Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 413-431

On the Eighth Power Residue of Totally Positive Quadratic Units

Noburo Ishii

§ 0. Introduction

Let p be a prime number which is congruent to 3 modulo 4 and ε_p the totally positive fundamental unit of the real quadratic field $F = Q(\sqrt{p})$. Let q be a prime number which is split in F and is congruent to 1 modulo 2^n . Then we may define 2^n -th power residue symbol $(\varepsilon_p/q)_{2^n}$ of ε_p modulo q as follows. For a prime factor \mathcal{Q} of q in F, we choose an integer A such that

$$\varepsilon_n \equiv A \mod \mathcal{Q}.$$

The integer A is uniquely determined modulo q. The symbol $(\varepsilon_p/q)_{2^n}$ is defined only when A is a 2^{n-1} -th power residue modulo q and given by

 $(\varepsilon_p/q)_{2^n} = \begin{cases} 1 & \text{if } A \text{ is a } 2^n \text{-th power residue modulo } q, \\ -1 & \text{otherwise.} \end{cases}$

This definition is independent of the choice of the prime ideal \mathcal{Q} and the assumption imposed on q implies the following equivalence:

 $(\varepsilon_p/q)_{2^n} = 1 \iff$ the polynomial $x^{2^n} - A$ factors into a product of distinct 2^n linear polynomials modulo q.

The symbol $(\varepsilon_p/q)_2$ (resp. $(\varepsilon_p/q)_4$) is usually called the quadratic symbol (resp. biquadratic symbol or quartic symbol) of ε_p modulo q. For the given q, it is comparatively easy to determine the sign of the quadratic symbol. Thus we have

$$(\varepsilon_p/q)_2 = 1 \iff q \equiv 1 \mod 8.$$

The evaluation of the quartic residue symbol $(\varepsilon_p/q)_4$ are studied by many authors ([1], [2], [3], [4], [5], [7]). Here we shall quote one of their results. Let *r* be any positive odd multiples of the class number of the imaginary

Received July 14, 1986.

quadratic field $k = Q(\sqrt{-p})$ and q a prime number of the properties: (p/q) = (2/q) = 1. Then a condition on q to be $(\varepsilon_p/q)_4 = 1$ is given as follows. (cf. [2], [3].)

(1)
$$\begin{aligned} If \ p \equiv 7 \mod 8, \ then \\ (\varepsilon_p/q)_4 = 1 \iff there \ exists \ two \ integers \ x \ and \ y \ such \ that \\ q^r = x^2 + 64py^2, \quad x \equiv 1 \mod 4, \quad (x, q) = 1. \\ If \ p \equiv 3 \mod 8, \ then \\ (\varepsilon_p/q)_4 = 1 \iff there \ exists \ two \ integers \ \xi \ and \ \eta \ such \ that \\ q^r = \xi^2 + 64p\eta^2, \quad \xi \equiv 1 \mod 4, \quad (\xi, q) = 1 \\ or \ there \ exists \ two \ integers \ \xi_0 \ and \ \eta_0 \ such \ that \\ q^r = (\xi_0^2 + p\eta_0^2)/4, \quad \xi_0 \equiv 1 \mod 4, \quad (\xi_0, q) = 1. \end{aligned}$$

The purpose of this note is to determine when $(\varepsilon_p/q)_{\text{B}}=1$ for the prime q given by the type in the right hand side of (1). We obtain the following results:

Let $p \equiv 7 \mod 8$. Then under the notation in (1) we have

(2)
$$(\varepsilon_{v}/q)_{8} = (-1)^{y + (1/4)(x-1)}.$$

Let $p \equiv 3 \mod 8$. Put *H* the class number of the biquadratic field $L = Q(\sqrt{-1}, \sqrt{-p})$. Since *H* is odd, by (1) for r = H, the number q^H is expressed in

$$q^{H} = \xi^{2} + 64p\eta^{2}$$
 or $q^{H} = (\xi_{0}^{2} + p\eta_{0}^{2})/4$, $\xi \equiv \xi_{0} \equiv 1 \mod 4$, $(\xi\xi_{0}, q) = 1$.

Further we can write

$$q^{H} = a^{2} + b^{2}$$
, $a \equiv 1 \mod 4$, $(a, q) = 1$.

We have

(3)
$$(\varepsilon_p/q)_8 := \begin{cases} (-1)^{\eta + (\xi + a - 2)/8} & \text{if } q^H = \xi^2 + 64p\eta^2, \\ (-1)^{(\xi_0 + a - 2)/8} & \text{if } q^H = (\xi_0^2 + p\eta_0^2)/4. \end{cases}$$

We shall explain the way of proof of our results. Consider the fields

$$K_3 = \boldsymbol{\mathcal{Q}}(\sqrt{-1}, \sqrt[8]{\varepsilon_p}) \supset K_2 = \boldsymbol{\mathcal{Q}}(\sqrt{-1}, \sqrt[4]{\varepsilon_p}) \supset K_1 = \boldsymbol{\mathcal{Q}}(\sqrt{-1}, \sqrt{\varepsilon_p}).$$

For a prime number q such that $q \equiv 1 \mod 8$ and (p/q) = 1, we know

$$(\varepsilon_p/q)_4 = 1 \iff$$
 the prime q decomposes completely in K_2

(cf. [3]). The 8-th power residue symbol represents the decomposition

between K_3 and K_2 of q. If $p \equiv 7 \mod 8$, then K_3 is an abelian extension over $k = \mathbf{Q}(\sqrt{-p})$. By determining the class groups attached to K_3 and K_2 in k, the result (2) is obtained. In the case $p \equiv 3 \mod 8$, K_3 has no quadratic subfields over which K_3 is abelian. However K_3 is a cyclic extension of degree 8 over L. By adapting the class field theory for K_3/L , the result (3) is obtained. This is the reason why some congruence conditions in the fields $\mathbf{Q}(\sqrt{-1})$ and $\mathbf{Q}(\sqrt{-p})$ appear at the same time in the formula (3). The results (2) and (3) are given in Theorem 1 of Section 2 and in Theorem 2 of Section 3 respectively. In Section 3, we shall also prove the strengthend form of the conjecture 1 of E. Lehmer in [6]. The author would like to express his hearty thanks to Dr. Y. Mimura for helpful discussions.

§ 1. The Galois group of $Q(\sqrt{-1}, \sqrt[8]{\varepsilon_n})/Q$

Let p and ε_p be as in Section 0. Put $F = Q(\sqrt{p})$ and

 $\eta = \sqrt[8]{\varepsilon_p}$ and $\zeta = \exp(2\pi\sqrt{-1}/8) = (1 + \sqrt{-1})/\sqrt{2}$.

By Fermat's method, we know there exists an integer $s \ge 0$ such that

$$2^{-1} \operatorname{tr}_{F/O}(\varepsilon_n) = s^2 + (-1)^{(1/4)(p-3)}.$$

(cf. p. 97 of [3], Lemma 3 of this note.) Since

$$\eta^{8} + \eta^{-8} = \operatorname{tr}_{F/Q}(\varepsilon_{p}),$$

we have the relation

(4)
$$s^{-1}(\eta^4 + (-1)^{(1/4)(p-7)}\eta^{-4}) = \sqrt{2} = \zeta + \zeta^{-1}.$$

Let $K_3 = Q(\sqrt{-1}, \eta)$, Then K_3 contains ζ . Therefore K_3 is a Galois extension over Q generated by η and ζ . We denote by G the Galois group $G(K_3/Q)$ of K_3 over Q. We have

Proposition 1. Let the notation be as above. Then

(i) The group G is a group of degree 32 generated by the following three elements defined by

$$\sigma(\eta) = \zeta \eta ; \ \sigma(\zeta) = -\zeta,$$

$$\rho(\eta) = \eta ; \ \rho(\zeta) = \zeta^{\tau},$$

$$\varphi(\eta) = \eta^{-1}; \ \varphi(\zeta) = \zeta^{-p}.$$

Furthermore σ , φ and ρ satisfy the fundamental relations

N. Ishii

(5)
$$\sigma^8 = \rho^2 = \varphi^2 = 1, \ \rho \sigma \rho^{-1} = \sigma^3, \ \varphi \sigma \varphi^{-1} = \sigma^{4+p}, \ \varphi \rho = \rho \varphi.$$

(ii) If $p \equiv 7 \mod 8$, then G contains one and only one commutative subgroup of index 2. This subgroup is generated by σ and $\varphi \rho$. If $p \equiv 3 \mod 8$, then G has no commutative subgroups of index 2.

Proof. Let G(F) be the Galois group of K_3 over F. If μ is an element of G(F), then μ is determined uniquely by the actions on η and ζ . Let

$$\mu(\eta) = \zeta^m \eta, \qquad \mu(\zeta) = \zeta^n,$$

where *m* and *n* are integers such that $0 \le m$, n < 8, (n, 2) = 1. By acting μ on the both sides of (4), we have

$$\zeta^{n} + \zeta^{-n} = (-1)^{m} (\zeta + \zeta^{-1}).$$

This shows

$$n=1, 7 \text{ (resp. 3, 5)} \iff m: \text{ even (resp. odd)}.$$

Therefore we define σ and ρ by

$$\sigma(\eta) = \zeta \eta; \ \sigma(\zeta) = \zeta^5 = -\zeta,$$

$$\rho(\eta) = \eta; \ \rho(\zeta) = \zeta^7.$$

We see easily

$$\sigma^{8} = \rho^{2} = 1, \quad \rho\sigma = \sigma^{3}\rho, \quad G(F) = \langle \rho, \sigma \rangle.$$

Let λ be an element of G not belonging to G(F). Then

$$\lambda(\eta^{8}) = \lambda(\varepsilon_{p}) = \varepsilon_{p}^{-1} = \eta^{-8}.$$

Thus we may put

$$\lambda(\eta) = \zeta^u/\eta, \qquad \lambda(\zeta) = \zeta^v,$$

where u and v are integers. By acting λ on (4) we obtain

$$\zeta^{v} + \zeta^{-v} = (-1)^{u + (1/4)(p-7)} (\zeta + \zeta^{-1}).$$

From this we can take an element φ not belonging to G(F) as

$$\varphi(\eta) = \eta^{-1}; \qquad \varphi(\zeta) = \zeta^{-p}.$$

Immediately we have

Quadratic Units

$$\varphi^2 = 1, \quad \varphi \rho = \rho \varphi, \quad \varphi \sigma = \sigma^{4+p} \varphi, \quad G = \langle \sigma, \rho, \varphi \rangle.$$

Next we shall prove (ii). Suppose that H is a commutative subgroup of G of index 2. Then H contains $\langle \sigma^4 \rangle$. The factor group $\overline{H} = H/\langle \sigma^4 \rangle$ is the commutative subgroup of the Galois group $G(K_2/Q)$ where K_2 is a subfield of K_3 generated by $\sqrt[4]{\varepsilon_p}$ and $\sqrt{-1}$. In Section 2 of [3], we know that there are only three commutative subgroups of index 2 in $G(K_2/Q)$. They are given as follows.

$$\langle \bar{\sigma}, \bar{\varphi} \bar{\rho} \rangle, \quad \langle \bar{\sigma}^2, \bar{\varphi}, \bar{\rho} \rangle, \quad \langle \bar{\sigma}^2, \bar{\sigma} \bar{\varphi}, \bar{\sigma} \bar{\rho} \rangle,$$

where for the element α of G, $\overline{\alpha}$ denotes the restriction of α to K_2 . Thus H coincides with one of the three subgroups

$$\langle \sigma, \varphi \rho \rangle, \langle \sigma^2, \varphi, \rho \rangle, \langle \sigma^2, \sigma \varphi, \sigma \rho \rangle.$$

By (5) we see

$$\sigma \varphi \rho = \varphi \rho \sigma^{4+3p}, \quad \sigma^2 \rho = \rho \sigma^6, \quad \sigma^2(\sigma \rho) = (\sigma \rho) \sigma^6.$$

This shows that $\langle \sigma^2, \varphi, \rho \rangle$ and $\langle \sigma^2, \sigma\varphi, \sigma\rho \rangle$ are non-commutative and that $\langle \sigma, \varphi\rho \rangle$ is commutative only when $p \equiv 7 \mod 8$. Q.E.D.

Corollary 1.

(i) If $p \equiv 7 \mod 8$, K_3 contains one and only one quadratic subfield over which K_3 is abelian. This quadratic subfield is $Q(\sqrt{-p})$.

(ii) If $p \equiv 3 \mod 8$, then K_s contains no quadratic subfields over which K_s is abelian. K_s is a cyclic extension of degree 8 over L.

Proof. In Section 2 of [3], we obtained the field of invariants of the group $\langle \bar{\sigma}, \bar{\varphi}\bar{\rho} \rangle$ is $Q(\sqrt{-p})$. Therefore our statements follow from (ii) of Proposition 1. Q.E.D.

We shall explain the notation to be used in the following. Let \mathscr{K} be a finite abelian extension over the number field \mathscr{F} . Then we denote by $f(\mathscr{K}/\mathscr{F})$ the conductor of \mathscr{K} over \mathscr{F} . For an integral ideal α of \mathscr{F} , we denote by $H_{\mathscr{F}}(\alpha)$ the maximal ray class group defined mod α and by $P_{\mathscr{F}}(\alpha)$ the subgroup of $H_{\mathscr{F}}(\alpha)$ generated by the principal classes. For an integral ideal \mathfrak{b} prime to α , we denote by [\mathfrak{b}] the class of $H_{\mathscr{F}}(\alpha)$ represented by \mathfrak{b} . If \mathfrak{b} is principal, i.e. $\mathfrak{b}=(b)$, then we write [b] instead of [(b)]. For an intermediate field \mathscr{L} of \mathscr{K} over \mathscr{F} , we denote by $C_{\mathscr{F}}(\mathscr{L})$ the subgroup of $H_{\mathscr{F}}(f(\mathscr{K}/\mathscr{F}))$ corresponding to \mathscr{L} by Artin reciprocity law. Further we put

$$C^*_{\mathscr{F}}(\mathscr{L}) = C_{\mathscr{F}}(\mathscr{L}) \cap P_{\mathscr{F}}(f(\mathscr{K}/\mathscr{F})).$$

Consider the following sequence of subfields of K_3 ,

$$K_3 \supset K_2 = \mathbf{Q}(\sqrt{-1}, \sqrt[4]{\varepsilon_p}) \supset K_1 = \mathbf{Q}(\sqrt{-1}, \sqrt{\varepsilon_p}) \supset L$$
$$= \mathbf{Q}(\sqrt{-1}, \sqrt{-p}) \supset k = \mathbf{Q}(\sqrt{-p}).$$

Proposition 2. Let the notation be as above. Then

(i) If $p \equiv 7 \mod 8$, then K_3 is abelian over k and the conductors of intermediate fields over k are given as follows.

$$f(L/k) = (4), f(K_i/k) = (2^{i+2})$$
 for $i = 1, 2, 3$.

(ii) If $p \equiv 3 \mod 8$, then K_3 is abelian over L and the conductors of the intermediate fields over L are given as follows.

$$f(K_i/L) = (2^{i+1})$$
 for $i = 1, 2, 3$.

Proof. We know the exponent of quadratic defect $S_L(\varepsilon_p)$ of ε_p at L equals to 1. Thus we see immediately $S_{K_1}(\sqrt{\varepsilon_p}) = S_{K_2}(\sqrt[4]{\varepsilon_p}) = 1$. By Lemmas 1 and 4 of [3], we have our results. Q.E.D.

§ 2. The case $p \equiv 7 \mod 8$

Put $K_0 = L$. For brevity's sake, we will write C_i instead of $C_k^*(K_i)$ for every $i \ge 0$. Let h be the class number of k. Since h is odd, we have the following isomorphisms between groups;

$$G(K_3/k) \xrightarrow{\sim}_{\operatorname{Artin map}} H_k((32))/C_k(K_3) \xrightarrow{\sim} P_k((32))/C_3.$$

$$[\alpha] \xrightarrow{\sim} [\alpha]^h$$

Let $(2) = \mathscr{PP}'$ be the decomposition of the ideal (2) in k. Take two integers A and B of k such that

$$A \equiv 5 \mod \mathscr{P}^5; \qquad A \equiv 1 \mod \mathscr{P}^{\prime 5},$$
$$B \equiv -1 \mod \mathscr{P}^5; \qquad B \equiv 1 \mod \mathscr{P}^{\prime 5}.$$

Then it is easy to see

(6)
$$\begin{cases} P_k((32)) = \langle [A], [A^{\rho}], [B] \rangle, \\ [A][A^{\rho}] = [5], [A]^{\vartheta} = [A^{\rho}]^{\vartheta} = 1, \\ [B] = [B^{\rho}], [B]^2 = 1. \end{cases}$$

Lemma 1. The class groups C_2 and C_3 are given by

 $C_2 = \langle [A]^4, [A^{\rho}]^4, [A] \cdot [A^{\rho}] \rangle,$ $C_3 = \langle [A]^5 \cdot [A^{\rho}] \rangle.$

Proof. For an integer a dividing 32, put

$$K(a) = \operatorname{Ker} \left(P_k((32)) \xrightarrow{\operatorname{can.}} P_k((a)) \right).$$

Then it is easy to see

$$K(2) = P_k((32)),$$

$$K(2^{i+1}) = \langle [A]^{2^{i-1}}, [A^{\rho}]^{2^{i-1}} \rangle \qquad (i=1, 2, 3 \text{ and } 4).$$

By (i) of Proposition 2, we know

 $C_i \supset K(2^{i+2}), \supset K(2^{i+1}),$ for every *i*.

This shows

$$C_{0} = K(4) = \langle [A], [A^{\rho}] \rangle,$$

$$C_{i} \ni [A]^{2^{i}}, \quad [A^{\rho}]^{2^{i}}, \quad \Rightarrow [A]^{2^{i-1}}, \quad [A^{\rho}]^{2^{i-1}}, \quad \text{for } i \ge 1.$$

Further $G(K_2/Q)$ is non-commutative. Therefore we have

 $C_2 \ni [A] \cdot [A^{\rho}]^{-1}$.

Since C_{i+1} is a subgroup of C_i of index 2 for every *i*, we see

$$C_1 = \langle [A]^2, [A^{\rho}]^2, [A] \cdot [A^{\rho}] \rangle,$$

$$C_2 = \langle [A]^4, [A^{\rho}]^4, [A] \cdot [A^{\rho}] \rangle = \langle [A]^4, [A] \cdot [A^{\rho}] \rangle.$$

From the relation $\rho\sigma\rho^{-1}=\sigma^3$ in G it follows

 $[A^{\rho}] \cdot [A]^{-3} \in C_3.$

Hence we have

$$C_3 = \langle [A]^5 \cdot [A^{\rho}] \rangle. \qquad Q.E.D.$$

Lemma 2. Put $\omega = \frac{1}{2}(1 + \sqrt{-p})$. Let $S = x + y\omega$ be an integer of k. Then

$$[S] \in C_2 \iff x: odd, y \equiv 0 \mod 16.$$

Let $[S] \in C_2$ and suppose $x \equiv 1 \mod 4$. Then

$$[S] \in C_3 \iff \frac{1}{4}(x-1) + \frac{y}{16} \equiv 0 \mod 2.$$

Proof. By easy calculation we know

 $AA^{\rho} \equiv 5 \mod 32$, $A^{4} \equiv 17 + 16\omega \mod 32$, $A^{5}A^{\rho} \equiv 21 + 16\omega \mod 32$.

By Lemma 1, we have

 $C_{2} = \langle [5], [17+16\omega] \rangle = \{ [x+y\omega] | x \equiv 1 \mod 4, y \equiv 0 \mod 16 \},$ $C_{3} = \langle [21+16\omega] \rangle$ $= \{ [x+y\omega] | \substack{x \equiv 1 \mod 4, y \equiv 0 \mod 16, \\ x \text{ is square mod 32 if and only if } y \equiv 0 \mod 32 \}.$

If $x \equiv 1 \mod 4$, then

x is square mod
$$32 \iff x \equiv 1 \mod 8$$
.

Hence

$$[S] \in C_3 \iff \frac{1}{4}(x-1) \equiv y/16 \mod 2.$$
 Q.E.D.

Theorem 1. Let h be the class number of k and q a prime number such that $q \equiv 1 \mod 4$ and (p/q)=1. Then we have

 $(\varepsilon_p/q)_4 = 1 \iff \begin{cases} \text{there exists uniquely determined integers a and b such that} \\ q^h = a^2 + 64pb^2, \quad a \equiv 1 \mod 4, \quad (a, q) = 1, \quad b > 0. \end{cases}$

Further, in the above case, we have

 $(\varepsilon_n/q)_8 = (-1)^{(1/4)(a-1)+b}.$

Proof. Let \mathcal{Q} be a prime factor of q in k and put

 $\mathcal{Q}^{h} = (x + y\omega), \qquad x \equiv 1 \mod 4.$

Then we see

$$(\varepsilon_p/q)_4 = 1 \iff \mathcal{Q}$$
 decomposes completely in K_2
 $\iff [x + y\omega] \in C_2.$

By Lemma 2 we have y=16b for an integer b. Further we have

$$x + y\omega = (x + 8b) + 8b\sqrt{-p}.$$

Put a=x+8b. Then $a\equiv 1 \mod 4$ and $q^{h}=a^{2}+64pb^{2}$. Again by Lemma 2,

 $(\varepsilon_p/q)_8 = 1 \iff \mathscr{Q}$ decomposes completely in K_3

$$\iff [a+8b\sqrt{-p}] \in C_3 \iff \frac{1}{4}(a-1)+b \equiv 0 \mod 2.$$
 Q.E.D.

Remark. In [6], E. Lehmer conjectured

$$(\varepsilon_{\eta}/q)_{8} = (-1)^{b+d}$$

for the prime numbers q such that $q \equiv 1 \mod 16$ and $(\varepsilon_7/q)_4 = 1$, where b and d are integers given by $q = a^2 + 16b^2 = c^2 + 448d^2$. This conjecture does not hold for q = 449, since in this case we have b = 5, d = 1 and $(\varepsilon_7/q)_8 = -1$. See the next numerical examples.

Numerical examples. Let p=7. (a) $q=449=1^2+448\cdot 1^2$: $(\varepsilon_7/q)_8=-1$.

$$\varepsilon_7 = 8 + 3\sqrt{7} \equiv 8 + 3 \cdot 160 \equiv 39 \equiv 200^2 \equiv 149^4 \equiv \text{NO mod } 449.$$

Here the notation "NO" implies that 149 is not square mod 449. (b) $q=617=13^2+448\cdot 1^2$: $(\varepsilon_7/q)_8=1$.

 $\varepsilon_7 \equiv 8 + 3 \cdot 161 \equiv 491 \equiv 209^2 \equiv 120^4 \equiv 103^8 \mod 617.$

(c)
$$q = 1801 = (-3)^2 + 448 \cdot 2^2$$
: $(\varepsilon_7/q)_8 = -1$.

 $\varepsilon_7 \equiv 8 + 3.746 \equiv 445 \equiv 801^2 \equiv 314^4 \equiv \text{NO mod } 1801.$

§ 3. The case $p \equiv 3 \mod 8$

Let R be the maximal order of L. Then R is a free module of rank 4 over Z generated by 1, ω , $\sqrt{-1}$, $\sqrt{-1}\omega$, where $\omega = \frac{1}{2}(1 + \sqrt{-p})$.

The prime number 2 has unique prime divisor \mathscr{P} in L and decomposes in (2)= \mathscr{P}^2 . The prime ideal \mathscr{P} is a free module over Z generated by 2, $1+\sqrt{-1}$, $1+\sqrt{p}$, $1+\sqrt{-p}$. Therefore we have,

for an integer
$$\alpha = X + \sqrt{-1} Y + (Z + \sqrt{-1} W) \omega$$

of $L(X, Y, Z, W \in Z)$,
 $\alpha \in (2^e) \iff X \equiv Y \equiv Z \equiv W \equiv 0 \mod 2^e$,
 $(7) \qquad \alpha \in (2^e) \mathscr{P} \iff X \equiv Y \equiv Z \equiv W \equiv 0 \mod 2^e$,
 $X - Y \equiv Z - W \equiv 0 \mod 2^{e+1}$.

Since L has two archimedean places, the rank of the unit group R^{\times} of L equals to 1. The fundamental unit E of L is given in the following

N. Ishii

Lemma 3. Let p be a prime number such that $p \equiv 3 \mod 4$. Let ε_p be the totally positive fundamental unit of $F = Q(\sqrt{p})$. Then there exists two positive odd integers s and t such that

$$\varepsilon_p = s^2 + (-1)^{(1/4)(p-3)} + st\sqrt{p}$$
.

Further a fundamental unit E of L is given by

$$E = \frac{1}{2}(s-t) + \frac{1}{2}(s+t)\sqrt{-1} + t(1-\sqrt{-1})\omega.$$

Proof. Write

$$\varepsilon_p = uE^l, \qquad N_{L/F}(E) = \varepsilon_p^k,$$

where u is a root of unity contained in L and l and k are rational integers. Then we have kl=2 and we can assume k>0. Let H, h, h' be the class number of L, k and F respectively. It is well-known that

Hk = hh'.

Since h and h' are odd integers, we have k=1 and l=2. If p=3, then we may take s=t=1. Therefore we may assume p>3. Put

$$E = \frac{1}{2}(X + \sqrt{-1}Y) + \frac{1}{2}(Z + \sqrt{-1}W)\sqrt{-p},$$

where X, Y, Z and W are integers with properties:

$$X - Z \equiv Y - W \equiv 0 \mod 2.$$

If Y=Z=0 or X=W=0, then E is written in the product of a power of ε_p and a root of unity. Thus these cases are outside of our consideration. Since

$$N_{L/Q(\sqrt{-1})}(E) = \frac{1}{4}(X^2 - Y^2 + p(Z^2 - W^2)) + \frac{1}{2}(XY + pZW)\sqrt{-1} \in \langle \sqrt{-1} \rangle,$$

we have one of the next relations (8) and (9);

(8)
$$X^2 - Y^2 + p(Z^2 - W^2) = \pm 4: XY + pZW = 0,$$

(9)
$$X^2 - Y^2 + p(Z^2 - W^2) = 0: XY + pZW = \pm 2.$$

Furthermore we have

$$E^{2} = \frac{1}{4}(X^{2} - Y^{2} - p(Z^{2} - W^{2})) - \frac{1}{2}(XW + YZ)\sqrt{p} + \sqrt{-1}(\frac{1}{2}(XY - pZW) + \frac{1}{2}(XZ - WY)\sqrt{p}).$$

Since $E^2 = u\varepsilon_p$, where u is a 4-th root of unity, one of the following relations (10) and (11) holds true.

(10)
$$X^2 - Y^2 - p(Z^2 - W^2) = 0$$
: $XW + YZ = 0$,

$$(11) \qquad XY - pZW = 0: \quad XZ - WY = 0.$$

Therefore we have four possibilities. By easy arguments, we know only the combination of (9) and (10) holds true. In this case we obtain

$$X = -Y$$
: $Z = W$ or $X = Y$: $Z = -W$,
 $Y^2 - pW^2 = 2(-1)^{(1/4)(p-7)}$.

Since

$$\varepsilon_p = N_{L/F}(E) = \frac{1}{2}(Y^2 + pW^2) + YW\sqrt{p} = Y^2 + (-1)^{(1/4)(p-3)} + YW\sqrt{p},$$

we may take $s = |Y|$ and $t = |W|$. Q.E.D.

In the following, for i=1, 2 and 3, put $C_i = C_L^*(K_i)$. Since H is odd, we have the following isomorphisms between cyclic groups of order 8.

$$G(K_3/L) \xrightarrow{\sim}_{\operatorname{Artin map}} H_L((16))/C_L(K_3) \xrightarrow{\sim} P_L((16))/C_3.$$
$$[\mathfrak{a}] \longmapsto [\mathfrak{a}]^H$$

Let \hat{R} be the completion of R at \mathscr{P} and $\hat{\mathscr{P}}$ the unique prime ideal of \hat{R} . Then $\pi = 1 + \sqrt{-1}$ is a prime element of \hat{R} . For every integer n > 0, put

$$U_n = 1 + \hat{\mathscr{P}}^n$$
.

Let A be an integer of k such that $A^3 \equiv 1 \mod 16$. For example we can take A as

(12)
$$A = \begin{cases} 2u - (1+4u)\omega & \text{if } p = 3 + 8u \equiv 3 \mod 16, \\ 2(u+2) + (7-4u)\omega & \text{if } p = 3 + 8u \equiv 11 \mod 16. \end{cases}$$

Since R^{\times} is contained in U_1 , We have the following isomorphism:

(13)
$$P_L((16)) \xrightarrow{\sim} \langle \overline{A} \rangle \otimes (U_1/U_8)/V,$$

where \overline{A} denotes the class of \hat{R}^{\times}/U_{8} represented by A and V denotes the subgroup of U_{1}/U_{8} generated by the classes represented by the elements of R^{\times} .

Lemma 4. Let E be the unit of L given in Lemma 3. Consider the

following five integers of L such that

$$B = 1 + A\pi^{4}, \quad D_{1} = 1 + \pi^{3}, \quad D_{2} = 1 + A\pi^{3},$$

$$S = 1 + \pi^{2}, \quad T = 1 - \pi = -\sqrt{-1}.$$

Then these six elements E, B, D_1 , D_2 , S and T generate $U_1 \mod U_8$. Further we have the following congruences;

(14)

$$ST^{2} \equiv BD_{2}^{2} \cdot (BD_{2}^{2})^{\varphi} \mod U_{8},$$

$$D_{2}^{\varphi}D_{1} \equiv D_{2}^{7} \mod U_{8},$$

$$D_{2}^{\varphi}{}^{\varphi} \equiv D_{2}^{5} \cdot (BD_{2}^{2})^{3} \cdot S^{2} \cdot D_{1}^{-2} \cdot (D_{1}D_{2})^{4} \mod U_{8}$$

Proof. By (12) we know

 $\omega \equiv A \mod \pi^2$.

Therefore from the Lemma 3 it follows

$$E\equiv 1+A_0\pi \mod \pi^2,$$

where A_0 is A or A^2 . From this we have

 $E^2 \equiv 1 + A_0^2 \pi^2 \mod \pi^4$, $E^4 \equiv 1 + \pi^4 \mod \pi^5$.

Let $\alpha = 1 + a\pi^i \in U_i$ with $a \in \hat{R}^{\times}$. Then we note for $i \ge 3$,

 $\alpha^2 \equiv 1 + a\pi^{i+2} \mod \pi^{i+3}.$

Since the group U_i/U_{i+1} is isomorphic to $Z/(2) \oplus Z/(2)$ for $i \ge 1$, we have

E and T generate $U_1 \mod U_2$, E^2 and S generate $U_2 \mod U_3$, D_1 and D_2 generate $U_3 \mod U_4$, E^4 and B generate $U_4 \mod U_5$, D_1^2 and D_2^2 generate $U_5 \mod U_6$, E^8 and B^2 generate $U_6 \mod U_7$, D_1^4 and D_2^4 generate $U_7 \mod U_8$.

Hence we have inductively

(15)
$$\begin{cases} U_7/U_8 = \langle \bar{D}_1^4, \bar{D}_2^4 \rangle, \quad U_6/U_8 = \langle \bar{E}^8, \bar{B}^2, \bar{D}_1^4, \bar{D}_2^4 \rangle, \\ U_5/U_8 = \langle \bar{E}^8, \bar{B}^2, \bar{D}_1^2, \bar{D}_2^2 \rangle, \quad U_4/U_8 = \langle \bar{E}^4, \bar{B}, \bar{D}_1^2, \bar{D}_2^2 \rangle, \\ U_8/U_8 = \langle \bar{E}^4, \bar{B}, \bar{D}_1, \bar{D}_2 \rangle, \quad U_2/U_8 = \langle \bar{E}^2, \bar{S}, \bar{B}, \bar{D}_1, \bar{D}_2 \rangle, \\ U_1/U_8 = \langle \bar{E}, \bar{T}, \bar{S}, \bar{B}, \bar{D}_1, \bar{D}_2 \rangle, \end{cases}$$

where \overline{E} , \overline{B} , ..., \overline{S} and \overline{T} denote the classes of U_1/U_8 represented by E, ..., S and T respectively. The relation (14) is obtained from the direct calculation. Q.E.D.

Corollary 2. The degree of the class group $P_L((16))$ is $3 \cdot 4^5$ and we have the following isomorphism:

$$P_L((16)) \xrightarrow{\sim} \langle [B], [D_1], [D_2], [S] \rangle \otimes \langle [A] \rangle.$$

Proof. This is obvious from (13) and Lemma 4. Q.E.D.

Lemma 5. Let the notation be as above. Then

$$C_2 = \langle [B][D_2]^2, [D_1], [D_2]^4, [S] \rangle \otimes \langle [A] \rangle,$$

$$C_3 = \langle [B][D_2]^6, [D_1], [S] \rangle \otimes \langle [A] \rangle.$$

Proof. For $1 \leq n \leq 8$, put

$$K(\mathscr{P}^n) = \ker \left(P_L((16)) \xrightarrow{\text{can.}} P_L(\mathscr{P}^n) \right).$$

Then obviously we see

$$K(\mathscr{P}^n) = \langle [x] | x \in \mathbb{R}, x \in U_n/U_8 \rangle.$$

By (15) we know $K(\mathcal{P}^n)$ explicitly. By (ii) of Proposition 2, we have

(16)
$$C_i \supset K(\mathscr{P}^{2i+2}), \quad \not\supset K(\mathscr{P}^{2i+1}) \quad (i=1, 2, 3).$$

We note that C_i is G-invariant and C_{i+1} is a subgroup of C_i of index 2 for every *i*. First of all we shall determine the group C_1 . By (16) we know

$$C_1 \supset \langle [B], [D_1]^2, [D_2]^2 \rangle.$$

Since $G(K_1/Q)$ is commutative, we see

$$[D_2]^{\varphi} \cdot [D_2]^{-1} \in C_1.$$

Thus, it follows from (14)

$$[S] = ([B] \cdot [D_2]^2)([B] \cdot [D_2]^2)^{\varphi} \in C_1,$$

$$[D_1] = ([D_2]^{\varphi} \cdot [D_2]^{-1})^{-1} \cdot [D_2]^{\theta} \in C_1.$$

By Corollary 2, we have

$$C_1 = \langle [B], [D_1], [S], [D_2]^2 \rangle \otimes \langle [A] \rangle.$$

Next we shall calculate C_2 . Since $[D_1]^2 \in C_2$, we deduce from (16)

 $C_2 \not\ni [D_2]^2$.

This shows that $[D_2]$ generates $P_L((16)) \mod C_2$. The relation (5) implies

$$[D_2]^{\varphi} \cdot [D_2]^{-3}, \qquad [D_2]^{\varphi \rho} \cdot [D_2]^{-1} \in C_2.$$

This shows

 $[D_1], [B] \cdot [D_2]^2, [S] \in C_2.$

Therefore we have

$$C_2 = \langle [S], [D_1], [B] \cdot [D_2]^2, [D_2]^4 \rangle \otimes \langle [A] \rangle$$

Consider the group C_3 . Since $[D_1]^2 \in C_3$, we see by (16)

$$[D_2]^4 \notin C_3.$$

Thus the class $[D_2]$ generates $P_L((16)) \mod C_3$. By (5) we obtain

 $[D_2]^{\varphi} \cdot [D_2]^{-7}, [D_2]^{\varphi \rho} \cdot [D_2]^{-5} \in C_3.$

By the result for C_2 and (14) we have

$$[D_1] = ([D_2]^{\varphi} \cdot [D_2]^{-7})^{-1}, [S]^2, ([B] \cdot [D_2]^2)^2 \in C_3.$$

Thus

$$[B] \cdot [D_2]^6 = ([D_2]^{\varphi \rho} \cdot [D_2]^{-5}) \cdot [D_1]^{-2} \cdot [S]^{-2} \cdot ([B] \cdot [D_2]^2)^{-2} \in C_3.$$

From this especially we have, because of $[D_2]^4 \notin C_3$,

 $[B] \cdot [D_2]^2$, $([B] \cdot [D_2]^2)^{\varphi} \notin C_3$.

Therefore

 $[S] \in C_3$.

Hence

$$C_3 = \langle [B] \cdot [D_2]^6, [D_1], [S] \rangle \otimes \langle [A] \rangle. \qquad Q.E.D.$$

Lemma 6. Let (α) be the principal integral ideal of L whose generator α satisfies the condition $\alpha \equiv 1 \mod \mathcal{P}$. Then we have

$$[\alpha] \in C_2 \iff The ideal (\alpha) has the generator \beta of the following type:\beta = x + 2y\sqrt{-1} + (8z + 4\sqrt{-1}w) \omega, x, y, z, w \in \mathbb{Z}, x \equiv 1 \mod 4.$$

Further suppose $[\alpha] \in C_2$ and (α) has the generator of the above type. Then

$$[\alpha] \in C_3 \iff z \equiv yw \mod 2.$$

Proof. By (7), we know that (α) has a generator of the form:

$$X+Y\sqrt{-1}+(Z+\sqrt{-1}W)\omega, \quad X\equiv 1 \mod 4, \quad Y\equiv Z-W\equiv 0 \mod 2.$$

By the definitions of S and D_1 , we see

$$\langle [S], [D_1] \rangle = \{ [X + \sqrt{-1} Y] | X \equiv 1 \mod 4, Y \equiv 0 \mod 2 \}.$$

Since

$$BD_2^2 \equiv 1 + 8\sqrt{-1} + (8 + 4\sqrt{-1})\omega \mod 16,$$

$$D_2^4 \equiv 1 + (8 + 8\sqrt{-1})\omega \mod 16,$$

we have

$$C_{2} = \{ [X + \sqrt{-1} Y + (Z + \sqrt{-1} W)\omega] | X \equiv 1 \mod 4, Y \equiv 0 \mod 2, Z \equiv 0 \mod 8, W \equiv 0 \mod 4 \}.$$

It is easy to see the group C_3 is generated by [S], $[D_1]$ and $[1-4\sqrt{-1}\omega]$. Obviously we have

$$\langle [1-4\sqrt{-1}\omega] \rangle = \{ [1+4b\sqrt{-1}\omega] | b \in \mathbb{Z} \}.$$

Since any element ν of C_3 is a product of an element $[X+\sqrt{-1}Y] \in \langle [S], [D_1] \rangle$ and an element $[1+4b\sqrt{-1}\omega] \in \langle [1-4\sqrt{-1}\omega] \rangle$, the class ν has a generator ν_0 such that

$$\nu_0 \equiv (X + Y\sqrt{-1})(1 + 4b\sqrt{-1}\omega)$$
$$\equiv X + Y\sqrt{-1} + 4b(-Y + \sqrt{-1})\omega \mod 16.$$

If we put $\nu_0 = x + 2y\sqrt{-1} + (8z + 4\sqrt{-1}w)\omega$, $x, y, z, w \in \mathbb{Z}$, then the above congruence shows

 $z+yw\equiv 0 \mod 2$.

Converse part is obvious.

Theorem 2. Let H be the class number of L. Let q be a prime number such that $q \equiv 1 \mod 8$ and (p/q)=1. Then we have

Q.E.D.

N. Ishii

 $(\varepsilon_{p}/q)_{4} = 1 \iff \begin{cases} \text{there exists uniquely determined integers } \xi \text{ and } \eta \text{ such} \\ \text{that } \xi \equiv 1 \mod 4, \ (\xi, q) = 1, \ \eta > 0 \text{ and they satisfy one of} \\ \text{the following relations:} \\ q^{H} = \xi^{2} + 64p\eta^{2}, \ q^{H} = \frac{1}{4}(\xi^{2} + p\eta^{2}). \end{cases}$

Let a and b be the uniquely determined integers such that

$$a \equiv 1 \mod 4$$
, $(a, q) = 1$, $b > 0$ and $q^{H} = a^{2} + 16b^{2}$.

Suppose $(\varepsilon_{v}/q)_{4} = 1$ and take ξ and η as above. Then we have

$$(\varepsilon_p/q)_8 = \begin{cases} (-1)^{\eta + (\xi + a - 2)/8} & \text{if } q^H = \xi^2 + 64p\eta^2, \\ (-1)^{(\xi + a - 2)/8} & \text{if } q^H = \frac{1}{4}(\xi^2 + p\eta^2). \end{cases}$$

Proof. The condition on q implies that q decomposes completely in L. Let \mathcal{Q} be one of the prime factors of q in L. Since H is odd, we know

$$(\varepsilon_p/q)_4 = 1 \Longleftrightarrow [\mathcal{Q}]^H \in C_2, \qquad (\varepsilon_p/q)_8 = 1 \Longleftrightarrow [\mathcal{Q}]^H \in C_3.$$

Assume $[\mathcal{Q}]^H \in C_2$. Then by Lemma 6, there exists five integers x, y, z, w and u such that

$$\mathcal{Q}^{H} = (x + 2y\sqrt{-1} + (8z + 4w\sqrt{-1})\omega) \cdot (A^{u}),$$

 $x \equiv 1 \mod 4, \quad u \in \{0, 1, 2\}.$

Further, we know

$$[\mathscr{Q}]^{H} \in C_{\mathfrak{z}} \Longleftrightarrow z \equiv yw \mod 2.$$

Firstly assume u=0. Then we have

$$N_{L/k}(\mathcal{Q}^{H}) = (\xi + 8\eta \sqrt{-p}),$$

where

(17)
$$\begin{cases} \xi = x^2 + 4y^2 + 8(xz + yw) + 4(1-p)(4z^2 + w^2), \\ \eta = xz + yw + 4z^2 + w^2. \end{cases}$$

Further we have

$$N_{L/k'}(\mathcal{Q}^H) = (a + 4b\sqrt{-1}),$$

where k' denotes the field $Q(\sqrt{-1})$ and

(18)
$$\begin{cases} a = x^2 - 4y^2 + 8(xz - yw) + 4(p+1)(4z^2 - w^2), \\ b = (x+4z)(y+w) + 4pzw. \end{cases}$$

We note $\xi \equiv \alpha \equiv 1 \mod 4$. By easy calculation, we see

$$(\xi + \alpha - 2)/8 + \eta \equiv z + yw \mod 2,$$

 $q^{H} = \xi^{2} + 64p\eta^{2} = a^{2} + 16pb^{2}.$

Next consider the case $u \neq 0$. The we have

$$N_{L/k}(\mathcal{Q}^{H}) = (A^{2u}(\xi + 8\eta\sqrt{-p})),$$

$$N_{L/k'}(\mathcal{Q}^{H}) = (N_{L/k'}(A)^{u}(a + 4b\sqrt{-1})),$$

where ξ , η , a and b are integers given by (17) and (18) respectively. Put

$$A^{2u}(\xi + 8\eta\sqrt{-p}) = \frac{1}{2}(\xi' + \eta'\sqrt{-p}),$$

$$N_{L/k'}(A^u)(a + 4b\sqrt{-1}) = a' + b'\sqrt{-1}.$$

Since $N_{L/k'}(A) \equiv 1 \mod 16$, we have

 $a' \equiv a \mod 16$, $b' \equiv 4b \mod 16$.

Put

$$A^{2u} = \frac{1}{2}(c + d\sqrt{-p}) \ (c, \ d \in \mathbb{Z}, \ c \equiv d \equiv 1 \mod 2).$$

Then

$$\xi' \equiv \xi \operatorname{tr}_{k/\varrho}(A^{2u}) + 8\eta (A^{2u} - A^{4u}) \sqrt{-p}$$
$$\equiv -\xi + 8\eta p d \equiv -\xi + 8\eta \mod 16.$$

Hence

$$\begin{split} [\mathcal{Q}]^{H} \in C_{3} & \Longleftrightarrow (\xi + a - 2)/8 + \eta \equiv 0 \mod 2 \\ & \Leftrightarrow (-\xi' + a - 2)/8 \equiv 0 \mod 2, \\ & q^{H} = \frac{1}{4} ((-\xi')^{2} + p\eta'^{2}) = a'^{2} + 16(b'/4)^{2}. \end{split}$$
 Q.E.D.

Corollary 3. (The proof for the strengthened form of the conjecture 1 of Lehmer [6].) Let q be a prime number such that $q \equiv 1 \mod 16$ and $(\varepsilon_p/q)_4 = 1$. Suppose q has the expressions of the type:

$$q^{H} = a^{2} + 16b^{2} = c^{2} + 64pd^{2},$$

where a, b, c and d are integers satisfying $a \equiv c \equiv 1 \mod 4$, (ac, q) = 1. Then we have

$$(\varepsilon_p/q)_8 = (-1)^{b+d}.$$

Proof. By (17) and (18) there exists four integers x, y, z and w such that

$$a = x^{2} - 4y^{2} + 8(xz - yw) + 4(p+1)(4z^{2} - w^{2}),$$

$$b = \pm \{(x+4z)(y+w) + 4pzw\},$$

$$d = xz + yw + 4z^{2} + w^{2},$$

$$x \equiv 1 \mod 4.$$

From this we see

$$b+d\equiv z+yw+y \mod 2$$
.

The condition $q \equiv 1 \mod 16$ implies $a \equiv 1 \mod 8$. This shows $y \equiv 0 \mod 2$. Therefore

$$b+d\equiv z+yw \mod 2$$
.

Lemma 6 shows our assertion.

Numerical examples. In the below, put

$$F(\xi, \eta, a) = (\xi + a - 2)/8 + \eta,$$

$$G(\xi, a) = (\xi + a - 2)/8.$$

The class number H is 1 in all cases treated here.

(i)
$$p=11: \epsilon_{11}=10+3\sqrt{11}.$$

a) $q=97. q=\frac{1}{4}(17^2+11\cdot 3^2)=9^2+16\cdot 1^2: G(17,9)=3.$

 $\varepsilon_{11} \equiv 10 + 3 \cdot 37 \equiv 121 \equiv 11^2 \equiv 37^4 \equiv \text{NO mod } 97.$

Here "NO" means that the number 37 is not square mod 97.

b) q=929. $q=(-15)^2+704\cdot 1^2=(-23)^2+16\cdot 5^2$: F(-15, 1, -23)= -4.

$$\varepsilon_{11} \equiv 10 + 3 \cdot 143 \equiv 439 \equiv 131^2 \equiv 246^4 \equiv 181^8 \mod 929.$$

(ii) $p=19: \epsilon_{19}=170+39\sqrt{19}.$ a) $q=73. q=\frac{1}{4}((-11)^2+19\cdot 3^2)=(-3)^2+16\cdot 2^2: G(-11, -3)=-2.$

$$\varepsilon_{19} \equiv 170 + 39 \cdot 26 \equiv 16 \equiv 4^2 \equiv 2^4 \equiv 32^8 \mod 73.$$

(iii) p=43. $\varepsilon_{43}=3482+531\sqrt{43}$. a) q=2833. $q=9^2+64\cdot43\cdot1^2=(-23)^2+16\cdot12^2$: F(9, 1, -23)=-1.

$$\epsilon_{43} \equiv 649 + 531 \cdot 244 \equiv 2728 \equiv 784^2 \equiv 28^4 \equiv \text{NO mod } 2833$$

430

O.E.D.

(iv)
$$p = 163. \quad \varepsilon_{163} = 64080026 + 5019135\sqrt{163}.$$

a) $q = 97. \quad q = \frac{1}{4}((-15)^2 + 163 \cdot 1^2) = 9^2 + 16 \cdot 1^2: \quad G(-15, 9) = -1.$

 $\varepsilon_{163} \equiv 80 + 64 \cdot 39 \equiv 54 \equiv 32^2 \equiv 41^4 \equiv \text{NO mod } 97.$

b)
$$q = 1601$$
. $q = \frac{1}{4}((-79)^2 + 163 \cdot 1^2) = 1 + 16 \cdot 10^2$: $G(-79, 1) = -10$.

 $\varepsilon_{163} \equiv 1 + 0.42 \equiv 1 \mod 1601.$

c)
$$q = 2753$$
. $q = \frac{1}{4}((-55)^2 + 163 \cdot 7^2) = (-7)^2 + 16 \cdot 13^2$: $G(-55, -7) = -8$.

 $\varepsilon_{1es} \equiv 1198 + 416 \cdot 54 \equiv 1638 \equiv 1288^2 \equiv 1290^4 \equiv 679^8 \mod 2753.$

References

- [1] Y. Furuta and P. Kaplan, On quadratic and quartic characters of quadratic units, Sci. Rep. Kanazawa Univ., 26 (1981), 27-30.
- F. Halter-koch, P. Kaplan and K. S. Williams, An artin character and re-[2] presentations of primes by binary quadratic forms II, Manuscripta Math., 35 (1982), 357-381.
- [3] T. Hiramatsu and N. Ishii, Quartic residuacity and cusp forms of weight one, Comment. Math. Univ. St. Paul., 34 (1985), 91-103.
- [4] N. Ishii, On the quartic residue symbol of totally positive quadratic units, Tokyo J. Math., 9 (1986), 53-65.
- [5] K. Kramer, Residue properties of certain quadratic units, J. Number theory, 21 (1985), 204-213.
- [6] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew.
- Math., 268/269 (1974), 294-301. [7] P. A. Leonard and K. S. Williams, The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math.. 9 (1979), 683-692.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591 Japan