Advanced Studies in Pure Mathematics 13, 1988
Investigations in Number Theory
pp. 413-431
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Quadratic Units
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§ 0. Introduction

Let p be a prime number which is congruent to 3 modulo 4 and ¢,
the totally positive fundamental unit of the real quadratic field F=
Q(4/P). Let g be a prime number which is split in F and is congruent to
1 modulo 2*. Then we may define 2"-th power residue symbol (¢,/q),. of
e, modulo g as follows. For a prime factor 2 of ¢ in F, we choose an
integer A such that
e, =4 mod 2.

P

The integer 4 is uniquely determined modulo g. The symbol (¢,/q);. is
defined only when A4 is a 2"~'-th power residue modulo ¢ and given by

1 if A4 is a 2"-th power residue modulo g,
(ep/ q)Z" = .
-1 otherwise.

This definition is independent of the choice of the prime ideal 2 and the
assumption imposed on ¢ implies the following equivalence:

(¢,/9)n=1&=>the polynomial x*"— 4 factors into a product of dis-
tinct 2 linear polynomials modulo gq.

The symbol (e,/q), (resp. (¢,/¢9).) is usually called the quadratic symbol
(resp. biquadratic symbol or quartic symbol) of ¢, modulo g. For the
given g, it is comparatively easy to determine the sign of the quadratic
symbol. Thus we have

(e,/9).=14=g=1 mod 8.

The evaluation of the quartic residue symbol (,/q), are studied by many
authors ([1], [2], [3], [4]. [5], [7]). Here we shall quote one of their results.
Let r be any positive odd multiples of the class number of the imaginary
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quadratic field k= Q(v —p) and g a prime number of the properties: (p/q)
=(2/g)=1. Then a condition on q to be (¢,/q),==1 is given as follows.

(cf. 2], [3])
If p=T7mod 8, then
(e,/0), = 1 &=> there exists two integers x and y such that
g’ =x*+64py’, x=1mod4, (x,q)=1.
If p=3mod 8§, then
(e,/9)s = 1&=> there exists two integers & and 3 such that
q'=§+64py’, £=1mod4, (§ q)=1
or there exists two integers &, and v, such that

q"=(E+pp)/4, &=1mod4, (&, q)=1.

The purpose of this note is to determine when (e,/q),=1 for the
prime ¢ given by the type in the right hand side of (1). ‘We obtain the
following results:

Let p=7 mod 8. Then under the notation in (1) we have

(2) (ep/Q)a:(_—-1)”+(1/4)(z—1).

Let p=3 mod 8. Put H the class number of the biquadratic field L=
Q(v/—=1, 4/ —=p). Since H is odd, by (1) for r= H, the number ¢¥ is ex-
pressed in

(D)

q"=8+64py" or q"=(G+pp)/4, E=§=1mod4, (§§, 9)=1.
Further we can write
g¥=d"+b, a=1mod4, (a,q)=1.
We have

[(=Tyrrra-ay if g7 =&+ 64py’,
( 3 ) (Ep/q)a— {(__ l)(eo+a—2>/8 zqu_—:({-'ﬁ—l—pnﬁ)M-

We shall explain the way of proof of our results. Consider the fields
K= QW =T, ¥5,) D K= Q(/ =1, ¥5,)DK:=0(/—1, /&,).
For a prime number ¢ such that g=1 mod 8 and (p/q)=1, we know
(,/9)=1&= the prime q decomposes completely in K,

(cf. [3]). The 8-th power residue symbol represents the decomposition
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between K; and K, of ¢. If p=7 mod 8§, then K, is an abelian extension
over k=Q(v'—p). By determining the class groups attached to K, and
K, in k, the result (2) is obtained. In the case p=3 mod 8, K, has no
quadratic subfields over which KX is abelian. However K is a cyclic ex-
tension of degree 8 over L. By adapting the class field theory for K,/L,
the result (3) is obtained. This is the reason why some congruence con-

ditions in the fields @(v'— 1) and Q(v — p) appear at the same time in the
formula (3). The results (2) and (3) are given in Theorem 1 of Section 2
and in Theorem 2 of Section 3 respectively. In Section 3, we shall also
prove the strengthend form of the conjecture 1 of E. Lehmer in [6]. The
author would like to express his hearty thanks to Dr. Y. Mimura for
helpful discussions.

§ 1. The Galois group of Q(v/— 1, ¥¢,)/Q
Let p and ¢, be as in Section 0. Put F=Q(,/p) and
n=¥z, and C=expQuv/—1/8)=(1+v D)V 2.
By Fermat’s method, we know there exists an integer s =0 such that
27 try gfe,) =t 4 (— D@09,
(cf. p. 97 of [3], Lemma 3 of this note.) Since
T+ =1rrle,),
we have the relation
(4) SHP A (= DOy = T =L

Let K,=Q(v' —1,7), Then K, contains . Therefore K; is a Galois ex-
tension over Q generated by 5 and . We denote by G the Galois group
G(K,/Q) of K; over Q. We have

Proposition 1. Let the notation be as above. Then
(i) The group G is a group of degree 32 generated by the following
three elements defined by

o)=Ly ; o(O=—-¢,
o=y ; o=,
e=n"" Q)=

Furthermore o, ¢ and p satisfy the fundamental relations
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(5) o'=p'=¢'=1, pop~'=0", pop~'=0""?, pp=pp.

(ii) l‘If p="7 mod 8, then G contains one and only one commutative
subgroup of index 2. This subgroup is generated by ¢ and ¢p. If p=3
mod 8, then G has no commutative subgroups of index 2.

Proof. Let G(F) be the Galois group of K, over F. If pis an ele-
ment of G(F), then x is determined uniquely by the actions on 3 and {.
Let :

wp)=¢my, w=e,

where m and n are integers such that 0<m, n<<8, (n, 2)=1. By acting p
on the both sides of (4), we have

L= (= DPEHL),
This shows

n=1,7 (resp. 3, S)@)m: even (resp. odd).
Therefore we define ¢ and p by

o())=Cn; o(Q)=C0=—¢,

p)=7 ; p(Q)=C"
We see easily

d*=p=1, po=dp, GF)={p,0).
Let 2 be an element of G not belonging to G(F). Then
AP)=2(e))=¢5"=7""
Thus we may put
=L AD=C
where u and v are integers. By acting 2 on (4) we obtain
L= (= DD L),

From this we can take an element ¢ not belonging to G(F) as

pp=7n""  eQ)=C"
Immediately we have
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4+p

o'=1, po=pp, go=0""7p, G={o,p,0).

Next we shall prove (ii). Suppose that H is a commutative subgroup of
G of index 2. Then H contains {¢*). The factor group H=H/{c*) is
the commutative subgroup of the Galois group G(K,/Q) where K, is a
subfield of K generated by ¥/, and +/— 1. In Section 2 of [3], we know
that there are only three commutative subgroups of index 2 in G(K,/Q).

They are given as follows.
(3. 50% (@ 0), (76, 3P,

where for the element « of G, @ denotes the restriction of « to K,. Thus
H coincides with one of the three subgroups

o, 90, (0% ¢, p); (0, 09, 0p).
By (5) we see
apo=0ppd***”, d’p=p0’, o*(op)=(0p)o".

This shows that {d¢’, ¢, p) and {¢?, 0@, 6p) are non-commutative and that
{0, pp) is commutative only when p=7 mod 8. Q.E.D.

Corollary 1.

(i) Ifp=7mod 8, K; contains one and only one quadratic subfield
over which K, is abelian. This quadratic subfield is Q(+/ —p).

(i) If p=3 mod 8, then K, contains no quadratic subfields over which
K, is abelian. K, is a cyclic extension of degree 8 over L.

Proof. 1In Section 2 of [3], we obtained the field of invariants of the
group (&, 3oy is Q(+/—p). Therefore our statements follow from (ii) of
Proposition 1. Q.E.D.

We shall explain the notation to be used in the following. Let 2#” be
a finite abelian extension over the number field #. Then we denote by
f(A|F) the conductor of " over &#. For an integral ideal a of &, we
denote by H.(a) the maximal ray class group defined mod a and by P_(q)
the subgroup of H,(a) generated by the principal classes. For an integral
ideal b prime to a, we denote by [0] the class of H,(a) represented by b.
If b is principal, i.e. b=(b), then we write [b] instead of [(b)]. For an
intermediate field % of o over &, we denote by C,(%) the subgroup of
H_(f('|F)) corresponding to & by Artin reciprocity law. Further we
put

C3L)=C (L) N\ Pf(A|F)).
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Consider the following sequence of subfields of K,

K33K2=Q(\/:—1-, %)3K1=Q(N/"—l> \/;)DL
=QW =1, ¥ —p)2k=Q0( —p).

Proposition 2. Let the notation be as above. Then
(i) Ifp=7mod 8, then K, is abelian over k and the conductors of
intermediate fields over k are given as follows.

f(L/k)=(4), fKJ)=2Y)  fori=1,2,3.

(ii) If p=3mod 8, then K, is abelian over L and the conductors of the
intermediate fields over L are given as follows.

fK,/L)=(2""Y fori=1,2,3.

Proof. We know the exponent of quadratic defect S, (¢,) of ¢, at L
equals to 1. Thus we see immediately Sg (e, )=S,(¥e,)=1. By
Lemmas 1 and 4 of [3], we have our results. Q.E.D.

§2. The case p=7 mod 8

Put K,=L. For brevity’s sake, we will write C, instead of C¥(K))
for every i=>0. Let A be the class number of k. Since 4 is odd, we have
the following isomorphisms between groups;

G(Ky/ k) m> Hi(32)) Cu Ko)—>Pi((32))/ C.

[a]l———[a]”

Let (2)=2%" be the decomposition of the ideal (2) in k. Take two
integers 4 and B of k such that

A= 5 mod &, A=1 mod &%,
= —1 mod #°; B=1 mod 2.
Then it is easy to see

P((32))=<[4], [4°], [BI),
(6) [4)4°]=[5), [AF=[4T=1,
[B]=[8], [B]'=1.

Lemma 1. The class groups C, and C, are given by
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G=[4}, [4°T, [4]-[4°]).
Co=([4F-[4]).
Proof. For an integer a dividing 32, put
can.
K(a)=Ker (Py((32))—>Pi((2))).
Then it is easy to see

K(2)="P((32),
KQW)=([4F*7 [4°P7)  (i=1,2,3 and 4).

By (i) of Proposition 2, we know
C,DK(2'Y), S K(2HY), for every i.
This shows

Co=K@)={([4], [4°]),
C, oA, [4°F, 3[4P[4, forixl.

Further G(K,/Q) is non-commutative. Therefore we have
G, 3 [4]-[47
Since C,,, is a subgroup of C, of index 2 for every i, we see
Ci= ({4}, [4°T, [4]-[4°],
G=([A}, [4°Y, [4]-[4°]) = (4], [4]-[4°]).
From the relation pgp™'=¢" in G it follows
[4°]-[4] % e C,.
Hence we have
Co={[A]-[A]). Q.E.D.

Lemma2. Put o=3(1++—p). Let S=x+yw be an integer of k.
Then

[S]e C,&=>x: odd, y=0 mod 16.
Let [S] e C, and suppose x=1 mod 4. Then
[S1e C;&e=1(x—1)+»/16=0 mod 2.
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Proof. By easy calculation we know
AA*=5mod 32, A*=174+16w mod 32,
A’A° =21+ 160 mod 32.
By Lemma 1, we have
C,={[5], [17+16w]>={[x+yo]| x=1 mod 4, y=0 mod 16},

Cy=([21+160])

={[x+yw] ’le mod 4, y=0 mod 16, }
x is square mod 32 if and only if y=0 mod 32J°

If x=1 mod 4, then
x is square mod 32¢&=>x=1 mod 8.
Hence
[Sle C;&=i(x—1)=y/16 mod 2. Q.E.D.

Theorem 1. Let h be the class number of k and q a prime number
such that g=1 mod 4 and (p/q)=1. Then we have

there exists uniquely determined integers a and b such that
=1 @{
&/2)s g —a+64pk,, a=1mod 4, (a,q)=1, b>0.

Further, in the above case, we have
(e,/q)e=(—T1)ee=bre,
Proof. Let 2 be a prime factor of ¢ in k£ and put
2" =(x+yw), x=1 mod 4.
Then we see
(¢,/9)s=1&= 2 decomposes completely in K,
lxtyole G.
By Lemma 2 we have y=16b for an integer b. Further we have
X+ yo=(x+8b)+8by —p.

Put a=x+48b. Then a=1 mod 4 and ¢*=a’ |- 64ph*. Again by Lemma
2,
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(e,/0)s=1&=>2 decomposes completely in K,
&la+8bv—ple C;
&= Ha—1)+b=0 mod 2. Q.E.D.

Remark. In [6], E. Lehmer conjectured
(ed/q)e=(—1)"*"

for the prime numbers ¢ such that g=1 mod 16 and (¢,/q),=1, where b
and d are integers given by g=d*+ 16b*=c*+4484%. This conjecture does
not hold for g=449, since in this case we have b=5, d=1 and (¢,/q),=
—1. See the next numerical examples.

Numerical examples. Let p=7.
(@) g=449=1"+4+448.1%: (5;/q)y=—1.

e =8+34/T7 =8+3.160=39=200"=149*=NO mod 449.
Here the notation “NO” implies that 149 is not square mod 449.
(b) g=617=13"+448-1%: (¢;/q)s=1.
&=8+3.161=491=209*=120*==103° mod 617.
(©) g=1801=(—3)"+448.2%: (¢,/q)y=—1.
&=8+43.746=445=801"=314*=NO mod 1801.

§ 3. The case p=3 mod 8

Let R be the maximal order of L. Then R is a free module of rank
4 over Z generated by 1, w, ¥/ — 1, v/ — lw, where o =3(14-/p).

The prime number 2 has unique prime divisor £ in L and decomposes
in (2)=2" The prime ideal & is a free module over Z generated by 2,
144/ =1, 14+4/p, 1++/—p. Therefore we have,

for an integer a=X++— 1 Y+ (Z4+vV =1 W)o
of L(X,Y,Z We Z),
ae(2) &S X=Y=Z=W=0mod 2¢,
(7) ae(QVPESX=Y=2Z=W=0 mod 2¢,
X—Y=Z—-W=0mod 2¢*..

Since L has two archimedean places, the rank of the unit group R* of L
equals to 1. The fundamental unit E of L is given in the following



422 N. Ishii

Lemma 3. Let p be a prime number such that p=3 mod 4. Lete,
be the totally positive fundamental unit of F=Q(y/ p). Then there exists
two positive odd integers s and t such that

6y sk (— 10D st/
Further a fundamental unit E of L is given by
E=}s—1)+3(s+OvV=T+1(1—V=Do.
Proof. Write
e,=uk’, Ny e(E)=¢},

where u is a root of unity contained in L and / and & are rational integers.
Then we have kl/=2 and we can assume k>0. Let H, A, /’ be the class
number of L, k and F respectively. It is well-known that

Hk="hh'.

Since /2 and &’ are odd integers, we have k=1 and /=2. If p=3, then
we may take s=r=1. Therefore we may assume p>3. Put

E=3(X++/—=1)+3Z+v—1W)V—p,
where X, Y, Z and W are integers with properties:
X—Z=Y—-W=0mod 2.

If Y=Z=0 or X=W=0, then E is written in the product of a power of
e, and a root of unity. Thus these cases are outside of our consideration.
Since

Nijo(mi(E)=3(X* =Y+ p(Z — W)+ L XY +pZWW —1 e (V= 1T),
we have one of the next relations (8) and (9);
(8) XP—Y '+ p(Z*— W= +4: XY+ pZW=0,
(9) X~ Y4 p(ZP—WH=0: XY+pZW=+2.
Furthermore we have
E={(X*—Y'—p(Z'— W) —3(XW+YZ)/p
+V—1GXY —pZW)+HXZ— WY )/ P).
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Since E*=ue,, where u is a 4-th root of unity, one of the following relations
(10) and (11) holds true.

(10) X Y p(ZP— W?)=0: XW+YZ=0,
(11) XY—pZW=0: XZ—WY=0.

Therefore we have four possibilities. By easy arguments, we know only
the combination of (9) and (10) holds true. In this case we obtain

X=—Y: Z=W or X=Y:. Z=—-W,
Vi pW?=2(—1)o@-D,

Since
& =Ny o(E)=3Y'+pW)+ YWy p =Y+ (= D)+ YW/ p,
we may take s=| Y| and t=|W|. ~ Q.E.D.

In the following, for i=1, 2 and 3, put C,=C}(K,). Since H is odd,
we have the following isomorphisms between cyclic groups of order 8.

6K/ L)y HA((16))/Cu(K)—=>P(16)/ C..

[al—>[a]*

Let R be the completion of R at # and £ the unique prime ideal of R.
Then r=1--4/—1 is a prime element of R. For every integer n>>0, put

U,=1+4+2".

Let A be an integer of k£ such that A°=1 mod 16. For example we can
take 4 as

(12) A={2“—0+4U)w if p=3-+8u=3 mod 16,

2(u+2)+(7—duw if p=3+8u=11 mod 16.
Since R* is contained in U,, We have the following isomorphism:
(13) P((16)—L HQRU,/Uy)/ Y,

where A denotes the class of R*/U, represented by 4 and ¥ denotes the
subgroup of U,/U, generated by the classes represented by the elements of
R*,

Lemma 4. Let E be the unit of L given in Lemma 3. Consider the
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Jollowing five integers of L such that

B=1+4+Ar*, D,=147°, D,=1+4Ax"
S=1+4+7% T=1—g=-—4—1.
Then these six elements E, B, D,, D,, S and T generate U, mod U,. Further
we have the following congruences; :
ST?=BD:.(BD3)* mod U,,
(14) DtD, =D} mod U,
Dge=D}-(BD2?-S*- D 2. (D,D,)* mod U,
Proof. By (12) we know
wo=A4 mod 7.
Therefore from the Lemma 3 it follows

E=1+4 A,z mod =%,
where A, is A or A>. From this we have
E*=1+ Az* mod =%, E‘=147* mod #*.
Let ¢=1+axr' e U, with e R*. Then we note for i>3,
a*=1+ar*** mod 7 *2
Since the group U,/U,,, is isomorphic to Z/(2)PZ/(2) for i=1, we have

E and T generate U, mod U,
E? and S generate U, mod U,
D, and D, generate U, mod U,,
E* and B generate U, mod U,
D? and D} generate U; mod U,,
E® and B? generate U, mod U,
D¢ and D generate U, mod U,.
Hence we have inductively
U,/Us={D}, D5y, Uy /Uy=<{E®, B*, Di, D3,
U,/U,={(E®, B, Df, DYy, U,/U,=(E*, B, 5%, DY,

(15) £ B s
.\3/U'—<E4 D,, D2> Uz/U <E2 Dv D2>
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where E, B, --., S and T denote the classes of U,/U, represented by
E, ..., S and T respectively. The relation (14) is obtained from the direct
calculation. Q.E.D.

Corollary 2. The degree of the class group P.((16)) is 3-4° and we
have the following isomorphism:

PL((16))—=><[B], [Dy], [D,], [STH>&[A4]>-
Proof. This is obvious from (13) and Lemma 4. Q.E.D.
Lemma 5. Let the notation be as above. Then

C={[BID:I, [Di], [Do]', [STH&<[4]),
C,={[BIID,}', [D,], [ST)®<[4])-

Proof. For 1<n<38, put

can.

K(7")=ker (P.((16))—>P.(?")).
Then obviously we see
K(@")=([x]|xe R, xe U,/Uy.
By (15) we know K(£") explicitly. By (ii) of Proposition 2, we have
(16) C,DK(@**Y, 2pK@P*) (i=1,2,3).

We note that C, is G-invariant and C,,, is a subgroup of C, of index 2
for every i. First of all we shall determine the group C,. By (16) we
know

C:D{[B], [D\], [D.]).
Since G(K,/Q) is commutative, we see
[D,J¢-[Dy] ' e C,.
Thus, it follows from (14)

[S]=((B]-[D)(B]- D) € C,,
[Dx] = ([Dz]'P . [Dz]- l)‘ L [D2]6 e C.

By Corollary 2, we have
C,=([B], [Di], [S], [DJ>&([A])-
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Next we shall calculate C,. Since [D,J e C,, we deduce from (16)

G 3 [D,].
This shows that [D,] generates P,((16)) mod C,. The relation (5) implies

[D,)-[D,]7%,  [DJ-[Do] " e G,
This shows
[DJ], [B]-[D,], [S]e C..
Therefore we have
C,=([S], [D\], [B]-[D;], [D.}')Q<[4]).

Consider the group C,. Since [D,]’ e C,, we see by (16)

[D,]* ¢ C,.
Thus the class [D,] generates P,((16)) mod C,. By (5) we obtain

[D,)¢-[D,]7", [Dy]** - [Dy]* € G
By the result for C, and (14) we have
[D]=(D,)*-[D.]")7, [ST, ((B]-[D:f) e G
Thus ’
[B]-[Dy)*=([D5]** - [D;] =) - [D:] - [S17*- ([B]- [Do]) * € C.
From this especially we have, because of [D,]* ¢ C,,
[B]-[D;F", ([B]-[D;])* ¢ C.

Therefore

[S1e C..
Hence

C={[B]-[Di’, [Dy], [SH&[4])- Q.E.D.

Lemma 6. Let («) be the principal integral ideal of L whose generator
a satisfies the condition a=1 mod &. Then we have

[a] € C;&=> The ideal () has the generator B of the following type:
B=x+2p/—-14+@Bz+4/—1W) w, x, y, z, we Z, x=1 mod 4.
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Further suppose [«] € C, and (&) has the generator of the above type. Then
[a] € C;¢&=>z=yw mod 2.
Proof. By (7), we know that («) has a generator of the form:
X+ YV =1+(Z+vV=1W)o, X=1mod4, Y=Z—W=0mod 2.
By the definitions of S and D,, we see
SL [D]y={[X+¥—=1Y]|X=1 mod 4, Y=0 mod 2}.
Since
BD;=1+8/—T+(8+4y/—1)w mod 16,
Di=14+@84+8/— o mod 16,
we have
C={X+V=1Y+(Z+vV—=1W)a]|
X=1mod 4, Y=0 mod 2, Z=0 mod 8, W=0 mod 4}.

It is easy to see the group C, is generated by [S], [D,] and [1 —44/ — 1 w].
Obviously we have

(1—4/ = To]y={[1+4by—1w]|b e Z}.

Since any element v of C, is a product of an element [X++ —1Y]¢e

{[S1, [D,]> and an element [1+4by/ —10] € {[1—44/ —1w]), the class v
has a generator y, such that

=X+ Yy = 1)1 +4by—T1w)
=X+ YW/ —T1+4b(— Y44/ —1)o mod 16.

If we put y,=x+2y¢/ — 1 +@Bz+4v/ — 1w)w, x, y, z, w € Z, then the above
congruence shows

z4+yw=0 mod 2.
Converse part is obvious. Q.E.D.

Theorem 2. Let H be the class number of L. Let q be a prime number
such that q=1 mod 8 and (p/q)=1. Then we have
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there exists uniquely determined integers & and y such
that £=1mod 4, (§, g)=1, n>>0 and they satisfy one of
(ep/q)i=16= the following relations:

q" =&+ 64py’, ¢ =& +prf).
Let a and b be the uniquely determined integers such that
a=1mod 4, (a, q)=1, b>0 and q7=d*+ 160"
Suppose (e,/q),=1 and take & and 7 as above. Then we have

(_1)q+(€+a—2)/8 l/'qH_§2+64p772,
(—1)tere-nse if ¢ =& +pr).

Proof. The condition on ¢ implies that g decomposes completely in
L. Let 2 be one of the prime factors of ¢ in L. Since H is odd, we know

(/D =1[217 e G, (5/9)s=1=[2]7 e G
Assume [2]¥ ¢ C,. Then by Lemma 6, there exists five integers x, y, z, w
and u such that
97 = (x+ 27 =1 + B2+ 4w/ — 1)) - (4Y),
x=1 mod 4, ue{0,1,2}

e/ ={

Further, we know
[2)% e C;&=>z=yw mod 2.
Firstly assume u=0. Then we have

NL/k(“QH) = (5 + 877*/_:13)5
where

(8= 4974 Sz ) + 41 =),

amn
p=XzZ+yw-4z"+w

Further we have
Ny (2F)=(a+4by/ — 1),

where &k’ denotes the field Q(+/ — 1) and

{a=x2—4y2+ 8(xz—yw)+4(p+1)([4z*—n?),

18 B (r-+-42)(y-+ w) -+ dpzw.
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We note £=a=1 mod 4. By easy calculation, we see

(E+a—2)/8+9=z+yw mod 2,
g7 =&+ 64pyf =a*+ 16pb*.

Next consider the case u~0. The we have

NL/k(‘QH) = (AM(S + 877\/;7)),
Nyw(27)=(Np(A)*(a+ 4by =1)),

where &, 5, a and b are integers given by (17) and (18) respectively. Put

A& +8nv —p) =3 +7'V —p),
Ny (A a+4by —1)=a'+b'y/ —1.
Since N,..(A)=1 mod 16, we have

a'=a mod 16, b’=4b mod 16.

Put
A*=Yc+dv/ —p) (¢, de Z, c=d= 1 mod 2).
Then
&' =¢ tryo(A™) +8p(A™ — 4*) —p
=—§&+8ypd=—&+ 8y mod 16.
Hence

[2]7 e C;&=(6+a—2)/8+7=0 mod 2&=(— & +a—2)/8=0 mod 2,
g =5{(—&Y+py")=a"+16(b'/4). Q.E.D.

Corollary 3. (The proof for the strengthened form of the conjecture 1
of Lehmer [6].) Let q be a prime number such that q=1 mod 16 and (¢,/q),
=1. Suppose q has the expressions of the type:

g7 =a*+ 16b*=c*+ 64pd*,

where a, b, c and d are integers satisfying a=c=1 mod 4, (ac, g)=1. Then
we have

(e5/9)s=(—1)"*".

Proof. By (17) and (18) there exists four integers x, y, z and w such
that



430 N. Ishii

a=x"—4y*+-8(xz—yw)+4(p+ 1)(4z* —n?),
b= +{(x+42)(y+w)+4pzw},
d=xz+yw+4z"+w?,
x=1 mod 4.

From this we see

b+d=z4yw-+y mod 2.

The condition g=1 mod 16 implies a=1 mod 8. This shows y=0 mod 2.
Therefore

b+d=z+yw mod 2.
Lemma 6 shows our assertion. Q.E.D.
Numerical examples. In the below, put

F(sa 7]: a)=($+a—'2)/8+7]a
G(§, A)=(E+a—2)/8.

The class number H is 1 in all cases treated here.

(i) p=11:¢,=10434/11.
a) g=97. q=317411.3)=9+16-1%: G(17,9)=3.

e =10+3-37=121=11*=37"*=NO mod 97.

Here “NO” means that the number 37 is not square mod 97.
b) ¢=929. ¢g=(—157+704-1*=(—23)"4+16-5*: F(—15,1, —23)
= —4.

en=10+3-143=439=131°=246*=181° mod 929.
(ii) p=19: £,=1704+394/19.
a) qg=73. gq=31((—11)24+19.3) =(—3)2+16-2%: G(—11, —3)=
—2.
€1,=170439.26=16=4*=2*=32% mod 73.
(i) p=43. e,=3482+45314/43.
a) q=2833. q=9"4+64.43.1*=(—23)+16-12*: F(9, 1, —23)=
—1.

e, =0649+531. 244=2728=T784"=28*=NO mod 2833.
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(iv) p=163. &= 64080026 50191354/163.
a) q=97. q=21((—15°+163.1)=9+16.1*: G(—15, 9)=—1.

£16s=80+64-39=54=32*=41*=NO mod 97.

b) ¢g=1601. ¢=1({(—79+163-1)=1416-10*: G(—79, 1)=—10.
eie=14+0-42=1 mod 1601.

c) g=2753. g=1((—552+163-T)=(—T)*+16-13": G(—55, —7)

=—8.

€100 =1198+416-54=1638=1288"=1290*=679° mod 2753.
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