiv 1 \bmod 4, Y \equiv 0 \bmod 2\} .
$$

Since

$$
\begin{array}{rlr}
B D_{2}^{2} & \equiv 1+8 \sqrt{-1}+(8+4 \sqrt{-1}) \omega \bmod 16, \\
D_{2}^{4} & \equiv 1+(8+8 \sqrt{-1}) \omega & \bmod 16
\end{array}
$$

we have

$$
\begin{aligned}
& C_{2}=\{[X+\sqrt{-1} Y+(Z+\sqrt{-1} W) \omega] \mid \\
&X \equiv 1 \bmod 4, Y \equiv 0 \bmod 2, Z \equiv 0 \bmod 8, W \equiv 0 \bmod 4\}
\end{aligned}
$$

It is easy to see the group C_{3} is generated by $[S],\left[D_{1}\right]$ and $[1-4 \sqrt{-1} \omega]$. Obviously we have

$$
\langle[1-4 \sqrt{-1} \omega]\rangle=\{[1+4 b \sqrt{-1} \omega] \mid b \in Z\} .
$$

Since any element ν of C_{3} is a product of an element $[X+\sqrt{-1} Y] \in$ $\left\langle[S],\left[D_{1}\right]\right\rangle$ and an element $[1+4 b \sqrt{-1} \omega] \in\langle[1-4 \sqrt{-1} \omega]\rangle$, the class ν has a generator ν_{0} such that

$$
\begin{aligned}
& \nu_{0} \equiv(X+Y \sqrt{-1})(1+4 b \sqrt{-1} \omega) \\
& \equiv X+Y \sqrt{-1}+4 b(-Y+\sqrt{-1}) \omega \bmod 16
\end{aligned}
$$

If we put $\nu_{0}=x+2 y \sqrt{-1}+(8 z+4 \sqrt{-1} w) \omega, x, y, z, w \in Z$, then the above congruence shows

$$
z+y w \equiv 0 \bmod 2
$$

Converse part is obvious.
Q.E.D.

Theorem 2. Let H be the class number of L. Let q be a prime number such that $q \equiv 1 \bmod 8$ and $(p / q)=1$. Then we have
$\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow\left\{\begin{array}{l}\text { there exists uniquely determined integers } \xi \text { and } \eta \text { such } \\ \text { that } \xi \equiv 1 \bmod 4,(\xi, q)=1, \eta>0 \text { and they satisfy one of } \\ \text { the following relations: } \\ q^{H}=\xi^{2}+64 p \eta^{2}, q^{H}=\frac{1}{4}\left(\xi^{2}+p \eta^{2}\right) .\end{array}\right.$
Let a and b be the uniquely determined integers such that

$$
a \equiv 1 \bmod 4, \quad(a, q)=1, \quad b>0 \quad \text { and } \quad q^{H}=a^{2}+16 b^{2}
$$

Suppose $\left(\varepsilon_{p} / q\right)_{4}=1$ and take ξ and η as above. Then we have

$$
\left(\varepsilon_{p} / q\right)_{8}= \begin{cases}(-1)^{\eta+(\xi+a-2) / 8} & \text { if } q^{H}=\xi^{2}+64 p \eta^{2} \\ (-1)^{(\xi+a-2) / 8} & \text { if } q^{H}=\frac{1}{4}\left(\xi^{2}+p \eta^{2}\right)\end{cases}
$$

Proof. The condition on q implies that q decomposes completely in L. Let \mathscr{Q} be one of the prime factors of q in L. Since H is odd, we know

$$
\left(\varepsilon_{p} / q\right)_{4}=1 \Longleftrightarrow[2]^{H} \in C_{2}, \quad\left(\varepsilon_{p} / q\right)_{8}=1 \Longleftrightarrow[2]^{H} \in C_{3} .
$$

Assume $[2]^{H} \in C_{2}$. Then by Lemma 6, there exists five integers x, y, z, w and u such that

$$
\begin{aligned}
& \mathscr{Q}^{H}=(x+2 y \sqrt{-1}+(8 z+4 w \sqrt{-1}) \omega) \cdot\left(A^{u}\right), \\
& x \equiv 1 \bmod 4, \quad u \in\{0,1,2\} .
\end{aligned}
$$

Further, we know

$$
[\mathscr{2}]^{H} \in C_{3} \Longleftrightarrow z \equiv y w \bmod 2 .
$$

Firstly assume $u=0$. Then we have

$$
N_{L / k}\left(\mathscr{Q}^{H}\right)=(\xi+8 \eta \sqrt{-p}),
$$

where

$$
\left\{\begin{array}{l}
\xi=x^{2}+4 y^{2}+8(x z+y w)+4(1-p)\left(4 z^{2}+w^{2}\right) \tag{17}\\
\eta=x z+y w+4 z^{2}+w^{2} .
\end{array}\right.
$$

Further we have

$$
N_{L / k^{\prime}}\left(\mathscr{Q}^{H}\right)=(a+4 b \sqrt{-1}),
$$

where k^{\prime} denotes the field $Q(\sqrt{-1})$ and

$$
\left\{\begin{array}{l}
a=x^{2}-4 y^{2}+8(x z-y w)+4(p+1)\left(4 z^{2}-w^{2}\right), \tag{18}\\
b=(x+4 z)(y+w)+4 p z w .
\end{array}\right.
$$

We note $\xi \equiv \alpha \equiv 1 \bmod 4 . \quad$ By easy calculation, we see

$$
\begin{aligned}
& (\xi+\alpha-2) / 8+\eta \equiv z+y w \bmod 2 \\
& q^{H}=\xi^{2}+64 p \eta^{2}=a^{2}+16 p b^{2} .
\end{aligned}
$$

Next consider the case $u \neq 0$. The we have

$$
\begin{aligned}
& N_{L / k}\left(\mathscr{Q}^{H}\right)=\left(A^{2 u}(\xi+8 \eta \sqrt{-p})\right) \\
& N_{L / k^{\prime}}\left(\mathscr{Q}^{H}\right)=\left(N_{L / k^{\prime}}(A)^{u}(a+4 b \sqrt{-1})\right)
\end{aligned}
$$

where ξ, η, a and b are integers given by (17) and (18) respectively. Put

$$
\begin{aligned}
& A^{2 u}(\xi+8 \eta \sqrt{-p})=\frac{1}{2}\left(\xi^{\prime}+\eta^{\prime} \sqrt{-p}\right) \\
& N_{L / k^{\prime}}\left(A^{u}\right)(a+4 b \sqrt{-1})=a^{\prime}+b^{\prime} \sqrt{-1}
\end{aligned}
$$

Since $N_{L / k^{\prime}}(A) \equiv 1 \bmod 16$, we have

$$
a^{\prime} \equiv a \bmod 16, \quad b^{\prime} \equiv 4 b \bmod 16
$$

Put

$$
A^{2 u}=\frac{1}{2}(c+d \sqrt{-p})(c, d \in Z, c \equiv d \equiv 1 \bmod 2)
$$

Then

$$
\begin{aligned}
\xi^{\prime} & \equiv \xi \operatorname{tr}_{k / Q}\left(A^{2 u}\right)+8 \eta\left(A^{2 u}-A^{4 u}\right) \sqrt{-p} \\
& \equiv-\xi+8 \eta p d \equiv-\xi+8 \eta \bmod 16
\end{aligned}
$$

Hence
$[2]^{H} \in C_{3} \Longleftrightarrow(\xi+a-2) / 8+\eta \equiv 0 \bmod 2 \Longleftrightarrow\left(-\xi^{\prime}+a-2\right) / 8 \equiv 0 \bmod 2$,

$$
q^{H}=\frac{1}{4}\left(\left(-\xi^{\prime}\right)^{2}+p \eta^{\prime 2}\right)=a^{\prime 2}+16\left(b^{\prime} / 4\right)^{2} . \quad \text { Q.E.D. }
$$

Corollary 3. (The proof for the strengthened form of the conjecture 1 of Lehmer [6].) Let q be a prime number such that $q \equiv 1 \bmod 16$ and $\left(\varepsilon_{p} / q\right)_{4}$ $=1$. Suppose q has the expressions of the type:

$$
q^{H}=a^{2}+16 b^{2}=c^{2}+64 p d^{2}
$$

where a, b, c and d are integers satisfying $a \equiv c \equiv 1 \bmod 4,(a c, q)=1$. Then we have

$$
\left(\varepsilon_{p} / q\right)_{8}=(-1)^{b+d} .
$$

Proof. By (17) and (18) there exists four integers x, y, z and w such that

$$
\begin{aligned}
& a=x^{2}-4 y^{2}+8(x z-y w)+4(p+1)\left(4 z^{2}-w^{2}\right), \\
& b= \pm\{(x+4 z)(y+w)+4 p z w\}, \\
& d=x z+y w+4 z^{2}+w^{2}, \\
& x \equiv 1 \bmod 4 .
\end{aligned}
$$

From this we see

$$
b+d \equiv z+y w+y \bmod 2 .
$$

The condition $q \equiv 1 \bmod 16$ implies $a \equiv 1 \bmod 8$. This shows $y \equiv 0 \bmod 2$. Therefore

$$
b+d \equiv z+y w \bmod 2 .
$$

Lemma 6 shows our assertion.
Q.E.D.

Numerical examples. In the below, put

$$
\begin{aligned}
& F(\xi, \eta, a)=(\xi+a-2) / 8+\eta, \\
& G(\xi, a)=(\xi+a-2) / 8
\end{aligned}
$$

The class number H is 1 in all cases treated here.
(i) $p=11: \varepsilon_{11}=10+3 \sqrt{11}$.
a) $q=97 . \quad q=\frac{1}{4}\left(17^{2}+11 \cdot 3^{2}\right)=9^{2}+16 \cdot 1^{2}: G(17,9)=3$.

$$
\varepsilon_{11} \equiv 10+3 \cdot 37 \equiv 121 \equiv 11^{2} \equiv 37^{4} \equiv \mathrm{NO} \bmod 97
$$

Here "NO" means that the number 37 is not square $\bmod 97$.
b) $\quad q=929 . \quad q=(-15)^{2}+704 \cdot 1^{2}=(-23)^{2}+16 \cdot 5^{2}: F(-15,1,-23)$ $=-4$.

$$
\varepsilon_{11} \equiv 10+3 \cdot 143 \equiv 439 \equiv 131^{2} \equiv 246^{4} \equiv 181^{8} \bmod 929 .
$$

(ii) $p=19: \varepsilon_{19}=170+39 \sqrt{19}$.

$$
\text { a) } q=73 . \quad q=\frac{1}{4}\left((-11)^{2}+19 \cdot 3^{2}\right)=(-3)^{2}+16 \cdot 2^{2}: G(-11,-3)=
$$ -2 .

$$
\varepsilon_{19} \equiv 170+39 \cdot 26 \equiv 16 \equiv 4^{2} \equiv 2^{4} \equiv 32^{8} \bmod 73 .
$$

(iii) $p=43$. $\varepsilon_{43}=3482+531 \sqrt{43}$.
a) $q=2833 . q=9^{2}+64 \cdot 43 \cdot 1^{2}=(-23)^{2}+16 \cdot 12^{2}: F(9,1,-23)=$ -1 .

$$
\varepsilon_{43} \equiv 649+531 \cdot 244 \equiv 2728 \equiv 784^{2} \equiv 28^{4} \equiv \mathrm{NO} \bmod 2833 .
$$

(iv) $p=163 . \quad \varepsilon_{163}=64080026+5019135 \sqrt{163}$.
a) $q=97 . \quad q=\frac{1}{4}\left((-15)^{2}+163 \cdot 1^{2}\right)=9^{2}+16 \cdot 1^{2}: G(-15,9)=-1$.

$$
\varepsilon_{163} \equiv 80+64 \cdot 39 \equiv 54 \equiv 32^{2} \equiv 41^{4} \equiv \text { NO } \bmod 97
$$

b) $\quad q=1601 . \quad q=\frac{1}{4}\left((-79)^{2}+163 \cdot 1^{2}\right)=1+16 \cdot 10^{2}: G(-79,1)=-10$.

$$
\varepsilon_{163} \equiv 1+0 \cdot 42 \equiv 1 \bmod 1601 .
$$

c) $q=2753$. $q=\frac{1}{4}\left((-55)^{2}+163 \cdot 7^{2}\right)=(-7)^{2}+16 \cdot 13^{2}: G(-55,-7)$
$=-8$.

$$
\varepsilon_{163} \equiv 1198+416 \cdot 54 \equiv 1638 \equiv 1288^{2} \equiv 1290^{4} \equiv 679^{8} \bmod 2753 .
$$

References

[1] Y. Furuta and P. Kaplan, On quadratic and quartic characters of quadratic units, Sci. Rep. Kanazawa Univ., 26 (1981), 27-30.
[2] F. Halter-koch, P. Kaplan and K. S. Williams, An artin character and representations of primes by binary quadratic forms II, Manuscripta Math., 35 (1982), 357-381.
[3] T. Hiramatsu and N. Ishii, Quartic residuacity and cusp forms of weight one, Comment. Math. Univ. St. Paul., 34 (1985), 91-103.
[4] N. Ishii, On the quartic residue symbol of totally positive quadratic units, Tokyo J. Math., 9 (1986), 53-65.
[5] K. Kramer, Residue properties of certain quadratic units, J. Number theory, 21 (1985), 204-213.
[6] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math., 268/269 (1974), 294-301.
[7] P. A. Leonard and K. S. Williams, The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math.. 9 (1979), 683-692.

Department of Mathematics
University of Osaka Prefecture
Sakai, Osaka 591
Japan

