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§ 0. Introduction 

Let p be a prime number which is congruent to 3 modulo 4 and ep 
the totally positive fundamental unit of the real quadratic field F = 
Q(./p). Let q be a prime number which is split in F and is congruent to 
1 modulo 2n. Then we may define 2n-th power residue symbol (ep/q)2n of 
ep modulo q as follows. For a prime factor .!2, of q in F, we choose an 
integer A such that 

mod .!2,. 

The integer A is uniquely determined modulo q. The symbol (eP/q)2n is 
defined only when A is a 2n- 1-th power residue modulo q and given by 

if A is a 2n-th power residue modulo q, 
otherwise. 

This definition is independent of the choice of the prime ideal .!2, and the 
assumption imposed on q implies the following equivalence: 

(ep/ q )2n = 1 {:::=} the polynomial x2n -A factors into a product of dis
tinct 2n linear polynomials modulo q. 

The symbol (ep/q)2 (resp. (ep/q)4) is usually called the quadratic symbol 
(resp. biquadratic symbol or quartic symbol) of eP modulo q. For the 
given q, it is comparatively easy to determine the sign of the quadratic 
symbol. Thus we have 

The evaluation of the quartic residue symbol (ep/q\ are studied by many 
authors ([1], [2], [3], [4], [5], [7]). Here we shall quote one of their results. 
Let r be any positive odd multiples of the class number of the imaginary 
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quadratic field k= Q( ,v -p) and q a prime number of the properties: (p/q) 
=(2/q)= 1. Then a condition on q to be (eP/q)4 = I is given as follows. 
( cf. [2], [3].) 

( 1 ) 

If r=-7 mod 8, then 

(eP/q )4 = 1 ¢:::::9 there exists two integers x and y such that 

qr=x 2+64py2, x==-=I mod 4, (x,q)=l. 

Jf p==-=3 mod 8, then 

(ep/q )4 = 1 ¢:::::9 there exists two integers e and r; such that 

qr=~ 2+64pr;2, e==-=1 mod 4, (e, q)= 1 

or there exists two integers e0 and r;0 such that 

qr=(e~+Pr;~)/4, e0==-=l mod 4, (e0,q)=l. 

The purpose of this note is to determine when (ep/q)8 = 1 for the 
prime q given by the type in the right hand side of (1). We obtain the 
following results: 

Let p==-=7 mod 8. Then under the notation in (1) we have 

(2) 

Let p==:3 mod 8. Put H the class number of the biquadratic field L= 
Q(,v-1,,v-p). Since His odd, by(l)forr=H, the number qH is ex
pressed in 

Further we can write 

We have 

(3) {
(- l)~+(<+a-2)/8 

(ep/q)s= (- 1y,,+a-2J/8 
if qH = e2 + 64pr;2' 
if qH =(e~+Pr;~)/4. 

We shall explain the way of proof of our results. Consider the fields 

For a prime number q such that q==-= 1 mod 8 and (p/q)= 1, we know 

(eP/ q )4 = 1 ¢:::::9 the prime q decomposes completely in K2 

(cf. [3]). The 8-th power residue symbol represents the decomposition 
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between Ka and K2 of q. If p=7 mod 8, then Ka is an abelian extension 
over k=Q(-./-p). By determining the class groups attached to Ka and 
K2 in k, the result (2) is obtained. In the case p=3 mod 8, Ka has no 
quadratic subfields over which Ka is abelian. However Ka is a cyclic ex
tension of degree 8 over L. By adapting the class field theory for Ka/L, 
the result (3) is obtained. This is the reason why some congruence con
ditions in the fields Q( ./=T) and Q( ,./ - p) appear at the same time in the 
formula (3). The results (2) and (3) are given in Theorem 1 of Section 2 
and in Theorem 2 of Section 3 respectively. In Section 3, we shall also 
prove the strengthend form of the conjecture 1 of E. Lehmer in [6]. The 
author would like to express his hearty thanks to Dr. Y. Mimura for 
helpful discussions. 

§ 1. The Galois group of Q(./=T, fe;)/Q 

Let p and eP be as in Section 0. Put F = Q( ,./p) and 

r;=fs; and (=exp (2rc./=T/8)=(1 +./=T)/J2. 

By Fermat's method, we know there exists an integer s~O such that 

(cf. p. 97 of [3], Lemma 3 of this note.) Since 

we have the relation 

(4) 

Let K3 =Q(./=T, r;), Then K3 contains(. Therefore K3 is a Galois ex
tension over Q generated by r; and(. We denote by G the Galois group 
G(K3/Q) of K3 over Q. We have 

Proposition 1. Let the notation be as above. Then 
(i) The group G is a group of degree 32 generated by the following 

three elements defined by 

a(r;)=Cr; ; a(()=-(, 

p(r;)=r; ; p(()=(7, 

<p(r;)=r;-1; <p(()=(-P. 

Furthermore a, <p and p satisfy the fundamental relations 
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( 5) a8 =p2=<p2= I, pap- 1=a3, <pa<p-1=aHP, <pp=p<p. 

(ii) If p = 7 mod 8, then G contains one and only one commutative 
subgroup of index 2. This subgroup is generated by a and <pp. If p=3 
mod 8, then G has no commutative subgroups of index 2. 

Proof Let G(F) be the Galois group of K3 over F. Ifµ is an ele
ment of G(F), thenµ is determined uniquely by the actions on 'I) and t;. 
Let 

where m and n are integers such that O ~ m, n < 8, (n, 2) = I. By acting µ 
on the both sides of (4), we have 

This shows 

n= I, 7 (resp. 3, 5)¢=:?m: even (resp. odd). 

Therefore we define a and p by 

We see easily 

a('f))=C'f); a(C)=C 5 = -C, 

p('f))='f) ; p(C)=C7. 

a8 =p2= I, pa=a 3p, G(F)=(p, a). 

Let J. be an element of G not belonging to G(F). Then 

Thus we may put 

J.(C)=C", 

where u and v are integers. By acting ;. on ( 4) we obtain 

From this we can take an element <p not belonging to G(F) as 

Immediately we have 



Quadratic Units 417 

<l= 1, <pp=p<p, <pa=aHP<p, G=(a, p, <p). 

Next we shall prove (ii). Suppose that His a commutative subgroup of 
G of index 2. Then H contains (a 4). The factor group ll=H/(a 4) is 
the commutative subgroup of the Galois group G(K2/Q) where K2 is a 
subfield of Ka generated by -tie; and ,f=t. In Section 2 of [3], we know 
that there are only three commutative subgroups of index 2 in G(K2/Q). 
They are given as follows. 

where for the element a of G, a denotes the restriction of a to K2• Thus 
H coincides with one of the three subgroups 

(a, <pp), (a 2, <p, p), (a2, a<p, ap). 

By (5) we see 

a<pp=<ppa•+sp, a2p=pa6, a2(ap)=(ap)a6. 

This shows that (a 2, <p, p) and (a2, a<p, ap) are non-commutative and that 
(a, <pp) is commutative only whenp=7 mod 8. Q.E.D. 

Corollary 1. 
(i) If P=7 mod 8, Ks contains one and only one quadratic subfield 

over which Ks is abelian. This quadratic subfield is Q( -V - p ). 
(ii) If p = 3 mod 8, then Ka contains no quadratic subfields over which 

Ks is abelian. K3 is a cyclic extension of degree 8 over L. 

Proof In Section 2 of [3], we obtained the field of invariants of the 
group ( fi, ;:pp) is Q(-V - p ). Therefore our statements follow from (ii) of 
Proposition 1. Q.E.D, 

We shall explain the notation to be used in the following. Let f be 
a finite abelian extension over the number field .'F. Then we denote by 
f(f/.'F) the conductor off over .'F. For an integral ideal a of .'F, we 
denote by H,(a) the maximal ray class group defined mod a and by P ,(a) 
the subgroup of H,(a) generated by the principal classes. For an integral 
ideal li prime to a, we denote by [li] the class of H,(a) represented by li. 
If li is principal, i.e. li=(b), then we write [b] instead of [(b)]. For an 
intermediate field .ft' off over .'F, we denote by C,(.It') the subgroup of 
H,(f(f/.'F)) corresponding to .ft' by Artin reciprocity law. Further we 
put 

C;(.ft')= C,(.It') n P ,(f(f/.'F)). 
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Consider the following sequence of subfields of K3, 

Ks::) K2 = Q( .J"=1, {le;):::, Ki= Q(./=1, ,.,Is;)::::> L 

=Q(./=1, ,.,l-p)::)k=Q(,.,l-p). 

Proposition 2. Let the notation be as above. Then 
(i) If p=1 mod 8, then K3 is abelian over k and the conductors of 

intermediate fields over k are given as follows. 

f(L/k) = ( 4), f(KJk) = (2i+2) for i= 1, 2, 3. 

(ii) If p = 3 mod 8, then Ks is abelian over L and the conductors of the 
intermediate fields over L are given as follows. 

for i= 1, 2, 3. 

Proof We know the exponent of quadratic defect Siep) of eP at L 
equals to 1. Thus we see immediately Sx1(,.,ls;)=SK2U/s;)= 1. By 
Lemmas 1 and 4 of [3], we have our results. Q.E.D. 

§ 2. The case P=7 mod 8 

Put K0=L. For brevity's sake, we will write Ct instead of Ct(K,) 
for every i>O. Leth be the class number of k. Since his odd, we have 
the following isomorphisms between groups; 

G(Ks/k) .- Hi(32))/CiKs)~Pi(32))/Cs. 
Art1n map 

[a]---[aP 

Let (2)=r!JJr!JJ' be the decomposition of the ideal (2) in k. Take two 
integers A and B of k such that 

A= 5 mod f!JJ5 ; 

B= ~ 1 mod f!JJ5 ; 

A= I mod r!JJ'5, 

B= 1 mod r!JJ'5• 

Then it is easy to see 

(6) {
p i(32)) = ([A], [AP], [B]), 

[A][AP]=[5], [A]8 =[AP]8 =l, 

[B]=[BP], [B]2= l, 

Lemma 1. The class groups C2 and Cs are given by 
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C2=([A]4, [AP]\ [A]-[AP]), 

C3 =([A]5-[AP]). 

Proof For an integer a dividing 32, put 

can. 
K(a)=Ker(Pi(32))----+Pi(a))). 

Then it is easy to see 

K(2)=Pi(32)), 

K(2i+1) = <[A]2'-·, [AP]2i-l> (i= 1, 2, 3 and 4). 

By (i) of Proposition 2, we know 

for every i. 

This shows 

C0 =K(4)=([A], [AP]), 

Ci 3 [A]2', [AP]2', ~ [A]2'-•, [AP]2'-•, for i> 1. 

Further G(K2/Q) is non-commutative. Therefore we have 

Since Ci+ 1 is a subgroup of C; of index 2 for every i, we see 

C1=([A]2, [AP]2, [A]-[AP]), 

C2=([A]4, [AP]4, [A]-[AP])=([A]4, [A]-[AP]). 

From the relation pap- 1 =a 3 in Git follows 

Hence we have 
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Q.E.D. 

Lemma 2. Put w = ½(1 +-v' - p ). Let S = x + yw be an integer of k. 
Then 

[S] e C2 ~x: odd, y=O mod 16. 

Let [SJ e C2 and suppose X= 1 mod 4. Then 

[S] e C,~¼(x-l)+y/16:::::0 mod 2. 
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Proof By easy calculation we know 

AAP==.5 mod 32, A'=17+16w mod 32, 

A 5AP=2l+l6w mod 32. 

By Lemma l, we have 

C2=([5], [17 + 16w])={[x+yw] IX= 1 mod 4, y=O mod 16}, 

C3 =([21 + 16w]) 

={[x+yw] 1x=l mod 4, y=O mod 16, }· 
xis square mod 32 if and only if y=O mod 32 

If x = 1 mod 4, then 

x is square mod 32~x= 1 mod 8. 

Hence 

[S] e C3~¼(x- l)=y/16 mod 2. Q.E.D. 

Theorem 1. Let h be the class number of k and q a prime number 
such that q= 1 mod 4 and (p/q)= 1. Then we have 

( / ) = 1 ~ {there exists uniquely determined integers a and b such that 
6

P q 4 qh=a 2+64pb2, a=l mod 4, (a, q)=l, b>O. 

Further, in the above case, we have 

(ep/q)s=(- l)<t/4)(a-t)+o. 

Proof Let !/, be a prime factor of q in k and put 

Then we see 

!J,h=(x+yw), x=l mod 4. 

(ep/q)4= l ~g, decomposes completely in K2 

~[x+ yw] E C2• 

By Lemma 2 we have y= 16b for an integer b. Further we have 

x+yw=(x+Sb)+Sb,V-p. 

Put a=x+Sb. Then a==.1 mod 4 and qh=a 2 +64pb 2• Again by Lemma 
2, 
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(ep/q)6=1~fil. decomposes completely in K3 

~[a+8b./=p] e c3 
~¼(a- l)+b=0 mod 2. 

Remark. In [6], E. Lehmer conjectured 

(eiq)s=(- l)b+a 
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Q.E.D. 

for the prime numbers q such that q= 1 mod 16 and (e7/q)4 = 1, where b 
and dare integers given by q=a 2+ 16b2 =c 2+448d 2• This conject:ure does 
not hold for q=449, since in this case we have h=5, d= 1 and (eiq) 8 = 
- 1. See the next numerical examples. 

Numerical examples. Let p = 7. 
(a) q=449=l2+448-l2: (e1/q)6=-l. 

e7=8+3.JT =8+3 -160=39=200 2 · 1494 ==:NO mod 449. 

Here the notation "NO" implies that 149 is not square mod 449. 
(b) q=617= 132+448· 12: (eh) 8= 1. 

e7=8+3-161=491=209 2 =120 4=:l03 8 mod 617. 

(c) q= 1801 =(-3)2+448 · 22 : {e7/q)8 = -1. 

e7:=8+3. 746:=445:::::8012 :=3144 ==:NO mod 1801. 

§ 3. The case p:=3 mod 8 

Let R be the maximal order of L. Then R is a free module of rank 
4 over Z generated by 1, w, .f=T, .f=Tw, where w=½(l+.J-p). 

The prime number 2 has unique prime divisor flJ in L and decomposes 
in (2)=&12• The prime ideal flJ is a free module over Z generated by 2, 
1+./=1, l+fl, 1+.J~p. Therefore we have, 

for an integer a=X+.f=TY+(Z+.f=TW)w 

of L (X, Y, Z, We Z), 

a e (2•) ~X= Y=Z= W=0 mod 2•, 

( 7) a e (2")&1~X= Y=Z= W=0 mod 2•, 

X-Y=Z-W:=0mod 2e+1. 

Since L has two archimedean places, the rank of the unit group Rx of L 
equals to 1. The fundamental unit E of L is given in the following 
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Lemma 3. Let p be a prime number such that p = 3 mod 4. Let eP 
be the totally positive fundamental unit of F= Q(../p). Then there exists 
two positive odd integers s and t such that 

eP=s2+(- l)'11,Hp-sJ+st../p. 

Further a fundamental unit E of L is given by 

E=½(s-t)+½(s+t)J=l" +t(l-J=l")w. 

Proof. Write 

where u is a root of unity contained in L and l and k are rational integers. 
Then we have kl=2 and we can assume k>O. Let H, h, h' be the class 
number of L, k and F respectively. It is well-known that 

Hk=hh'. 

Since h and h' are odd integers, we have k = I and l = 2. If p = 3, then 
we may take s= t= I. Therefore we may assume p > 3. Put 

E=½(X+../=1Y)+-!(Z+J"=-IW)../-p, 

where X, Y, Z and W are integers with properties: 

X-Z= Y-W=O mod 2. 

If Y = Z = 0 or X = W = 0, then E is written in the product of a power of 
eP and a root of unity. Thus these cases are outside of our consideration. 
Since 

we have one of the next relations (8) and (9); · 

( 8) X 2 - Y2 +p(Z 2 - W2)= ±4: XY+ pZW=O, 

(9) X2 -Y2+p(Z2-W 2)=0: XY+pZW=±2. 

Furthermore we have 

E2=¼(X2 - Y2-p(Z 2 - W2))--!(XW+ YZ)../p 

+-r-:-f(½(XY-pZW)+½(XZ-WY),/p). 
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Since E 2 = uep, where u is a 4-th root of unity, one of the following relations 
(10) and (11) holds true. 

(10) 

(11) 

xi- Y2-p(Z 2 - w2)=0: xw+ YZ=O, 

XY-pZW=O: XZ-WY=O. 

Therefore we have four possibilities. By easy arguments, we know only 
the combination of (9) and (10) holds true. In this case we obtain 

Since 

X=-Y: Z=W or X=Y: Z=-W, 
Y2-pW2=2(-1)<1/4)(p-7). 

we may take s=I YI and t=I WI, Q.E.D. 

In the following, for i= 1, 2 and 3, put C1,= Ct(K1,), Since His odd, 
we have the following isomorphisms between cyclic groups of order 8. 

G(K8/L) - Hi(l6))/CiK 3)~Pi(16))/C 3• 
Artln map 

[a]i-----+[a)H 

Let R. be the completion of R at &' and 9 the unique prime ideal of R.. 
Then ,r=l+./=1 is a prime element of R.. For every integer n>O, put 

Let A be an integer of k such that A 8= 1 mod 16. For example we can 
take A as 

(12) A-{2u-(1 +4u)w 
2(u+2)+(7-4u)w 

if p=3+8u=3 mod 16, 
ifp=3+8u=ll mod 16. 

Since Rx is contained in U1, We have the following isomorphism: 

(13) 

where A denotes the class of Rx/U8 represented by A and V denotes the 
subgroup of U1/U 8 generated by the classes represented by the elements of 
RX. 

Lemma 4. Let E be the unit of L given in Lemma 3. Consider the 
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following five integers of L such that 

B= I +Air4, 

S= l+ir2, 

D1=l+1r8, D2 =l+A1r', 

T= 1-ir= -.J=T. 

Then these six elements E, B, D1, D2, S and T generate U1 mod U8• Further 
we have the following congruences; 

(14) 

ST2=BD~·(BDD~ mod U8, 

D~D1=D~ mod U8, 

D?=D~·(BD~)3-S 2 -D12 -(D 1D2) 4 mod U8 • 

Proof By (12) we know 

Therefore from the Lemma 3 it follows 

E= 1 + A01r mod ir2, 

where A0 is A or A2• From this we have 

Let a= 1 +airt e U; with a e Rx. Then we note for i>3, 

Since the group Ut/U;+i is isomorphic to Z/(2)©Z/(2) for i?:.1, we have 

E and T generate U1 mod U2 , 

E 2 and S generate U2 mod U,, 

D 1 and Dz generate U, mod U4, 

£ 4 and B generate U4 mod U,, 

Di and D~ generate U, mod U6, 

£ 8 and B 2 generate U6 mod U1, 

Df and Dt generate U1 mod U8• 

Hence we have inductively 

(15) 

{u/u <-. -.) U/U (-s -z -4 -.) 
1 s= Di, D2 , 6 s= E, B, Di, Dz , 

U,/U8 =(E8, JJ2, Di, 15;), U./U8 =(E 4, JJ, Di, m), 
U,/U8=(~ 4, _!!, ~1'_152!_, _ Uz/U8 =(E2, S, JJ, Di, 152), 
U1/U8 =(E, T, S, B, D1, D2), 
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where E, R, · · · , S and T denote the classes of U,/ Us represented by 
E, , · , , Sand T respectively. The relation (14) is obtained from the direct 
calculation. Q.E.D. 

Corollary 2. The degree of the class group Pi(16)) is 3.4 5 and we 
have the following isomorphism: 

Proof This is obvious from (13) and Lemma 4. 

Lemma 5. Let the notation be as above. Then 

C2=([B][D2] 2, [D1], [D2]', [S])®([A]), 

C3 = ([B][D 2]6, [D1], [S])®([A]). 

Proof For 1 ::;;:n::;;:8, put 

K(gJn)= ker(P i(16))~P i[1Jn)). 

Then obviously we see 

K(gJn)=([x]lx ER, XE Un/Us), 

Q.E.D. 

By (15) we know K(g;n) explicitly. By (ii) of Proposition 2, we have 

(16) 

We note that C1, is G-invariant and C1,+i is a subgroup of C, of index 2 
for every i. First of all we shall determine the group C1• By (16) we 
know 

Since G(K1/Q) is commutative, we see 

[D2]~ · [D2]- 1 E C1, 

Thus, it follows from (14) 

[S] =([B] · [D2] 2)([B]-[DJ 2)~ e Cu 

[D1]=([D2]ID,[D2]-1)- 1·[DJ 6 E C1, 

By Corollary 2, we have 

C1=([B], [D1], [S], [Dz12)®([A]). 
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Next we shall calculate Cz, Since [Di]2 e Cz, we deduce from (16) 

Cz i [Dz]2, 

This shows that [Dz] generates PL((l6)) mod C2• The relation (5) implies 

This shows 

Therefore we have 

Consider the group C3• Since [Di]2 E C3, we see by (16) 

[Dz]4 $ C3, 

Thus the class [Dz] generates PL((l6)) mod C3• By (5) we obtain 

[Dz]I' · [DzJ-7, [Dz]l'P · [DzJ-5 E C3• 

By the result for C2 and (14) we have 

Thus 

From this especially we have, because of [Dzl4 $ C3, 

Therefore 

[S] E C3• 

Hence 

Q.E.D. 

Lemma 6. Let (a) be the principal integral ideal of L whose generator 
a satisfies the condition a= 1 mod (il'. Then we have 

[a] E Cz{=;, The ideal (a) has the generator f3 of the following type: 

f3=x+2y-/=1 +(8z+4-/=1 w) m, x, y, z, we Z, X= 1 mod 4. 
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Further suppose [a] e C2 and (a) has the generator of the above type. Then 

Proof. By (7), we know that (a) has a generator of the form: 

X+ Y-/=l +(Z+-/=IW)w, X::=1 mod 4, Y=Z-W:::=O mod 2. 

By the definitions of S and D1, we see 

Since 

Bm=I+8-/=l +(8+4-/=l)w mod 16, 

m=1 +(8+8-/=l)w mod 16, 

we have 

C2 ={[X +-/=IY +(Z+-/=IW)w] I 
X= I mod 4, Y:::=O mod 2, Z=O mod 8, W:::=O mod 4}. 

It is easy to see the group C3 is generated by [S], [D 1] and [1-4-/=lw). 
Obviously we have 

([1-4-/=lw])={[1+4b-/=lw]lb e Z}. 

Since any element !) of C3 is a product of an element [X +-/=IY] e 
([SJ, [D1)) and an element [1 +4b-/=lw] e ([l-4-/=lw]), the class lJ 

has a generator !Jo such that 

!Jo= (X + Y-/=1)(1 + 4b-/=l w) 

=X + Y-/=l +4b(-Y +-/=l)w mod 16. 

If we put 1J0 =x+2y./=1 +(8z+4./=1 w)w, x, y, z, we Z, then the above 
congruence shows 

z+ yw:::=O mod 2. 

Converse part is obvious. Q.E.D. 

Theorem 2. Let H be the class number of L. Let q be a prime number 
such that q= 1 mod 8 and (p/q)= I. Then we have 
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1 
there exists uniquely determined integers ~ and YJ such 

that~= 1 mod 4, (~, q)= 1, YJ>O and they satisfy one of 
(ep/q)4=l~ thefollowing relations: 

qH=e2+64pYj2, qH=¼(~2+PYJ2). 

Let a and b be the uniquely determined integers such that 

Suppose (ep/q)4= 1 and take~ and YJ as above. Then we have 

{
(- l)~+(<+a-2)/B 

(ep/q)a = (- l)«+a-2)/B 
if qH = ~2 + 64pYJ2' 
if qH =¼(~2+PYJ2). 

Proof. The condition on q implies that tj_ decomposes completely in 
L. Let !2. be one of the prime factors of q in L. Since H is odd, we know 

Assume [!1,JH e C2• Then by Lemma 6, there exists five integers x, y, z, w 
and u such that 

x=l mod 4, 

Further, we know 

u e {0, l, 2}. 

Firstly assume u==O. Then we have 

where 

(17) {~=x 2 +4y 2+8(xz+ yw)+4(1--'-p)(4z 2+w 2), 

YJ=Xz+yw+4z 2+w 2. 

Further we have 

NL/k'(!1,H)=(a+4b.f=l), 

where k' denotes the field Q(-1=1) and 

(IS) {a=x2-4y2+8(xz-yw)+4(p+l)(4z 2 -w 2), 

b=(x+4z)(y+w)+4pzw. 
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We note .;=a= 1 mod 4. By easy calculation, we see 

(.;+a-2)/8+r;=z+yw mod 2, 

qH =.; 2 +64pr; 2 =a 2 + I6pb2• 

Next consider the case u=;t=O. The we have 

NL;i2-H) = (A2u(,; + 8r;-V - p)), 

NL/k'(.!2,H) = (NL/k'(A)u(a + 4b./=1)), 
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where~. r;, a and bare integers given by (17) and (18) respectively. Put 

A2u(.;+ 8r;-v' -p)=½W +r;'-v' -p), 

NL/k'(Au)(a+4b./=1)=a' +b'./=1. 

Since NL/k'(A)= I mod 16, we have 

Put 

Then 

Hence 

a'=a mod 16, b'::::4b mod 16. 

A2u=½(c+d,v -p) (c, de Z, c::::d= 1 mod 2). 

.;'=.; trk;a(A2u)+8r;(A2u_A4u)-V -p 

= - .; + 8r;pd= - .; + 8r; mod 16. 

[§]He C3{==?(.;+a-2)/8+r;=0 mod 2¢=9(-.;' +a-2)/8::::0 mod 2, 

qH =¼((-.;')2+pr;' 2)=a 12 + 16(b'/4)2. Q.E.D. 

Corollary 3. (The proof for the strengthened form of the conjecture I 
of Lehmer [6].) Let q be a prime number such that q= I mod 16 and (e)q) 4 
= 1. Suppose q has the expressions of the type: 

qH =a 2 + 16b2 =c 2 +64pd 2, 

where a, b, c and dare integers satisfying a=c= 1 mod 4, (ac, q)= 1. Then 
we have 

(ep/q)a=(- l)b+d. 

Proof By (17) and (18) there exists four integers x, y, z and w such 
that 
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a=x 2 -4y 2 +8(xz-yw)+4(p+ 1)(4z2-w 2), 

h= ±{(x+4z)(y+w)+4pzw}, 

d=xz+yw+4z 2 +w 2, 

x=l mod 4. 

From this we see 

The condition q=l mod 16 implies a=l mod 8. This shows y=O mod 2. 
Therefore 

Lemma 6 shows our assertion. 

Numerical examples. In the below, put 

F(e, r;, a)=(e+a-2)/8+r;, 

G(e, a)=(e+a-2)/8. 

The class number H is 1 in all cases treated here. 

( i) P= 11: e11= 10+3JIT. 
a) q=97. q=¼(17 2 + 11 -32)=9 2 + 16- 12: G(17, 9)=3. 

e11-10+3-37:=121=1l2=37 4=NO mod 97. 

Here "NO" means that the number 37 is not square mod 97. 

Q.E.D. 

b) q=929. q=(-15)2+ 704-1 2 =(-23)2+ 16-52 : F(-15, 1, -23) 
=-4. 

e11= 10+3-143=439= 1312:=2464= 1818 mod 929. 

(ii) P= 19: E19= 170+39,Vl9. 
a) q=73. q=¼((-11)2+19-3 2)=(-3) 2 +16-2 2 : G(-11, -3)= 

-2. 

(iii) p=43. E43 =3482+53l,V43. 
a) q=2833. q=9 2 +64-43-l2 = (-23)2+16· 122 : F(9, 1, -23)= 

-1. 
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(iv) p= 163. e163 =64080026+5019135,v163. 
a) q=97. q=¼((-15)2+ 163, l2)=9 2 + 16- l2: G(-15, 9)= -1. 

b) q=1601. q=¼((-79) 2 +163-l2)=1+16-102:G(-79,l)=-10. 

e,63 =1+0-42=::l mod 1601. 

c) q=2753. q=¼((-55)2+ 163-72)=(-7) 2 + 16-132 : G(-55, -7) 
=-8. 
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