On a Classical Theta-Function, II

Tomio Kubota

The present paper, containing a partial and expository reconstruction of the results which were known since [3], is written for the purpose of stating some basic facts on a classical theta-function in a form which is possibly convenient in investigations related positively to metaplectic groups.

Since this paper is a continuation of [2], the ordinals of all sections, theorems, propositions and formulas follow those of [2], while references and footnotes are numbered anew, and the only theorem in [2] is quoted as Theorem 1.

§3. Eisenstein series $E(z, s)$

Having finished the investigation of the automorphic factors of the theta function (1), we are naturally led to the following Eisenstein series:

$$
\begin{equation*}
E(z, s)=\sum_{\Gamma_{0} \backslash \Gamma} \chi(\sigma, 1) e^{-(1 / 2) i \arg (c z+d)} \frac{y^{s / 2}}{|c z+d|^{s}} \tag{14}
\end{equation*}
$$

Here, z is a point in the upper half plane H, s is a complex number, Γ_{0} is the group consisting of all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ with $c=0$, and $\chi(\sigma, 1)$ is as in Theorem 1. Moreover, $\arg (c z+d)$ is always normalized by

$$
\begin{equation*}
-\pi \leqq \arg (c z+d)<\pi \tag{15}
\end{equation*}
$$

in accordance with (2). The series (14) iș absolutely convergent for $\operatorname{Re} s>2$, and satisfies the transformation formula

$$
\begin{equation*}
E(z, s)=\chi(\sigma, 1) e^{-(1 / 2) i \arg (c z+d)} E(\sigma z, s), \quad(\sigma \in \Gamma) \tag{16}
\end{equation*}
$$

Therefore one can expect that $E(z, s)$ may coincide with $\vartheta(z)$ at $s=\frac{1}{2}$. That this is actually the case will be shown in Section 7.

In this section, we shall observe the effect on $E(z, s)$ of the invariant differential operator

$$
\begin{equation*}
D=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \tag{17}
\end{equation*}
$$

with respect to $S L(2, R)$.
Because of the Iwasawa decomposition

$$
\omega=\left(\begin{array}{cc}
1 & x \tag{18}\\
& 1
\end{array}\right)\left(\begin{array}{rr}
\sqrt{y} & \\
& \frac{1}{\sqrt{y}}
\end{array}\right)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

every element $\omega \in G$ is in one to one correspondence with a pair of $z=x$ $+i y \in H$ and $\theta \bmod 2 \pi$. We normalize this θ by $-\pi \leqq \theta<\pi$, denote it by $\theta(\omega)$, and we set

$$
f(\tilde{\omega})=e^{(1 / 2) i(\theta(\omega)+(1-\varepsilon) \pi)}=\varepsilon e^{(1 / 2) i \theta(\omega)}
$$

for an element $\tilde{\omega}=(\omega, \varepsilon)$ of the covering group \widetilde{G}, introduced in Section 1, of G. $f(\tilde{\omega})$ is a continuous function on \widetilde{G}. On the other hand, let $\tilde{\sigma}=$ $\left(\sigma, \varepsilon^{\prime}\right) \in \tilde{\Gamma}, \sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Then,

$$
\theta(\sigma \omega)=\theta(\omega)+\arg (c z+d)-A(\theta(\omega), \arg (c z+d)) \cdot 2 \pi
$$

holds with

$$
A(\theta, \psi)=\left\{\begin{array}{lc}
0, & -\pi \leqq \theta+\psi<\pi \\
1, & \text { otherwise }
\end{array}\right.
$$

while

$$
2 A(\theta(\omega), \arg (c z+d))=1-a(\sigma, \omega)
$$

follows from (11) and (18). Therefore,

$$
\begin{aligned}
f(\tilde{\sigma} \tilde{\omega}) & =e^{(1 / 2) i\left(\theta(\omega)+\arg (c z+d)-(1-a(\sigma, \omega)) \pi+\left(1-\varepsilon \varepsilon^{\prime} a(\sigma, \omega)\right) \pi\right)} \\
& =e^{(1 / 2) i\left(\theta(\omega)+\arg (c z+d)+a(\sigma, \omega)\left(1-\varepsilon \varepsilon^{\prime}\right) \pi\right)} \\
& =\varepsilon \varepsilon^{\prime} e^{(1 / 2) i(\theta(\omega)+\arg (n z+d))}=\varepsilon^{\prime} e^{(1 / 2) i \arg (c z+d)} f(\tilde{\omega}) .
\end{aligned}
$$

Hence, setting

$$
g(\tilde{\omega})=\varepsilon y^{s / 2} e^{-(1 / 2) i \theta},
$$

we have

$$
g(\tilde{\sigma} \tilde{\omega})=\varepsilon \varepsilon^{\prime} \frac{y^{s / 2}}{|c z+d|^{s}} e^{-(1 / 2) i \arg (c z+d)} e^{-(1 / 2) i \theta},
$$

which is a term of our series (14).
Now, the invariant differential operators on G with respect to the operation of G are polynomials of

$$
D^{\prime}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+y \frac{\partial^{2}}{\partial x \partial \theta}+\frac{5}{4} \frac{\partial^{2}}{\partial \theta^{2}}
$$

and $\partial / \partial \theta$ with constant coefficients ${ }^{11}$. \widetilde{G} has the same invariant differential operators as G, and $g(\tilde{\omega})$ is an eigenfunction of D^{\prime}, i.e.,

$$
\begin{align*}
& D^{\prime} g=\left(\lambda-\frac{5}{16}\right) g, \tag{19}\\
& \lambda=\frac{s}{2}\left(\frac{s}{2}-1\right) . \tag{20}
\end{align*}
$$

From these facts follows that $g(\tilde{\sigma} \tilde{\omega})$ also satisfies the differential equation (19).

Let g temporarily stand for an arbitrary solution of the differential equation (19), and put $g_{1}=g e^{(1 / 2) i \theta}$. Then

$$
\begin{aligned}
D^{\prime} g=D^{\prime} g_{1} e^{-(1 / 2) i \theta}= & \left(D g_{1}\right) e^{-(1 / 2) i \theta}-\frac{i}{2} y\left(\frac{\partial}{\partial x} g_{1}\right) e^{-(1 / 2) i \theta} \\
& -\frac{5}{16} g_{1} e^{-(1 / 2) i \theta} .
\end{aligned}
$$

This implies

$$
D g_{1}-\frac{i}{2} y \frac{\partial}{\partial x} g_{1}=\lambda g_{1} .
$$

Thus we obtain
Proposition 3. The Eisenstein series (14) satisfies (termwise) the differential equation

$$
\left(D-\frac{i}{2} y \frac{\partial}{\partial x}\right) E(z, s)=\lambda E(z, s)
$$

where D resp. λ is defined by (17) resp. (20).

§4. Fourier expansion of the Eisenstein series

Our Eisenstein series (14) has of course a Fourier expansion of the form

[^0]\[

$$
\begin{equation*}
E(z, s)=\sum_{m=-\infty}^{\infty} a_{m}(y, s) e^{\pi i m x}, \quad z=x+i y \tag{21}
\end{equation*}
$$

\]

We now propose to observe $a_{m}(y, s)$. As for the constant term $a_{0}(y, s)$, we have the following

Proposition 4. An explicit form of the constant term of the Fourier series (21) is given by

$$
\begin{aligned}
a_{0}(y, s) & =\frac{1}{2} \int_{0}^{2} E(z, s) d x \\
& =2 y^{s / 2}+\sqrt{2 \pi} y^{1-s / 2}\left(1+\frac{1}{1+2^{s-1 / 2}}\right) \frac{\zeta(2 s-2)}{\zeta(2 s-1)} \frac{\Gamma(s-1)}{\Gamma^{\prime}(s-1 / 2)}
\end{aligned}
$$

where ζ is Riemann's zeta function.
Proof. Theorem 1 shows that $\chi(\sigma, 1)$ depends only on c and d, when $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Therefore, we write $\chi(c, d)$ instead of $\chi(\sigma, 1)$, so that (14) gives rise to

$$
\begin{equation*}
E(z, s)=\sum_{\substack{(c, d)=1 \\ c d=0(\bmod 2)}} \chi(c, d) e^{-(1 / 2) i \arg (c z+d)} \frac{y^{s / 2}}{|c z+d|^{s}} \tag{22}
\end{equation*}
$$

If $c=0$, then $d= \pm 1$. So, the partial sum of (22) for $c=0$ is

$$
\begin{equation*}
y^{s / 2}+(-i) e^{-(1 / 2) i(-\pi)} y^{s / 2}=2 y^{s / 2} \tag{23}
\end{equation*}
$$

On the other hand, denote by \sum_{1} the partial sum of (22) for $c \neq 0$. Then,

$$
\begin{align*}
\int_{0}^{2} \sum_{1} d x & =y^{s / 2} \int_{0}^{2} \sum_{1} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}} \chi(c, d) \frac{e^{-(1 / 2) i \arg (z+d / c)}}{|z+d / c|^{s}} d x \tag{24}\\
& =y^{s / 2} \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d)\right) \int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg z}}{|z|^{s}} d x,
\end{align*}
$$

where \sum_{2} is the sum over $d \bmod 2 c$ with $(d, c)=1, d c \equiv 0(\bmod 2)$. Theorem 1 yields

$$
\sum_{2} \chi(c, d)=\left\{\begin{array}{ccc}
\eta^{\mathrm{sgn} c} \varphi(c) & c \neq 0(\bmod 2), & |c| \text { square } \\
0 & \prime \prime & ,|c| \text { not square } \\
& \text { for } & \\
\sqrt{2} \eta^{\mathrm{sgn} c} \varphi(c) & c \equiv 0(\bmod 2), & |2 c| \text { square } \\
0 & \prime \prime & ,|2 c| \text { not square }
\end{array}\right.
$$

with $\eta=e^{\pi i / 4}$, and consequently

$$
\begin{aligned}
& \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d)\right) \\
& \quad=\sum_{\substack{(c, 2)=1 \\
c>0}} \frac{2 \eta}{c^{2 s}} \varphi\left(c^{2}\right)+\sum_{c>0} \frac{2 \sqrt{2} \eta}{2^{s} c^{2 s}} \varphi\left(2 c^{2}\right)
\end{aligned}
$$

Hence, by virtue of

$$
\sum_{\substack{(c, 2)=1 \\ c>0}} \frac{\varphi\left(c^{2}\right)}{c^{2 s}}=\sum \frac{\varphi(c)}{c^{2 s-1}}=\frac{2^{2 s-1}-2}{2^{2 s-1}-1} \frac{\zeta(2 s-2)}{\zeta(2 s-1)}
$$

and

$$
\begin{aligned}
\sum_{c>0} \frac{\varphi\left(2 c^{2}\right)}{2^{s} c^{2 s}} & =\sum_{\substack{(c, 2=1 \\
c>0}} \frac{\varphi\left(c^{2}\right)}{2^{s} c^{2 s}}+\sum_{\substack{c \equiv 0(\bmod 2) \\
c>0}} \frac{2 \varphi\left(c^{2}\right)}{2^{s} c^{2 s}} \\
& =\left\{2^{-s} \frac{2^{2 s-1}-2}{2^{2 s-1}-1}+2^{1-s}\left(1-\frac{2^{2 s-1}-2}{2^{2 s-1}-1}\right)\right\} \frac{\zeta(2 s-2)}{\zeta(2 s-1)} \\
& =\frac{2^{s-1}}{2^{2 s-1}-1} \frac{\zeta(2 s-2)}{\zeta(2 s-1)},
\end{aligned}
$$

we see

$$
\begin{equation*}
\sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d)\right)=2 \eta\left(1+\frac{1}{1+2^{s-1 / 2}}\right) \frac{\zeta(2 s-2)}{\zeta(2 s-1)} \tag{25}
\end{equation*}
$$

Next, an ordinary calculation shows

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg z}}{|z|^{s}} d x & =y^{1-s} \int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg (t+i)}}{\left(t^{2}+1\right)^{s / 2}} d t \\
& =y^{1-s} \int_{-\infty}^{\infty} \frac{e^{-\pi i / 4+(1 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2}} d t, \quad\left(-\frac{\pi}{2}<\arctan t<\frac{\pi}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{i / 2 \arctan t}}{\left(t^{2}+1\right)^{s / 2}} d t & =\int_{-\infty}^{\infty} \frac{\cos (1 / 2 \arctan t)}{\left(t^{2}+1\right)^{s / 2}} d t \\
& =2 \int_{0}^{1} \sqrt{\frac{1+u}{2}} u^{s} \frac{d u}{u^{2} \sqrt{1-u^{2}}}=\sqrt{2} \int_{0}^{1} u^{s-2}(1-u)^{-1 / 2} d u \\
& =\sqrt{2 \pi} \frac{\Gamma(s-1)}{\Gamma(s-1 / 2)}, \quad(u=\cos (\arctan t))
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg z}}{|z|^{s}} d x=y^{1-s} \eta^{-1} \sqrt{2 \pi} \frac{\Gamma(s-1)}{\Gamma(s-1 / 2)} . \tag{26}
\end{equation*}
$$

The proposition follows now at once from (23), (24), (25), (26).
The nature of Fourier coefficients $a_{m}(y, s)$ other than the constant term is considerably complicated, and will be treated in Section 5. But, we shall perform here some preliminaries.

The meanings of \sum_{1} and \sum_{2} being as above, and m being not 0 , it follows from a direct computation that

$$
\begin{aligned}
& \int_{0}^{2} E(z, s) e^{-\pi i m x} d x=\int_{0}^{2} \sum_{1} \chi(c, d) e^{-(1 / 2) i \arg (c z+d)} \frac{y^{s / 2}}{|c z+d|^{s}} e^{-\pi i m x} d x \\
&= y^{s / 2} \sum_{1} \frac{e^{-(1 / 2) \arg c}}{|c|^{s}} \chi(c, d) \frac{e^{-(1 / 2) i \arg (z+d / c)}}{|z+d / c|^{s}} e^{-\pi i m x} d x \\
&= y^{s / 2} \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d) e^{\pi i m d / c}\right) \int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg z}}{|z|^{s}} e^{-\pi i m x} d x \\
&= y^{1-s / 2} \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d) e^{\pi i m d / c}\right) \\
& \times \int_{-\infty}^{\infty} \frac{e^{-(1 / 2) i \arg (t+i)}}{\left(t^{2}+1\right)^{s / 2}} e^{-\pi i(m y) t} d t .
\end{aligned}
$$

So, if we put

$$
\begin{equation*}
\tau_{m}(c)=e^{-(1 / 2) i \arg c}\left(\sum_{\Sigma} \chi(c, d) e^{\pi i m d / c}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
w(u, s)=\int_{-\infty}^{\infty} \frac{e^{(1 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2}} e^{-\pi i u t} d t, \quad-\frac{\pi}{2}<\arctan t<\frac{\pi}{2}, \tag{28}
\end{equation*}
$$

u being a positive or negative real number, then

$$
\begin{equation*}
a_{m}(y, s)=y^{1-s / 2} \frac{1}{2 \eta}\left(\sum_{c \neq 0} \frac{\tau_{m}(c)}{|c|^{s}}\right) w(m y, s) . \tag{29}
\end{equation*}
$$

Because of Proposition 3, $a_{m}(y, s)$ satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} a_{m}}{d y^{2}}-\left(\pi^{2} m^{2}-\frac{\pi m}{2 y}+\frac{\lambda}{y^{2}}\right) a_{m}=0 \tag{30}
\end{equation*}
$$

where λ is as in (20). Accordingly, our Fourier coefficients are all expressed by the Whittaker function.

The integral in (28) is not absolutely convergent unless $\operatorname{Re} s>1$. But, by means of the recursive formula

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{t^{k} e^{(1 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2+k}} e^{-\pi i u t} d t \\
& \quad=\frac{1}{\pi i u} \int_{-\infty}^{\infty}\left[\left\{\frac{k}{t^{2}}-(s+2 k)\right\} e^{(1 / 2) i \arctan t}+\frac{i}{2 t}\right] \frac{t^{k+1} e^{-\pi i u t}}{\left(t^{2}+1\right)^{s / 2+k+1}} d t \tag{31}
\end{align*}
$$

for $k=0,1,2, \cdots$, one gets an analytic continuation of $w(u, s)$ which is an entire function on the whole s-plane. Furthermore, for an arbitrary s, it follows from (31) and from the properties of Fourier integrals that $w(u, s)$ tends to 0 as $|u| \rightarrow \infty$. Recalling the differential equation (30), we obtain a more precise result that $|w(u, s)|$ decreases with the order of $e^{-\pi|u|}$ as $|u| \rightarrow \infty$. Although $w(u, s)$ is analytic with respect to s, it is not analytic with respect to u at $u=0$.

§ 5. Computation of Dirichlet series

We have already discussed in part the Fourier coefficients in (21) of the Eisenstein series (14); one remaining part of number-theoretical importance is the Dirichlet series on the right hand side of (29). In this section, we shall show that the Dirichlet series can be expressed by a combination of ordinary zeta and L-functions in spite of the appearance of Gauss sums $\tau_{m}(c)$.

To do this, we must first determine $\tau_{m}(c)$ completely. For the sake of simplicity, most of our arguments will be done under the assumption $c>0$. The general case can be treated quite incidentally.

Set $c=2^{r} c^{\prime},\left(c^{\prime}, 2\right)=1$, and $\varepsilon=(-1)^{\left(c^{\prime}-1\right) / 2}$. Then, (27) implies

$$
\begin{align*}
& \tau_{m}(c)=\eta^{\varepsilon} \sum_{\substack{d \text { mod } c \\
(d, c)=1}}\left(\frac{d}{c}\right) e^{2 \pi i m d / c}, \quad(r=0) \tag{32}\\
\tau_{m}(c)= & \sum_{3,1}\left(c^{\prime}, d\right)\left(\frac{2^{r+1} c^{\prime}}{d}\right) e^{2 \pi i m d / 2 r+1 c^{\prime}} \\
& +i \sum_{3,-1}\left(c^{\prime}, d\right)\left(\frac{2^{r+1} c^{\prime}}{d}\right) e^{2 \pi i m d / 2 r+1 c^{\prime}}, \quad(r>0) \tag{33}
\end{align*}
$$

where $\sum_{3, \alpha}$ is the sum over $d \bmod 2^{r+1} c^{\prime}$ with $\left(d, c^{\prime}\right)=1, d \equiv \alpha(\bmod 4)$. If $d=2^{r+1} d_{1}+c^{\prime} d_{2}$, then

$$
\begin{aligned}
\sum_{3, \alpha} & \left(c^{\prime}, d\right)\left(\frac{2^{r+1} c^{\prime}}{d}\right) e^{2 \pi i m / 2 r+1 c^{\prime}} \\
& \left.=\sum_{3, \alpha}\left(c^{\prime} \varepsilon, d\right)\left(\frac{c^{\prime} \varepsilon}{d}\right) \cdot(\varepsilon, d)\left(\frac{2^{r+1} \varepsilon}{d}\right) e^{2 \pi i\left(m d_{1} / c^{\prime}+m d_{2} / 2 r+1\right.}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{d_{1} \bmod c^{\prime} \\
\left(d_{1}, c^{\prime}\right)=1}}\left(\frac{2^{r+1} d}{c^{\prime}}\right) e^{2 \pi i m d_{1} / c^{\prime}} \cdot \sum_{\substack{d_{2} \bmod d^{2} r+1 \\
d_{2} \equiv \varepsilon \alpha(\bmod 4)}}\left(\varepsilon, c^{\prime} d_{2}\right)\left(\frac{2^{r+1} \varepsilon}{c^{\prime} d_{2}}\right) e^{2 \pi i m d_{2} / 2 r+1} \\
& =\varepsilon \sum_{\substack{d_{1} \bmod c^{\prime} \\
\left(d_{1}, c^{\prime}\right)=1}}\left(\frac{d}{c^{\prime}}\right) e^{2 \pi i m d_{1} / c^{\prime}} \cdot \sum_{\substack{d_{2} \bmod 2 r+1 \\
d_{2} \equiv \varepsilon \alpha(\bmod 4)}}\left(\varepsilon, d_{2}\right)\left(\frac{2^{r+1} \varepsilon}{d_{2}}\right) e^{2 \pi \bar{\imath} m d_{2} / 2^{r+1}}
\end{aligned}
$$

Hence, if we put

$$
\begin{equation*}
\tau(c, m)=\sum_{\substack{d \text { mod } c \\(d, c)=1}}\left(\frac{d}{c}\right) e^{2 \pi i m a / c}, \quad(c, 2)=1, \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\alpha}\left(2^{r+1} \varepsilon, m\right)=\sum_{\substack{d \bmod 2 r+1 \\ d \equiv \alpha(\bmod 4)}}(\varepsilon, d)\left(\frac{2^{r+1} \varepsilon}{d}\right) e^{2 \pi i m d / 2^{r+1}} \tag{35}
\end{equation*}
$$

then (32) yields

$$
\begin{equation*}
\tau_{m}(c)=\eta^{\varepsilon} \tau(c, m), \quad(c, 2)=1 \tag{36}
\end{equation*}
$$

and (33) yields

$$
\begin{equation*}
\tau_{m}(c)=\varepsilon \tau\left(c^{\prime}, m\right)\left(\tau_{\varepsilon}\left(2^{r+1} \varepsilon, m\right)+i \tau_{-\varepsilon}\left(2^{r+1} \varepsilon, m\right)\right), \quad 2 \mid c . \tag{37}
\end{equation*}
$$

Thus the determination of $\tau_{m}(c)$ is reduced to the determination of two kinds of sums (34), (35).

Proposition 5. Let $c>0$ be an odd natural number, and m be a nonzero rational integer. Denote, in general, by l an odd prime number dividing m, and by p a prime number not dividing m. Furthermore, let p^{r} resp. l^{r} be the p - resp. l-component of c, let l^{e} be the l-component of m, and let m_{0} be the non-square kernel of m. Finally, define the following notations:
for p

$$
\tau(c, m)_{p}=\left\{\begin{array}{cc}
1, & r=0 \\
\left(\frac{m_{0}}{p}\right) \sqrt{p}, & r=1 \\
0, & r>1
\end{array}\right.
$$

for l with odd e

$$
\tau(c, m)_{l}=\left\{\begin{array}{cl}
1, & r=0 \\
(l-1) l^{r-1}, & 0<r \leqq e-1, r \text { even } \\
-l^{e}, & r=e+1, \\
0, & r>e+1, \text { or } r \text { odd } .
\end{array}\right.
$$

for l with even e

$$
\tau(c, m)_{l}=\left\{\begin{array}{cl}
1, & r=0, \\
(l-1) l^{r-1}, & 0<r \leqq e, r \text { even }, \\
\left(\frac{m_{0}}{l}\right) l^{e} \sqrt{l}, & r=e+1, \\
0, & r>e+1, \text { or } r \operatorname{odd}(\neq e+1)
\end{array}\right.
$$

Then, we obtain a decomposition

$$
\tau(c, m)=\eta^{1-\varepsilon} \prod_{l} \tau(c, m)_{i} \cdot \prod_{p} \tau(c, m)_{p}
$$

of $\tau(c, m)$ in (34) with $\varepsilon=(-1)^{(c-1) / 2}, \eta=e^{\pi i / 4}$.
Proof. This proposition is contained in the results of [1]. So, we state here only an outline of the proof. Let $c=c_{1} c_{2}$ be a decomposition of c into two mutually prime natural numbers, and put $d=c_{2} d_{1}+c_{1} d_{2}$. Then the quadratic reciprocity law shows that it is enough to prove the proposition for c_{1} and c_{2} instead of c. Therefore, the proof is reduced to the case where c is a power of a prime number p. In this case, the assertion of the proposition follows from the fact that the sum of the values of a non-trivial character over a finite abelian group is 0 , and from the wellknown classical result ${ }^{2}$) on the value of the Gauss sum $\tau(p, 1)$.

Proposition 6. Let $m \neq 0$ be a rational integer, and put $m=2^{e} m^{\prime}$, $\left(\left(m^{\prime}, 2\right)=1\right), \varepsilon= \pm 1, \varepsilon_{m}=(-1)^{\left(m^{\prime}-1\right) / 2}$, and $\eta=e^{\pi i / 4}$. Then, the value of the sum $\tau_{a}\left(2^{r+1} \varepsilon, m\right)$ in (35) is as in the following table:

[^1]Proof. As in the preceding proposition, use the fact that the sum of the values of a non-trivial character over a finite abelian group is 0 . Then, it is easy to see that non-trivial assertions in the proposition are only those concerning $r=e, r=e+1$, and $r=e+2$. But, the assertions for these cases also reduce to observations of sums over a prime residue system $\bmod 8$, and are simply treated by direct computations.

This proposition immediately entails
Corollary. Notations being as in Proposition 6, put

$$
\tau\left(2^{r+1} \varepsilon, m\right)=\varepsilon\left(\tau_{\varepsilon}\left(2^{r+1} \varepsilon, m\right)+i \tau_{-\varepsilon}\left(2^{r+1} \varepsilon, m\right)\right) .
$$

Then, we have the following result:

$$
\text { conditions on } r \quad \text { value of } \tau\left(2^{r+1} \varepsilon, m\right)
$$

for odde

$0<r \leqq e-1$,	r odd	$\eta^{s} 2^{r-1} \sqrt{2}$
$\quad \prime$,	\quad even
$r=e$		0
$r>e$		$-\eta^{\varepsilon} 2^{e-1} \sqrt{2}$
$r e$		

for even e

$$
\left.\begin{array}{clc}
0<r \leqq e, & r \text { odd } & \eta^{\varepsilon} 2^{r-1} \sqrt{2} \\
\prime \prime & , & r \text { even }
\end{array}\right] 0
$$

Now, denote anew by $c>0$ an arbitrary natural number, and by $m \neq 0$ a rational integer, set $c=2^{r} c^{\prime},\left(\left(c^{\prime}, 2\right)=1\right), \varepsilon=(-1)^{\left(c^{\prime}-1\right) / 2}, m=2^{e} m^{\prime}$, $\left(\left(m^{\prime}, 2\right)=1\right)$, and $\varepsilon_{m}=(-1)^{\left(m^{\prime}-1\right) / 2}$. Furthermore, let $\tau(c, m)_{p}$ and $\tau(c, m)_{l}$ be as in Proposition 5 for odd primes p and l, and, using the notations in Corollary to Proposition 6, put

$$
\tau(c, m)_{2}=\left\{\begin{array}{cc}
\eta^{-\epsilon} \tau\left(2^{r+1} \varepsilon, m\right), & r>0, \tag{38}\\
1, & r=0 .
\end{array}\right.
$$

Then, from (36), (37), Proposition 5 and Corollary to Proposition 6, it follows that the component decomposition

$$
\begin{equation*}
\tau_{m}(c)=\eta \prod_{q} \tau(c, m)_{q} \tag{39}
\end{equation*}
$$

holds, the product being extended over all prime numbers q.
From now on, we drop the condition $c>0$; every notation which we have ever defined has a definite meaning even if c is a negative rational integer. Suppose that c is negative, and $(c, 2)=1$. Then, by definition,

$$
\begin{align*}
\tau_{m}(c) & =i \eta^{\varepsilon} \tau(c, m)=i \eta^{\varepsilon}\left(\frac{-1}{c}\right) \tau(|c|, m) \\
& =i \eta^{2 \varepsilon}\left(\frac{-1}{c}\right) \tau_{m}(|c|)=\tau_{m}(|c|) \tag{40}
\end{align*}
$$

Therefore, $\tau_{m}(c)$ depends only on $|c|$, when $(c, 2)=1$. If $2 \mid c$ and $c<0$, (39) and (40) imply

$$
\begin{aligned}
\tau_{m}(c) & =i \eta^{\varepsilon} \tau\left(c^{\prime}, m\right) \cdot \tau(c, m)_{2} \\
& =\tau_{m}\left(\left|c^{\prime}\right|\right) \cdot \tau(c, m)_{2}
\end{aligned}
$$

and it is clear by Corollary to Proposition 6 that $\tau(c, m)_{2}=\tau(|c|, m)_{2}$. So, $\tau_{m}(c)=\tau_{m}(|c|)$ also in this case. On the other hand, Proposition 5 shows that $\tau(c, m)_{q}$ for $q \neq 2$ depends only on $|c|$, too. Hence, in considering $\tau_{m}(c)$ and its component decomposition, we may always replace c by $|c|$.

Because of the component decomposition (39), the Dirichlet series on the right hand side of (29) posesses an Euler product;

$$
\begin{equation*}
\sum_{c \neq 0} \frac{\tau_{m}(c)}{|c|^{s}}=2 \eta \prod A_{m, q}(s) \tag{41}
\end{equation*}
$$

with

$$
A_{m, q}(s)=\sum_{r=1}^{\infty} \frac{\tau\left(c, q^{r}\right)_{q}}{q^{r s}} .
$$

We now propose to determine each q-component of this Euler product by means of Proposition 5 and Corollary to Proposition 6.

If $p \neq 2,(p, m)=1$, then

$$
\begin{equation*}
A_{m, p}(s)=1+\left(\frac{m_{0}}{p}\right) \frac{1}{p^{s-1 / 2}} \tag{42}
\end{equation*}
$$

where m_{0} is the non-square kernel of m.
If $l \neq 2, m=l^{e} m^{\prime}$, and $\left(m^{\prime}, l\right)=1$, then

$$
\begin{align*}
A_{m, l}(s) & =1+\frac{(l-1) l}{l^{2 s}}+\frac{(l-1) l^{3}}{l^{4 s}}+\cdots+\frac{(l-1) l^{e-2}}{l^{(e-1) s}}-\frac{l^{e}}{l^{(e+1) s}} \\
& =1+\frac{(l-1)\left(l^{(e-1)(1-s)}-1\right)}{l-l^{2 s-1}}-\frac{l^{e}}{l^{(e+1) s}} \tag{43}
\end{align*}
$$

for odd e, and

$$
\begin{align*}
A_{m, l}(s)= & 1+\frac{(l-1) l}{l^{2 s}}+\frac{(l-1) l^{3}}{l^{4 s}}+\cdots+\frac{(l-1) l^{e-1}}{l^{e s}} \\
& +\left(\frac{m_{0}}{l}\right) \frac{l^{e+1 / 2}}{l^{(e+1) s}} \tag{44}\\
= & 1+\frac{(l-1)\left(l^{e(1-s)}-1\right)}{l-l^{2 s-1}}+\left(\frac{m_{0}}{l}\right) \frac{l^{e+1 / 2}}{l^{(e+1) s}}
\end{align*}
$$

for even e. As for 2, we must recall (38). If in this case $m=2^{e} m^{\prime},\left(m^{\prime}, 2\right)$ $=1$, then

$$
\begin{align*}
A_{m, 2}(s) & =1+\frac{\sqrt{2}}{2^{s}}+\frac{2^{2} \sqrt{2}}{2^{3 s}}+\cdots+\frac{2^{e-3} \sqrt{2}}{2^{(e-2) s}}-\frac{2^{e-1} \sqrt{2}}{2^{e s}} \\
& =1+2^{s-1 / 2} \frac{2^{(e-1)(1-s)}-1}{2-2^{2 s-1}}-\frac{1}{2^{e s-e+1 / 2}} \tag{45}
\end{align*}
$$

for odd e, and

$$
\begin{align*}
& A_{m, 2}(s)= 1+\frac{\sqrt{2}}{2^{s}}+\frac{2^{2} \sqrt{2}}{2^{3 s}}+\cdots+\frac{2^{e-2} \sqrt{2}}{2^{(e-1) s}} \\
&+\frac{2^{e} \sqrt{2}}{2^{(e+1) s}}+\frac{2^{e+1}\left(1+\varepsilon_{m}\right)}{2^{(e+2) s}}\left(\frac{2}{m^{\prime}}\right) \tag{46}\\
&= 1+2^{s-1 / 2} \frac{2^{e(1-s)}-1}{2-2^{2 s-1}}+\frac{\varepsilon_{m}}{2^{(e+1) s-e-1 / 2}}+\frac{1+\varepsilon_{m}}{2^{(e+2) s-e-1}}\left(\frac{2}{m^{\prime}}\right), \\
& \varepsilon_{m}=(-1)^{\left(m^{\prime}-1\right) / 2}
\end{align*}
$$

for even e. Let now χ_{m} be the class-field-theoretical character with respect to $F=Q(\sqrt{m})$, that is, for a prime number q, let

$$
\chi_{m}(q)=\left\{\begin{align*}
1, & q \text { is a product of primes of degree } 1 \text { in } F, \tag{47}\\
-1, & \text { if } \\
0, & q \text { is a prime of degree } 2 \text { in } F, \\
0, & q \text { is ramified in } F
\end{align*}\right.
$$

Furthermore, set

$$
A_{m, q}(s)=\left\{\begin{array}{lll}
A_{m, q}^{\prime}(s)\left(1+\frac{\chi_{m}(q)}{q^{s-1 / 2}}\right), & & \chi_{m}(q) \neq 0 \tag{48}\\
A_{m, q}^{\prime}(s)\left(1-\frac{1}{q^{2 s-1}}\right), & \text { for } & \chi_{m}(q)=0
\end{array}\right.
$$

Then, a series of calculations using (43), (44), (45), (46), and (48) yields the following expressions of $A_{m, q}^{\prime}(s)$:

$$
\text { for } p \neq 2,(p, m)=1
$$

$$
\begin{equation*}
A_{m, p}^{\prime}(s)=1 \tag{49}
\end{equation*}
$$

for $l \neq 2, m=l^{e} m^{\prime},\left(m^{\prime}, l\right)=1$, and e odd

$$
A_{m, l}^{\prime}(s)=\frac{1-l^{-(e+1)(s-1)}}{1-l^{-2(s-1)}}
$$

$$
\begin{align*}
= & l^{-((e-1) / 2)(s-1)} \sinh \left\{\frac{e+1}{2}(s-1) \log l\right\} \tag{50}\\
& / \sinh \{(s-1) \log l\} .
\end{align*}
$$

for $l \neq 2, \mathrm{~m}=l^{e} m^{\prime},\left(m^{\prime}, l\right)=1$, and e even

$$
\begin{align*}
A_{m, l}^{\prime}(s)= & \left(1-\left(\frac{m_{0}}{l}\right) l^{-s+1 / 2}\right) \frac{1-l^{-e(s-1)}}{1-l^{-2(s-1)}}+l^{-e(s-1)} \\
= & l^{-(l / 2)(s-1)}\left\{\sinh \left(\left(\frac{e}{2}+1\right)(s-1) \log l\right)\right. \tag{51}\\
& \left.-\left(\frac{m_{0}}{l}\right) \frac{1}{\sqrt{l}} \sinh \left(\frac{e}{2}(s-1) \log l\right)\right\} \\
& \mid \sinh ((s-1) \log l) .
\end{align*}
$$

for $m=2^{e} m^{\prime},\left(m^{\prime}, 2\right)=1$, and e odd

$$
\begin{align*}
& A_{m, 2}^{\prime}(s)=2^{s-1 / 2}\left(-\frac{1}{1+2^{-(s-1 / 2)}}+\frac{1-2^{-(e+1)(s-1)}}{1-2^{-2(s-1)}}\right) \\
&=\frac{2^{-((e-3) / 2)(s-1)}}{1+2^{s-1 / 2}}\left\{2 \sinh \left(\frac{e-1}{2}(s-1) \log 2\right)\right. \tag{52}\\
&\left.+\sqrt{2} \sinh \left(\frac{e+1}{2}(s-1) \log 2\right)\right\}
\end{align*}
$$

$/ \sinh ((s-1) \log 2)$.
for $m=2^{e} m^{\prime},\left(m^{\prime}, 2\right)=1, e$ even and $\varepsilon_{m}=(-1)^{\left(m^{\prime}-1\right) /}=-1^{3)}$

$$
\begin{align*}
& A_{m, 2}^{\prime}(s)=2^{s-1 / 2}\left(-\frac{1}{1+2^{-(s-1 / 2)}}+\frac{1-2^{-(e+2)(s-1)}}{1-2^{-2(s-1)}}\right) \\
&=\frac{2^{(-(e-2) / 2)(s-1)}}{1+2^{s-1 / 2}}\left\{2 \sinh \left(\frac{e}{2}(s-1) \log 2\right)\right. \tag{53}\\
&\left.+\sqrt{2} \sinh \left(\left(\frac{e}{2}+1\right)(s-1) \log 2\right)\right\}
\end{align*}
$$

$/ \sinh ((s-1) \log 2)$.
for $m=2^{e} m^{\prime},\left(m^{\prime}, 2\right)=1, e$ even, and $\varepsilon_{m 2}=1$

$$
\begin{aligned}
A_{m, 2}^{\prime}(s)= & 2^{s-1 / 2}\left(1-\left(\frac{2}{m^{\prime}}\right) 2^{-(s-1 / 2)}\right) \\
& \times\left(-\frac{1}{1+2^{-(s-1 / 2)}}+\frac{1-2^{-(e+2)(s-1)}}{1-2^{-2(s-1)}}\right)+2^{(e+1)(1-s)+1 / 2} \\
= & \frac{2^{-(e / 2)(s-1)}}{1+2^{s-1 / 2}}\left[2 \sinh \left(\left(\frac{e}{2}+1\right)(s-1) \log 2\right)\right. \\
& +\sqrt{2} \sinh \left(\left(\frac{e}{2}+2\right)(s-1) \log 2\right) \\
& -\left(\frac{2}{m^{\prime}}\right)\left\{\sqrt{2} \sinh \left(\frac{e}{2}(s-1) \log 2\right)\right. \\
& \left.\left.\quad+\sinh \left(\left(\frac{e}{2}+1\right)(s-1) \log 2\right)\right\}\right]
\end{aligned}
$$

$$
/ \sinh ((s-1) \log 2)
$$

Let $L\left(s, \chi_{m}\right)$ be Dirichlet's L-function containing the character χ_{m} defined by (47). Then, formulas (41) and (48) immediately imply

$$
\sum_{c \neq 0} \frac{\tau_{m}(c)}{|c|^{s}}=2 \eta \frac{L\left(s-1 / 2, \chi_{m}\right)}{\zeta(2 s-1)} \prod_{q} A_{m, q}^{\prime}(s) .
$$

Using this and (29), we have the following
Theorem 2. Except the constant term $a_{0}(y, s)$ given by Proposition 4, the Fourier coefficients in the Fourier expansion (21) of the Eisenstein series (14) are
${ }^{3)}$ In this and in the next case, it is convenient for our calculation to utilize the resemblance between (46) and (45). Note also that $\varepsilon_{m}=-1$ or 1 according to $\chi_{m}(2)=0$ or $\chi_{m}(2)=\left(2 / m^{\prime}\right) \neq 0$.

$$
a_{m}(y, s)=y^{1-s / 2} w(m y, s) \frac{L\left(s-1 / 2, \chi_{m}\right)}{\zeta(2 s-1)} \prod_{q} A_{m, q}^{\prime}(s)
$$

where w is defined by the integral in (28), $A_{m, q}^{\prime}(s)$ is as in (49), (50), (51), (52), (53), and (54), and q runs over all prime numbers.

§ 6. Functional equation of the Eisenstein series

From the concrete expression in Theorem 2 of the Fourier coefficients of our Eisenstein series, we see that, whenever s is in a compact region, the product $\prod_{q} A_{m, q}^{\prime}(s)$ is at most of the order of a power of m as $m \rightarrow \infty$. On the other hand, $w(m y, s)$ decreases exponentially as $m \rightarrow \infty$. Consequently, $E(z, s)$ is a meromorphic function in the whole s-plane, which is regular in a domain that does not contain any pole of $L\left(s, \chi_{m}\right), \zeta(2 s-1)^{-1}$, or the constant term of $E(z, s)$ given by Proposition 4. Of course, $E(z, s)$ is single valued.

To prove that $E(z, s)$ satisfies a functional equation as in the theory of Selberg, we put here

$$
\begin{equation*}
\varphi(s)=\sqrt{\frac{\pi}{2}}\left(1+\frac{1}{1+2^{s-1 / 2}}\right) \frac{\zeta(2 s-2)}{\zeta(2 s-1)} \frac{\Gamma(s-1)}{\Gamma(s-1 / 2)}, \tag{55}
\end{equation*}
$$

so that Proposition 4 turns out

$$
\begin{equation*}
a_{0}(y, s)=2\left(y^{s / 2}+\varphi(s) y^{1-s / 2}\right) \tag{56}
\end{equation*}
$$

Put $s=1+i t,(t \in \boldsymbol{R})$. Then, the functional equation of $\zeta(s)$ yields

$$
\begin{aligned}
|\zeta(2 i t) \Gamma(i t)| & =|\zeta(-2 i t) \Gamma(-i t)| \\
& =\left|\zeta(1+2 i t) \Gamma\left(\frac{1+2 i t}{2}\right) \pi^{-i t} \pi^{-(i+2 i t) / 2}\right| .
\end{aligned}
$$

So, by (55), we have

$$
\begin{aligned}
\varphi(1+i t) & =\sqrt{\frac{\pi}{2}}\left|1+\frac{1}{1+2^{1 / 2+i t}}\right|\left|\frac{\zeta(2 i t) \Gamma(i t)}{\zeta(1+2 i t) \Gamma(1 / 2+i t)}\right| \\
& =\left|\frac{2^{1 / 2}+2^{i t}}{1+2^{1 / 2+i t}}\right|=\left|\frac{1+2^{1 / 2-i t}}{1+2^{1 / 2+i t}}\right|=1 .
\end{aligned}
$$

This means that $\varphi(s)$ satisfies the functional equation

$$
\begin{equation*}
\varphi(s) \varphi(2-s)=1 \tag{57}
\end{equation*}
$$

Consequently, the constant term of the Fourier expansion of

$$
\begin{equation*}
b(z, s)=E(z, s)-\varphi(s) E(z, 2-s) \tag{58}
\end{equation*}
$$

is 0 . Since, however, our discontinuous group Γ has two cusps ∞ and 1 , what we have shown is merely that $b(z, s)$ vanishes at the cusp ∞. Therefore we must examine the other cusp 1. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of Γ, and set

$$
j_{1}(\sigma, z)=e^{-(i / 2) \arg (c z+d)}, \quad(z \in H)
$$

Then, it follows from (12) and (13) that

$$
j_{1}(\sigma, \tau z) j_{1}(\tau, z)=a(\sigma, \tau) j_{1}(\sigma \tau, z)
$$

holds for $\sigma, \tau \in \Gamma ; a(\sigma, \tau)$ being the factor set defined by (11). Set now $\rho=\left(\begin{array}{ll}1 & \\ 1 & 1\end{array}\right), \tau=\left(\begin{array}{ll}1 & 2 \\ & 1\end{array}\right)$, then $\rho \tau \rho^{-1}=\left(\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right)$ and from Theorem 1 follows

$$
\begin{equation*}
E\left(\rho \tau \rho^{-1} z, s\right)=-i j_{1}\left(\rho \tau \rho^{-1}, z\right)^{-1} E(z, s) \tag{59}
\end{equation*}
$$

while $a\left(\rho, \tau \rho^{-1}\right), a\left(\tau, \rho^{-1}\right)$, and $a\left(\rho^{-1}, \rho\right)$ are all 1 because of $\rho^{-1}=\left(\begin{array}{rr}1 & \\ -1 & 1\end{array}\right)$, $\tau \rho^{-1}=\left(\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right) . \quad$ Hence,

$$
\begin{aligned}
j_{1}\left(\rho \tau \rho^{-1}, z\right) & =j_{1}\left(\rho, \tau \rho^{-1} z\right) j_{1}\left(\tau \rho^{-1}, z\right) \\
& =j_{1}\left(\rho, \tau \rho^{-1} z\right) j_{1}\left(\tau, \rho^{-1} z\right) j_{1}\left(\rho^{-1}, z\right)
\end{aligned}
$$

and

$$
j_{1}\left(\rho \tau \rho^{-1}, z\right)=j_{1}(\rho, \tau z) j_{1}(\rho, z)^{-1}
$$

This, together with (59), shows

$$
\begin{equation*}
j_{1}(\rho, \tau z) E(\rho \tau z, s)=-i j_{1}(\rho, z) E(\rho z, s) \tag{60}
\end{equation*}
$$

The behavior of $E(z, s)$ in the neighborhood of $z=1$ is indicated by the function $j_{1}(\rho, z) E(\rho z, s)$. Since (60) shows that the function is a periodic function of period 8 with the multiplicator $-i$ with respect to the transformation $z \rightarrow z+2$, the constant term of the Fourier expansion, similar to (21), of $j_{1}(\rho, z) E(\rho z, s)$ must be 0 . Thus the function $b(z, s)$ in (58), vanishing also at the cusp 1 , is square integrable on a fundamental domain of Γ, i.e., $b(z, s)$ is a so-called cusp form. In this situation, it is no longer difficult to prove that $b(z, s)$ is identically 0 , if we adopt some arguments from Selberg's work. Notations being as in Section 3, $b^{\prime}=$ $b(z, s) f(\tilde{\omega})^{-1}$ belongs to $L^{2}(\tilde{\Gamma} \backslash \tilde{G})$, and is an eigenfunction of all invariant differential operators of G. Since, however, the eigenvalue of b^{\prime} with
respect to D^{\prime} depends continuously and analytically on s, the selfadjointness of D^{\prime} entails that b^{\prime} is orthogonal to all of those functions in $L^{2}(\tilde{\Gamma} \backslash \tilde{G})$ which are eigenfunctions of all invariant differential operators.

Thus we attained our aim in this section to obtain the following
Theorem 3. The Eisenstein series $E(z, s)$ satisfies the functional equation

$$
E(z, s)=\varphi(s) E(z, 2-s)
$$

containing the function $\varphi(s)$ of (55).

§ 7. $E(z, s)$ at $s=1 / 2$

We consider the function $\theta(z)=(1 / 2) y^{-1 / 4} E(z, 1 / 2)$. First of all, we intend to prove that $\theta(z)$ is an analytic function of z. To do this, we observe the function

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) y^{-s / 2} E(z, s) \tag{61}
\end{equation*}
$$

which is given by a series for $\operatorname{Re} s>2$, and show that the analytic continuation, with respect to s, of this function vanishes at $s=1 / 2$. Since by definition

$$
y^{-s / 2} E(z, s)=\sum_{\Gamma_{0} \backslash \Gamma} \chi(\sigma, 1) \frac{1}{\sqrt{c z+d}} \frac{1}{|c z+d|^{s-1 / 2}},
$$

we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) y^{-s / 2} E(z, s)=\left(s-\frac{1}{2}\right) E_{1}(z, s) \tag{62}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{1}(z, s)=\sum_{\Gamma_{0} \backslash \Gamma} \chi(\sigma, 1) e^{-(3 / 2) i \arg (c z+d)} \frac{c}{|c z+d|^{s+1}} . \tag{63}
\end{equation*}
$$

$E_{1}(z, s)$ has period 2 with respect to z, and has consequently a Fourier expansion with respect to the orthogonal basis $\left\{e^{\pi i m x}\right\}$. Let us now investigate the Fourier coefficients. While a calculation similar to the proof of Proposition 4 yields

$$
\begin{aligned}
\int_{0}^{2} E_{1}(z, s) d x & =\sum_{c \neq 0}\left(\frac{c}{|c|^{s+1}} e^{-(3 / 2) i \arg c} \sum_{2} \chi(c, d)\right) \int_{-\infty}^{\infty} \frac{e^{-(3 / 2) i \arg z}}{|z|^{s+1}} d x \\
& =-\eta \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d)\right) \int_{-\infty}^{\infty} \frac{e^{(3 / 2) i \arctan t}}{\left(t^{2}+1\right)^{(s+1) / 2}} d t,
\end{aligned}
$$

T. Kubota
the sum over $c \neq 0$ here is nothing else than (25) appearing at the corresponding place of Proposition 4. On the other hand,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{e^{(3 / 2) i \arctan t}}{\left(t^{2}+1\right)^{(s+1) / 2}} d t=2 \int_{0}^{\infty} \frac{\cos ((3 / 2) \arctan t)}{\left(t^{2}+1\right)^{(s+1) / 2}} d t \\
& \quad=2 \int_{0}^{1}\left(u \sqrt{\frac{1+u}{2}}-\sqrt{1-u^{2}} \sqrt{\frac{1-u}{2}}\right) u^{s+1} \frac{d u}{u^{2} \sqrt{1-u^{2}}} \\
&=\sqrt{2} \int_{0}^{1}\left\{u^{s}(1-u)^{-1 / 2}-u^{s-1}(1-u)^{1 / 2}\right\} d u \\
& \quad=\sqrt{2} \frac{\Gamma(s+1) \Gamma(1 / 2)-\Gamma(s) \Gamma(3 / 2)}{\Gamma(s+3 / 2)}=\sqrt{2 \pi}\left(s-\frac{1}{2}\right) \frac{\Gamma(s)}{\Gamma(s+3 / 2)} .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{2} E_{1}(z, s) d x=-2 \sqrt{2 \pi} i y^{-s}\left(1+\frac{1}{1+2^{s-1 / 2}}\right)\left(s-\frac{1}{2}\right) \frac{\zeta(2 s-2)}{\zeta(2 s-1)} \frac{\Gamma(s)}{\Gamma(s+3 / 2)} .
$$

Hence, the constant term in the Fourier expansion of $E_{1}(z, s)$ is 0 at $s=1 / 2$. Next, again some calculations similar to those in Section 4 show

$$
\begin{aligned}
\int_{0}^{2} E_{1}(z, s) e^{-\pi i m x} d x= & \int_{0}^{2} \sum_{1} \chi(c, d) e^{-(3 / 2) i \arg (c z+d)} \frac{c}{|c z+d|^{s+1}} e^{-\pi i m x} d x \\
= & -\eta y^{-s} \sum_{c \neq 0} \frac{e^{-(1 / 2) i \arg c}}{|c|^{s}}\left(\sum_{2} \chi(c, d) e^{\pi i m d / c}\right) \\
& \times \int_{-\infty}^{\infty} \frac{e^{(3 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2}} e^{-\pi i(m y) t} d t,
\end{aligned}
$$

and here, too, the Dirichlet series defined by the sum over $c \neq 0$ completely coincides with (41) in Section 5. Hence, it follows from Theorem 2 that

$$
\begin{align*}
\int_{0}^{2} E_{1}(z, s) e^{-\pi i m x} d x= & -2 i y^{-s} \frac{L\left(s-1 / 2, \chi_{m}\right)}{\zeta(2 s-1)} \prod A_{m, q}^{\prime}(s) \\
& \times \int_{-\infty}^{\infty} \frac{e^{(3 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2}} e^{-\pi i(m y) t} d t \tag{64}
\end{align*}
$$

for $m \neq 0$. Moreover, although

$$
w_{1}(u, s)=\int_{-\infty}^{\infty} \frac{e^{(3 / 2) i \arctan t}}{\left(t^{2}+1\right)^{s / 2}} e^{-\pi i u t} d t
$$

is somewhat different from $w(u, s)$ in (28), no essentially new circumstance arises in verifying that $w_{1}(u, s)$ has almost the same properties as $w(u, s)$,
in particular that, through a recursive formula similar to (31), $w_{1}(u, s)$ has an analytic continuation in the whole s-plane which is an entire function of s. Hence, it follows from (64) that all Fourier coefficients of $E_{1}(z, s)$ different from the constant term are regular at $s==1 / 2$. Thus we have proved that $E_{1}(z, s)$ is regular at $s=1 / 2$. Consequently, (61) becomes 0 at $s=1 / 2$ because of (62). This proves that our function $\theta(z)$ is an analytic function of z.

Now, Proposition 4 assures that the constant term of the Fourier expansion of $\theta(z)$ is 1 . On the other hand, the same is true for the function $\vartheta(z)$ of (1). Furthermore, notations being as in Section 6, we have already shown in the proof of Theorem 3 that the constant term in the Fourier expansion of the function $j_{1}(\rho, z) E(\rho z, s)$ is 0 . Since $y^{1 / 4} \vartheta(z)$ and $E(z, 1 / 2)$ have one and the same transformation formula with respect to the elements of Γ, the constant term of the Fourier expansion of $j_{1}(\rho, z)\left(y^{1 / 4} \vartheta(z)\right)_{z \rightarrow \rho z}$ is also 0 . From these facts, we can conclude that $\theta(z)-\vartheta(z)$ vanishes at two cusps $1, \infty$ of Γ. Consider now the function $(\theta(z)-\vartheta(z))^{4}$. This is, by Theorem 1, an ordinary, analytic modular form of weight 2 for the congruence subgroup $\Gamma_{2} \bmod 2$ of $S L(2, Z)$, and is besides a cusp form. Since, however, the genus of the fundamental domain of Γ_{2} is $0,(\theta(z)-\vartheta(z))^{4}$ must be 0 . Thus, we have

Theorem 4. The Eisenstein series $E(z, s)$ at $s=1 / 2$ is combined with the theta function (1) by the relation

$$
\frac{1}{2} y^{-1 / 4} E\left(z, \frac{1}{2}\right)=\vartheta(z)
$$

The Fourier coefficients of $\vartheta(z)$ with respect to the orthogonal basis $\left\{e^{\pi i m x}\right\}$ is, by definition, 0 unless m is a square. This corresponds through Theorem 2 to the fact that the value $L\left(0, \chi_{m}\right)$ of Dirichlet's L-function is 0 for $m>0$ unless χ_{m} is trivial.

References

[1] H. Hasse, Allgemeine Theorie der Gaussschen Summen in algebraischen Zahlkörpern, Abh. Deutsch. Akad. d. Wiss. zu Berlin, Math-Naturw. Klasse, 1951.
[2] T. Kubota, On a classical theta-function, Nagoya Math. J., 37 (1970), 183189.
[3] H. Maass, Konstruktion ganzer Modulformen halbzahliger Dimension mit ϑ-Multiplikatoren einer und zwei Variabeln, Abh. Math. Sem. Hamburg, 12 (1938), 133-162.
[4] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 41-87.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: ${ }^{1)} \mathrm{D}^{\prime}$ is the Laplacian of the metric of [4], p. 81.

[^1]: ${ }^{2)}$ Contained in the proof of Proposition 1.

