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§ O. Introduction 

In articles [10], [11], Shimura investigated the relation between the 
arithmetic of real quadratic fields and cusp forms of real "Neben"-type of 
weight 2. He showed that the eigenvalues of Hecke operators for such 
forms are closely connected with the reciprocity law in certain abelian ex
tensions of a real quadratic field k and, moreover, such extensions can be 
generated by the coordinates of certain points of finite order on an abelian 
variety associated with these cusp forms. Later, his results were enriched 
by several authors Doi-Yamauchi [2], Ohta [8] and Koike [4]. Especially, 
in [4], we understood his result through congruences between the cusp 
forms of weight 2 and cusp forms of weight 1 which are obtained from 
Mellin transform of L-functions of the real quadratic field k. These cusp 
forms of weigl;lt 1 correspond to dihedral representations of the Galois 
group G0 . 

In this paper, we investigate several examples of cusp forms of real 
"Neben" -type of weight 2 which are congruent to cusp forms of weight 1 
corresponding to representations of the Galois group Ga of type S4• We 
also discuss arithmetic properties analogous to the above Shimura's result 
induced from these congruences. 

To state our result precisely, we introduce several notations. Let p, 
p:::1 (mod 4) be a prime. Letf(z)=l:;;= 1 anqn, a1 =l, q=eb./7i•, be a 

primitive form in S 2( p, ( p)) where ( p) denotes the Legendre symbol. 

Put K1 = Q(an\n> 1) the coefficient field of the cusp formf(z). Then K1 
is an imaginary CM-field. Let F1 denote the maximal real subfield of K1• 

We denote by Ox (resp. oF) the ring of integers in K1 (resp. F1). Put 2d= 
[K 1 : Q]. We fix a prime divisor .j:i of the algebraic closure Q of Q lying 
over p. Let p denote the complex conjugation. 

Prime ideals which Shimura considered in [10] [11] are ramified in the 
relative quadratic extension K 1 over F1 , and they are closely related to the 
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fundamental unit of the real quadratic field k= Q(,/p). 
The cusp forms we are interested in in this paper are such that the 

level pis ramified in the coefficient field K 1. In fact we consider the fol
lowing condition on f(z): 

Both p-th Fourier coefficients of f(z) and P(z) are divisible by ~. 
(#) i.e., 

aP===a;===0 (mod~). 

This condition(#) induces that pis ramified in K 1• 

Theorem 0.1. (i) For p=229, 257, there exists a primitive form in 

s2 ( p, ( p)) satisfying the condition (#). 

(ii) For any p, 29s;.p<760, p ~ 229, 257, there exists no form in 

s2(p, (--;)) satisfying the condition(#). 

Letf(z) be the cusp form satisfying the condition(#). Let t:>K (resp. 
j:lp) denote the prime divisor of K 1 (resp. F1) lying under~- By observing 
several numerical examples, we notice the following conjecture. 

Conjecture 0.1. The notation being as above, the Fourier coefficient 
a1 of f(z) satisfies one of the following congruences for any prime l, I =I= p: 

(0.1) 

(0.2) 

a):JT (modpx) if {;)-1, 
l±2JT 

a~={O (mod Pxl if {; )- -1. 
-21 

Moreover, for each type of congruences, there exists some prime l satisfying 
that type of congruences. 

These congruences are considered as an analogous statement to 
Proposition 7.38 in [10]. 

Theorem 0.2. For p=229, 257, let f(z) be the cusp form in S2 (P, (p)) 
satisfying the condition(#). Then Conjecture 0.1 is true for these forms. 

We prove this by showing that there exists a cusp form of weight 1 
on I' 0(p2) which is congruent to the above form modulo~ and of type S4• 
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We recall several facts about Shimura's abelian variety. Let A denote 
the abelian variety rational over Q of dimension 2d associated withf Then 
via Shimura [10], there exists an abelian subvariety B rational over the real 
quadratic field k of dimension d such that 

where e denotes the non-trivial element in Gal (k/Q). We may assume that 
there exists an injection OF from F1 to EndQ B such that O(oF) C End B. 
Put 

Let MB denote the field generated over k by the coordinates of all 
points in B[~F]. Then via ~F-adic representation of B, we obtain an in
jective map 

Let G denote the image of Gal (MB/k) by R, and C denote the intersection 
of G and the center of GLloF/~F). 

Theorem 0.3. The notation being as above, we assume that Conjecture 
O. I is true. Then the following statements are valid. 

( i) G/C is isomorphic to A4 

(ii) Let M denote the subfield of MB corresponding to C and let L de
note the subfield of M corresponding to the unique normal subgroup of A4 

of order 4 via Galois theory. Then L/k is an unramified abelian cubic ex
tension of k. 

(iii) The class number of k is divisible by 3. 

We can translate the above result into the result on l-adic represen
tation associated with cusp forms on SLlZ). In this case, the image of 
the Galois group in PGL 2 becomes isomorphic to S4• 

We used FACOM M-382 at Nagoya University Computation Center 
for these calculations. 

Notation 

We denote by Z, Q and C respectively, the ring of rational integers, 
the rational number field and the complex number field. The algebraic 
closure of Qin C is denoted by Q. If xis a complex number, xP denotes 
its complex conjugate. 

Let K be a field and Fa subfield of K. If K is a Galois extension of 
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F, Gal (K/F) denotes the Galois group of Kover F. 
Let K be an algebraic number field of finite degree over Q. We 

denote by Ox the ring of algebraic integers in K. For any prime ideal p 
of ox, o xf P denotes the residue field of ox modulo p. , G x denotes the 
Galois group Gal (Q/ K). For an abelian variety A, we denote by End (A) 
the ring of aH endomorphism of A and put Enda(A) =End (A)® Q. For 
any positive integer n, Sn, An denote the symmetric and alternating group 
of degree n. 

§ 1. 

Letf(z)= it a,,.qn be a primitive cusp form in s2(p, (p) )· Then 

jP(z) = t
1 
a~q"' is also a primitive cusp form in s2( p, ( p)). It is well

known that 

(1.1) 

(1.2) 

(1.3) 

if (n,p)=l, 

For any µ-adic integer a in Q, put a=a (modµ). We denote by Sk and 
S1c the space of cusp forms of weight k on SLz(Z) and the space of cusp 
form modpattached to S;,. Then it is known that SkCS1c+p-t· The 
weight of cusp form mod p h is defined by the smallest integer k such that 
he sk. 

For any g= ,I;;= 1 bnq"' in s2( p, ( p)) such that bn are µ-adic integers 

in Q for all n?:l, put g=I;;= 1 bnq". Then g is a cusp form modp. 

Lemma 1.1. The notation being as above, the following statements are 
equivalent; 

(i) the weight of J is (p+3)/2, 
(ii) a;=o (modµ). 

Proof. This is obvious from Theorem 4.2 in [5]. 

Hence we get 

Corollary 1.1. The following statements are equivalent; 
(i) both land JP belong fO S(p+8)/2> 



A.-extensions over Real Quadratic Fields and Hecke Operators l 75 

(ii) f(z) satisfies the condition rn). 

Remark 1.1. It is not generally known that J =I= JP holds for any 
above/ 

Theorem 1.1. The following statements are equivalent; 

(i) there exists a primitive cuspformf(z)= L,':;-1 anqn in s2(p, (p)) 
satisfying the condition (i), 

(ii) zero is the eigenvalue of the Hecke operator T(p) on s(p+3)/2· 

Proof By Lemma 1.1, it follows that (i) induces (ii). We assume 
that (ii) is true. Then there exists an element h= L,':;-1 bnqn in S<p+3)12 

satisfying 
(i) his a common eigenfunction of all the Hecke operators T(n), 
(ii) b1 = 1 and bP=O. 

By using Theorem 1.2 in (5), we know that there exists a primitive cusp 

formf(z)=J:,anqn in s2(p,(p)) such that J=h, hence ap=O (mod~). 

Then it is obvious that a;=o (mod~) by Lemma 1.1. 

Corollary 1.2. Let f(z) = L,':;-1 anqn be a primitive cusp form in 

S2 (P, (p)) which satisfies the statement (i) in the above Theorem. Assume 

that J =I= JP. Then the following statements are valid. 
( i) The multiplicity of O in the eigenvalues of the Hecke operator 

T(p) on s<p+3)12 is greater than 1. 

(ii) For any prime l such that ( ~) = -1, -fi 1 is also the eigenvalue 

of T(l) on s(p+3)/2· 

(iii) For any prime l such that ( ! ) = 1, the multiplicity of fi1 in eigen

values of T(l) on s(p+S)/2 is greater than l, 

Proof The above claims follow easily from the fact that both J and 
JP belong tO S(p+S)/2• 

Theorem 1.2. Let f(z) be a primitive cusp form in s2(p, (p)) 
satisfying the statement (ii) of Theorem 1.1. Let jJ x be a prime divisor of 
K 1 lying under~- Then K 1 is ramified at !Jx, 

Proof From the assumption, it follows that aP=a;=o (mod !Jx), 
Since aP•a;= p, p:=O (mod !J}.:). Hence K 1 is ramified at !Jx· 
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§ 2. Proof of Theorem 0.1 

The proof is done by inspecting the tables in Appendix. They show 
( I ) the characteristic polynomial of T(p) on Scp+al/ 2 , 

(II) the characteristic polynomial of T(l) on s(p+3)/2 for some /when 
p=229 and 257, 

(III) the characteristic polynomial of T(l) on Scp+a>,2 with (;) = 

-1 for some larger p than those given in (I). 
By these tables and Corollary 1.2, we get the proof of Theorem 0.1. We 
can also see that Conjecture 0.1 is true for these eigenvalues. 

Theorem 1.2 says that, for p=229 and 257, there is a primitive cusp 

form/ in s2(p, (p)) such that -!Jx is ramified in K 1/Q. But, in fact, j:)p is 

already ramified in F1/ Q. To see this, we first note that 

s2 ( 229, ( 229 ) ) = c. u<2>Eec. u<16> 

and 

s2(251, ( 257 ))=c-u 1c2,Eec-u'<'B>, 

where u<a> and U'<a> denote certain irreducible Hecke modules over Q of 
dimension d. The characteristic polynomials of T(2), T(3) and T(5) for 
p=229 and T(2) and T(3) for p=257 are given in Shimura [11] and Wada 
[13). The prime factorization mod p of these characteristic polynomials 
are as follows: 

p=229 

I (;) ucz> uc1ei 

.3 +1 (x-1) 2 (x4 + 165x3 + 21 lx 2 + 13x + 60)2 (x + 120)2 

(x+31) 2 (x+ 71)4 

p=257 

I (;) u1c2i U'(IB) 

2 +1 (x+l) 2 (x8 + 209x2 +4x + 111)2 (x3 + 177x2 + 1x + 235)2 

(x+9) 2 (x+60) 4 
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Hence we know that the primitive cusp formf(z) satisfying the statement 
(i) of Theorem 1.1 belongs to C· u<16l (resp. C· U1<18l) for p=229 (resp. 
257). For p=229, the maximal real subfield Ff of Kf is generated by a3 

and its minimal polynomial has discriminant 26 • 34 • 712 • 229. 659 . 297779. 
For p=257, Ff is generated by a2 and the discriminant of its minimal 
polynomial is -2 10 • 11-257, 8950888981849. Hence lJF is already ramified 
in Ff/Q. It is expected that this is the case for allf(z) satisfying the con
dition (#). These primes are contrary to the ones considered by Shimura 
in [10] and [11]. 

Remark 2.1. The primes such that 29:Sp~2089 and the class number 
of Q(..fp) is divisible by 3 are 229. 257, 733, 761, 1129, 1229, 1373, 1489, 
1901 and 2089. By extended calculations, cusp forms with the property 
(#) seem to exist whenp=761, 1129, 1229, 1489 and 2089. All eigenvalues 
that we have calculated for these forms satisfy Conjecture 0.1. But there 
is no such forms for the other primes in the above list. 

§ 3. Proof of Theorem 0.3 

Letf(z)= I:;- 1 anqn be a primitive cusp form in s2(p, (p)). We 

assume that Conjecture 0.1 is true for f(z) in this section. To prove 
Theorem 0.3, it is convenient to consider a primitive cusp form g(z)= 
I::-l bnqn, b, = 1 in S(p+S)/2 SUCh that 

for all n?:_ 1, 

at the same time. 

Proposition 3.1. The notation being as above, we have 

b;, [-<P+ 1J12 =-0, 1, 2, or 4 (mod~) 

for all prime l :::/= p. 

Proof Since ( ~) =-[(P- 1l12 (mod p), these are obvious from (0.1) 

and (0.2). 

Put E = Q(bn\ n ::2:: 1) and let ;i denote the prime divisor of E lying under 
~- We consider the reduction mod ;i of the 1-adic representation of GQ 
associated with g(z). Namely, there exists a continuous homomorphism 

which is unramified outside p and <fa(a1) has characteristic polynomial 
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(3.1) (mod -t) 

for any prime l=j=.p. Here a1 denotes a Frobenius element of l in GQ. Let 
G' denote the image of G Q by <fa and let H' denote the image of G' in 
PGLz(oE/A). · 

We assume that oEfA=FP. Then, by virtue of Corollary 1 in [12] and 
Proposition 3.1, we conclude that H' is isomorphic to S4• However, it 
does not hold in general that oEfJ..=FP. 

Hence we need to consider a p-adic representation of Gk obtained 
from Shimura's abelian variety. 

We recall Shimura's theory for the abelian variety associated with 
cusp forms. 

Letf(z)= I:;- 1 anqn, a1 = 1, be a primitive cusp form in s2(p, (p) )· 
By virtue of [10], we obtain an abelian variety A of dimension 2d and an 
isomorphism 0 of K 1 into EndQ(A). A and O(a) for all a e K 1 are rational 
over Q. Further, A has an automorphism µ rational over k=Q(,/p) 
such that 

µ2=1, 

µ · 0(a)=0(aP) · µ 

µ'=-µ 

for all a e K 1 , 

where e: denotes the generator of Gal (k/Q). Put 

B=(l+µ)A. 

Then B is an abelian subvariety of A rational over k, and 

We can define an injection OF of F1 into EndQ(B) such that 0F(a) is the re
striction of O(a) to B for all a e F 1 . Changing (A, 0) by an isogeny over Q 
if necessary, we may assume that 

O(ox)CEnd(A), 

Hereafter we assume that Conjecture 0.1 is valid for f(z), and we are 
interested in the points of B annihilated by 0F(l:>F)-Put 

Then B[j:>F] is isomorphic to (oF/j:Jp)2 as Op-module. We denote by M 8 the 
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fields generated over k by the coordinates of the points in B[1JF]. These are 
Galois extensions over k. Taking a basis of B[1JF] as OF-module, we obtain 
a representation R 

satisfying that 

1
X 2 -a 1X+l (mod~) ,if (~)=l, 

det (X -R(o- 1))= 

_ X 2 -(af+2l)X+l 2 (mod~) if (~)=-1. 
where r is a prime divisor of k overland a 1 denotes a Frobenius element 
in Gal(MB/k) ofL 

By virtue of congruences (0.1) and (0.2) in Conjecture 0.1, we see that 
all coefficients of det(X-R(o- 1)) belong to FP. Hence, by Lemma 6.13 in 
[l], there is a semi-simple representation R' 

R': Gk---.-+GLlFp) 

such that det (X - R'(a 1)) = det (X -R(a 1)) for all L 
By virtue of Conjecture 0.1, we see that R is not reducible. Hence R 

is isomorphic to R' by Lemma 3.2 in [l]. 
With these preparations, we can prove Theorem 0.3 as follows. The 

notation is the same as in Introduction. By the above argument, G is 
considered to be a subgroup of GLz(FP). Then by virtue of Conjecture 
0.1 and Lemma 2 in [12], we know that G/C is isomorphic to A4 or S3• On 
the other hand R is isomorphic to the restriction of <p to Gal (Q/k). Hence 
we know that H' has a subgroup of index 2 which is isomorphic to G/C. 
So the order of G' is prime top. Therefore, by the classification theorem 
of finite group contained in GLz(F) where Fis a finite field, we conclude 
that 

(3.2) 

(3.3) 

G/C is isomorphic to A4, 

H' is isomorphic to S4• 

The statement (iii) follows from the similar argument in pages 34 and 35 
in [12]. This completes the proof. 

Corollary 3.1. The notation being as above, it holds that H' is iso
morphic to S4• 
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Proof This is obvious from the above argument. 

§ 4. Proof of Theorem 0.2 

In this section we shall give the proof of Theorem 0.2. The method 
is the same as in K. Haberland [3] where he showed that the prime 59 is 
an exceptional prime of type S4 for the cusp form LJQ of weight 16 on 
SLz(Z) (see also H.P.F. Swinnerton-Dyer [12]). 

Let p = 229 or 257. Let k = Q( ,./p) and L the absolute class field of 
k. Since the class number of k is 3, the degree of L over k is 3 and L is a 
Galois extension over Q with the Galois group isomorphic to S3• 

We take a prime ideal ~ over p in Q anp fix it. Let XP denote the 
Teichmiiller character for ~ i.e. 

for all/ prime top. 
Let X be a Dirichlet character mod p and let 

where B1,x is the generalized Bernoulli number. Then E1,x is a modular 
form of weight 1 on I'o(p) with character X. It is well known that 

mod~. 

In order to prove our theorem, we first construct a Galois extension 
M over Q satisfying the following condition: 

(4.I) Mis unramified at all finite primes outside p, 

(4.2) Gal (M/Q)?:::'..S4• 

We should remark that, when p=229, Tate constructed such exten
sions and showed the existence of cusp formsf;_,/; of type S4 on I'o(229) of 
weight 1. In [9] 8.2, Serre showed that f;_, /;, ft, ft are the basis of this 
space. But we know that all {}-transforms of these forms are not congru
ent to f(z) in Theorem 0.2. Therefore we have to search for cusp forms 
of weight 1 on I'o(2W 2). 

We put 

and 
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F257(x)=x 8+2x 2 -3x-1. 

The field Lis the splitting field of Fp(x) over Q. Let x?> (i= 1, 2, 3) be 
the roots of Fp(x)=0, and let M be the field generated by all ,/xf>. Then 
Mis a Galois extension over Q with the Galois group S4• We denote by 
lJM (resp. lJL) the prime ideal under~ in M (resp. L). We will write X; for 
x~P> if there is no fear of confusion. 

Lemma 4.1. Let the notation be as above and let Z and T denote the 
decomposition and inertia group for 1J M respectively. Then the following 
statements are valid. 

( i ) M satisfies ( 4.1 ), 
(ii) M is unramified over L at 1J L• 

(iii) Z is an abelian group of type (2, 2) generated by two transposi
tions, and T is a subgroup of index 2. 

Proof (i) It is clear that Mis unramified over Q at l=f=.2, p. For 
l = 2, we note first that L is unramified over Q at 2. On the other hand, 
we have 

for p=229, 

and 

for p=257. 

By Kummer theory any prime over 2 is unramified in L( ../ x,)/ L for all i, 
therefore 2 is unramified in M/Q. 

(ii) It is clear because the lJcexponent of (x,) is zero for any i. 
(iii) By (ii) and the group theoretical considerations, the structures of 

Z and Tare one of the following types: 
(a) Z={l, <1, -r, <1-r} T={l, <1} where <1 and-rare transpositions and 

<l't'= 't'(l. 

(b) Z = T = { 1, <1} for some transposition <1. 

But we have 

F2 2g{x)=(x-58)(x-200:,2 mod 229, ( 58 )-1 
229 - ' 

( 200)=-1 
229 

and 

F257(x)=(x-18) (x-247) 2 mod 257, (_!!_)=1, (247)=-1, 
257 257 

Therefore the case {b) is impossible. q.e.d. 
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We fix an embedding of Gal (M/Q) into PGLz(C) and get a projective 
representation 

p: Gal (Q/Q)~_PG~(C). 

This is essentially unique because any two embeddings of S4 in PGL 2(C) are 
conjugate. The conductor of p is p 2 by Serre [9] Section 6. Furthermore, 
p~a~q .. 

p: Gal (Q/Q)~GLz(C) 

such that 

( 4.3) p is odd and tamely ramified at p, 

(4.4) the conductor of pis p2, 

(4.5) the conductor of e=det pis p. 

We can regard e as a Dirichlet character modp. Since the Artin conjecture 
is proved by Langlands [7] for this case, we get, by the theorem of Weil
Langlands, the following 

Lemma 4.2. There exists a primitive form h(z) = ,E;= 1 c11q" in Si(p2, e) 
such that 

(i) c1=tr p(a1), e(l)=detp(a 1)for any l=/=-p, where a1 is a Frobenius 
element of I, 

(ii) 
{

4 if p(<11) is of order 1, 

C2 0 H 2, 
! -

e(l) - 1 H 3, 

2 H 4. 

Hereafter we will denote by o(/) the right hand side of (ii). 
Let e=X7;. Ase(- 1)= -1, mis an odd number. We have 

h-E 1,x;i-h mod jj, 

h-E 1.x;•IT(l)=c,h-E 1,x;• mod jj, 

hence there exists a cusp form g(z) = ,E;= 1 b~q" e Sz(p2, x;-1) such that g is 
a common eigenfunction for all T(l) l=/=-p, and b~ - en mod jj. 

Put~=X;<m- 1l12 andgE=_E;= 1 ~(n)b~q" the ~-twist of g. gE belongs 
to Sz(p2). The Fourier coefficients of g E = ,E;= 1 b11qn satisfy the following 
congruences: 

t ::;· 

bi=/-Cm-l)/Zc, mod jj. 

Hence the property (ii) of Lemma 4.2 is equivalent to 
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(4.6) b~ =o(l) mod j.1. 
I 

I'"'-./ 

Let d be the ring generated by all Hecke operators mod p T(/) with 
/=f=.p, and d=Sil®FP. Let 8 be the operator on Fp[[q]] defined by 

o(t1 anqn)=t/anqn. 
~ 

According to Koike [6], the components of .ii-module Sz(p2) are 
given by 

and 

(E<al) 

where E<al = I;:. 1 ca(n)qn with 

2<tc<(p- l)/2 

2<a<(p-3)/2, 

if p,{'n 

if pjn. 

It is easy to see that any E<al does not satisfy the congruence relation 
(4.6). So that we only have to look for the weight t such that there exists 
a cusp form G(z) = I;:= 1 anqn e S1 with 

(4.7) 
/P+l-ta2 

___ i -a([) mod j.1. 
I 

First we consider the case p=229, Put 1=3 and 5. The decompo
sition group for a prime over / is cyclic. On the other hand, F22g(x) mod I 
is an irreducible polynomial of degree 3, so p(a1) is of order 3. Thus the 
coefficient b1 satisfies 

b~=l modj.1. 

By direct calculations we see that only in S58, S116 and S172 there exist forms 
with the required congruence. We list the Fourier coefficients mod 229 of 
the forms in S58 and S112 in the following table. 

~ 
58 172 

hi 
I 

h2 hs 
I 

h, 

2 0 123 0 108 

3 1 228 1 228 
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5 122 122 107 107 

7 121 0 106 0 

11 107 107 122 122 

13 106 0 121 0 

17 1 228 1 228 

19 228 1 228 1 

23 123 106 108 121 

29 0 0 0 0 

31 0 106 0 121 

229 122 1 107 1 

Next we take I= 13. Since 

and 

where each factor of the right hand sides is irreducible over F13, p(a 1) has 
order 4. Thus b,=21 mod~- But the Fourier coefficients of h2 and h4 

are zero mod 229, which contradicts the above congruence. For the forms 
h1 and h3, we take l = 31. Similarly we have 

and 

where each factor of the right hand sides is irreducible over Fw By the 
same reason, the forms h1 and h3 are not compatible with our congruence. 

Consequently there must be a cusp form G(z) = I::=1 anqn e S116 such 
that 

b~=.l114a~=(-1-)a~ mod~. for any prime l, l=/=-p. 
229 

Next we consider the case p=257. F257(x) mod l is an irreducible 
polynomial of degree 3 for l= 11 and 13. So p(a 1) has order 3. This time 
only S130 has the forms with congruence relation: 
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for l = 11 and 13. Hence there is a form G(z) = I::=1 a,.q" e S130 such that 

b~=/128a~==-(-1-)a~ mod ,ij. 
257 

If(~)= 1 (resp. -1), the order of p(a1) is 1, 2 or 3 (resp. 2 or 4). 

Since G(z) is congruent to f(z) or jP(z) modulo ,ij, we get (0.1) and (0.2). 
This completes the proof of Theorem 0.2. 

Remark 4.1. If a1= ±2./T mod jj, p(a1) is an identity element. For 
/~691, there are three such l's, i.e. 

l= 193, 509 and 593 for p=229 

and 

I= 157, 643 and 653 for p=257. 

In fact, for these cases, Fp(x2) mod l is completely reducible. For example, 

a193=90 mod jj, 

F22g(x)=(x-42)(x-157)(x-187) mod 193, 

( ~)=(~)=(~)=1 193 193 193 

for p = 229 and 

for p=257. 

a151 ==-63 mod jj, 

F257(x)==.(x-25)(x-49)(x-81) mod 157 

Remark 4.2. The forms in the above table are congruent to the forms 
constructed by Tate. It is easily seen that h1_fi, ~=fz mod ,ij where 
J;, is the forms stated in Serre [9] 8.2, and h3 ==-f {, h4 -ft mod ,ij. But we 
must note that in Tate's case, p M is ramified over L and the decomposition 
group is cyclic of order 4. 

Remark 4.3. For p=229 and 257, the field M constructed in this 
section coincides with that given in Theorem 0.3. 
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Appendix 

Table (I) 

p: =prime w: =weight (p + 3)/2 
Hp(x): =factorization mod p of the characteristic polynomial of T(p) 

on Sw 

p w 

29 16 x+6 
--

37 20 x+2 
--

41 22 x+6 
--

53 28 x2 +12x+17 
--

61 32 (x+9)(x+44) 
--

73 38 x 2 +16x+57 
--

89 46 (x + 12) (x2 + 79x + 79) 
-- --

97 50 xs + 24x2 + 37 x + 38 
---

101 52 (x+ 100) (x8 +86x 2 +61x+64) 
--- --

109 56 (x + 2) (x + 19) (x2 + 72x + 38) 
--

113 58 (x+26) (x+88) (x2+19x+105) 
-- --

137 70 (x2 + 31x+ 75) (x3+ 120x2 +50x+64) 
--

149 76 (x+27) (x5 + 112x4+ 139x3 +67x 2 +83x+87) 

157 80 (x+22) (x5 + 143x4+ 152x3 + 122x2 + 109x+ 31) 
--

173 88 (x2+ 16x+ 157) (x5+24x 4+30x3+83x 2 + 121x+ 151) 

181 92 (x2 +9x+95) (x5 + 154x4+ 12x3+2x 2 +37x+93) 
--

193 98 (x+ 11) (x2 + 107x+68) (x2 + 160x+20)(x 2 + 168x+ 123) 

197 100 (x+23) (x+ 194) (x2 +95x+ 158) (x4+ 72x3 +6x 2 +63x+ 152) 
--

229 116 x2(x+69) (x+ 110) (x+215) (x4+64x 3 + 14x2 + 195x+ 176) 
---

233 118 x9 +4x 8 +35x 7 + 147x6 +41x 5 + 196x4+207x 3 + 133x2 +88x+216 
--

241 122 (x3 +43x 2 + 169x+209) (x6 +25x 5 + 145x4+95x 8 + 110x2 +233x+ 129) 
--

257 130 x2(x+30) (x+ 163) (x3+85x 2 + 247x+5) (x3+252x 2 + 178x+ 118) 

269 136 
(x4+63x 3+ 175x2 + 18x+46) X 
(x7 +210x 6 +233x 5 + 108x4+98x 3 +88x 2 + 172x+69) 
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277 140 
(x2 + 180x+ 182) (x4 + 197x3 +60x 2 +273x+ 112) X 
(x5+ 185x4 +263x 3 +207x 2 +237x+ 18) 

--

281 142 
(x4 +76x 3 +29x 2 +185x+269)X 
(x1 +203x6+ 127x4 + 140x3 +243x 2 + 197x+271) 

--

293 148 
(x+83) (x+206) (x2 +205x+40) X 
(x8+ 136x1 +28lx 6 +287x 5 + 131x4 +287x 3 +206x 2 +51x+279) 

313 158 
(x+60) (x2+ 36x+66) (x2 +56x+292) (x2 + 173x+ 306) X 
(x2 +213x+59) (x3 + 172x2 + 173x+53) 

373 188 
(x+ 311) (x+ 371)2(x6+ 143x5 +56x 4 +252x 3 + 123x2 + 347x+48) X 
(x6+ 302x5 + 282x4 + 330x3 + 75x2 + 156x + 348) 

--- --

401 202 
(x+288) (x2+242x+ 98) (x13+288x 12+81x 11+372x 10+68x 9 + l 12x8 

+ 337x7 +202x6 +45x 6 + 132x4 +241x 3 +275x 2 + 141x+252 

Table (II) 

(i) p:=229 w:=116 

2 
--

3 
--

5 
--

7 
--· 

11 
--

13 
--

17 
--

19 
--

23 

29 

31 
--

37 

41 

53 
--

193 

H1(x): =factorization mod 229 of the characteristic polynomial of T(l) on 
S116 

-1 x+ 15 x+214 (x+37)(x+53)(x+ 120)(x4 +48x3+32x 2 + 146x+ 197) 

+1 x+ 71 x+ 71 (x + 31)(x+ 120)(x + 228)(x4 + 165x3 + 21 lx 2 + 73x +60) 

+1 x+ 66 x+ 66 (x + l 7)(x + 120)(x + 226)(x4 + 195x3 +9x 2 + 208x + 216) 

-1 x+ 98 x+131 x(x+ 133)(x+ 196)(x4 + 137x3+ 135x2 + 192x+80) 

+1 x+195 x+195 (x+ 177)(x+ 186)(x+226)(x 4 + 167x3+ 156x2 +88x+201) 

-1 x+ 64 x+165 x(x+44)(x+ 190)(x4 + 179x3 +38x 2 + 102x+83) 

+1 x+186 x+186 (x+3)(x+25)(x+ 10l)(x4 + 182x8 +54x 2 + 198x+ 102) 

+1 x+ 83 x+ 83 (x+ l)(x+ 106)(x+ 136)(x4 +51x3+89x 2 + 135x+ 174) 

-1 X X (x+ 19)(x+ 128)(x+ 155)(x4 +96x 8 +56x 2 + 131x+87) 

-1 X X (x+ 74)(x+ 142)(x+ 155)(x4 +4x 3+26x 2 +54x+ 153) 

-1 x+204 x+ 25 x(x+9)(x+ 125)(,x4 + 18x3 +66x 2 + 73x+ 131) 

+1 X X (x+ 103)(x+215)(x+227)(x 4 + 157x3+49x 2 + 16x+44) 

-1 x+190 x+ 39 (x+ 146)(x+ 155)(x+208)(x4 + 147x3 + 183x2 +225x+21) 

+1 X X (x + 20)(x+ 205)(x+ 223)(x4 + 18x3 + 161x2 +90x+ 198) 

+1 x+139 x+139 (x+24)(x+ lll)(x+215)(x 4 +38x 3 + 171x2 +46x+ 72) 
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229 0 X X (x +69)(x+ 110)(x+215)(x4 +64x 8 + 14x2 + 195x+ 176) 

509 +1 x+152 x+152 (x+ 73)(x+ 212)(x+ 223)(x4 +92x 8 + 107x2 + 55x+ 215) 

593 +1 x+178 x+178 (x+ 120)(x+ 151)(x+223)(x4 + 125x3 +223x 2 +8x+225) 

(ii) p:=257 w:=130 

l 

2 

3 

5 

7 

11 

13 
--

17 
--

19 

23 

29 
--

31 
--

37 
--

41 

61 

67 

157 

257 
--
643 

653 

Hi(x): =factorization mod 257 of the characteristic polynomial of T(l) 
on S1so 

G)[ Hi(x) 

+1 (x+60) 2 (x+ l)(x+9)(x 8 + 177x2+ 7x+235}(x3 +209x2 +4x+ 111) 

-1 x2 +6 (x+68)(x+234)(x 8 +76x 2 +51x+66)(x 3+200x 2 +242x+215) 

-1 x2 +10 (x+ 12l)(x+ 188)(x3 +80x 2 +46x+ 166)(x3 + 106x2+ 119x+ 56) 

-1 x2 +14 (x+ 18)(x+68)(x3 + 38x2 + 180x+ 250)(x8 + 195x2+83x+ 166) 

+1 (x+221) 2 x(x+103)(x 8 +24x 2 +249x+135)(x 8 +202x~+136x+65) 

+1 (x+229) 2 (x+56)(x+255)(x 3 +27x 2 +90x+l16)(x 8 +236x 2+225x+94) 

+1 (x+187) 2 (x+lll)(x+253)(x 8 +8lx 2+152x+202)(x 3 +217x 2+17x+221' 

-1 x' (x+94)(x+204)(x 8 +218x 2 +197x+254)(x 8 +233x 2 +234x+159) 

+1 (x+l99) 2 (x+67)(x+253)(x 8+ 143x2+223x+ 12l)(x8 + l 73x2 +26x+ 163) 

+1 (x+172)2 (x+91)(x+253)(xs+ 11 lx 2+ 171x+82)(x8+222x 2+ 1 lOx+ 7) 

+1 (x+206) 2 x(x+5l)(x 8 +82x 2 +86x+ 175)(x8 +217x 2+ 138x+ 194) 

-1 x2 +74 (x+ 106)(x+ 160)(x8 + 79x2 +97x+45)(x8 +99x 2 + 153x+91) 

-1 x' x(x+248)(x 8 + 39x2 + 171x+ 179)(xs+ 161x2+ 188x+ 71) 

+1 x' (x+ 12)(x+ 36)(x8 +68x 2+ 12x+ 152)(x3 + 147x2+246x+ 170) 

+1 xi (x+ 12)(x+200)(x8 + 72x2+94x+ 148)(x8+233x2+69x+91) 

+1 (x+194) 2 (x+ 235)(x+ 253)(x8 + 15x2 + 192x+ 115)(x8 + 125x2 +69x+ 162) 

0 x' (x+ 30)(x+ 163)(x8 +85x 2+247x+5)(x 3+252x 2 + 178x+ 118) 

+1 (x+60) 2 (x+2)(x+40)(x 8 +31x 2+29x+242)(x 8+58x 2 +119x+l85) 

+1 (x+82) 2 (x+ 142)(x+253)(x8 +213x 2+ 143x+ 196)(x8+236x2+ 15x+ 15) 
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Table (III) 
p: =prime w: =weight (p+3)/2 
Hz(x): =factorization mod p of the characteristic polynomial of T(l) of 

on Sw with (¾ )=-1 

Hz(x) 

317 160 3 (x2+294x+ 108)(x11+ 200x10 + 54x9 + 18Ox8 +237x7 +20lx6+23lx5+ 
121x4 + 17Ox3 + 163x2 + 226x + 217) 

337 170 5 (x+282)(x 6 +225x4+ 174x3+ 166x2 +255x+ 74) X 

(x7 + 177x6+68x 6 +315x4+288x 3+58x 2+ 153x+26O) 

2 x(x6 + 54x4 + 143x3 + 32Ox2 + 334x + 152) X 

(x6+ llx 7 + 176x6+3llx 5+ 104x4+2lx 3+ 157x2+ 139x+ 135) 
349 176 

7 (x+237)(x 6 +232x4+45x 3+294x 2+248x+29O)X 

(x6 +45x 7 + 185x6+ 18Ox6+3O9x4+2Olxs+ 139x2+233x+92) 
-- -- --

353 178 5 
(x+ 100)(x2+344x+66J(x 4 +327x 3+ 104x2+ 73x+ 77)X 
(x7 + 350x6 + 314x6 +214x4+68x 3+ 324x2+278x+233) 

2 (x+l04)(x+269)(x+355)(x 6+1lx 6 +309x 4 +200x3+52x 2+212x+329) 

X (x6 +212x 6 +214x 4 +366x 3 + 119x2 + 175x+248) 
--

373 188 5 (x+58)(x+165)(x+208)(x 6 +108x 6 +138x4+290x3+33Ox 2 +353x+ 

2O2)(x6 +366x 5+354x 4 +2O1x3+128x 2+329x+129) 
--
11 x(x+4l)(x+145)(x 6 +313x 6 +137x4+256x 3 +129x 2+285x+16l)X 

(x8 +365x6+269x 4+198x 3+347x 2+253x+12S) 

389 196 3 
(x+86)(x+ 378)(x7 +235x 6 +.129x6 +297 x4+2O3x3 +6Ox2 + 182x+255) 

X (x7 + 312x6+2O2x6 + 247x4+ 197x3 +99x 2+227x+98) 

397 200 5 
(x+ 126)(x+294)(x 4 + 52xs + 137 x2 + 27 x+ 13)(x10 + 335x9 + 151x8 

+345x 7+110x 6+239x 6 +384x4+377x 3 +6lx 2 +200x+136) 
-- --
401 202 3 

(x+ l)(x 2 + 167x+338)(x 13+336x 12+ 116x11+29Ox10+ llx 9 +322x6 
+ 394x7 + 77 x6 + 388x4 + 298x4 + 23x8 + 312x2 + 212x + 285) 

-- --
409 206 7 

(x+ l lO)(x+ 196)(x14 +201x 13+ 136x12+ 134x11 + 168x10+ 197x9 

+244x 8+227x 7 + 196x8 +353x 6 + 7Ox4 +321x 2+49x+232) 

(x + 117)(x +407)(x 2 + 338x + 34O)(x13 + 272x12 + 335x11 + 242x10 
421 212 2 +401x 9+386x 8+318x 7+345x 6+236x 6 +349x4+274x6+13x 2+261x 

+162) 

433 218 5 
(x5+5Ox4+42Ox6+3O6x2 +2O5x+72)(x 6 +83x4+332x 3 +136x 2 

+ 108x+35)(x 7 +268x 6+ 76x5 +43x 4 + 123x3+29x 2 +318x+ 18) 
-- --
449 226 3 

(x2+ 240x+ 373)(x2+294x+ 161 )(x 3 + 340x2+238x+ 384)(x11+ 17x10+ 

367x9+267x8 +43x 7 + 158x8 +292x6 + 87x4 +89x 3 +283x 2 +341x+404) 
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(x + 58)(x +437)(x 2 +4O7x + l 78)(x14+ 364xls + 28x12 + 388x11 + 357 x10 

457 230 5 +271x 9+ 1O6x8 +386x7 +35Ox6+392xs+82x 4+ 125x3 +224x 2+ 198x 

+355) 

(x+22O)(x 5 +356x 4+22xs+ 193x2+43x+ 12)(x6+397x 5+455x 4 

461 232 2 + 247 x3 + 322x2 + 225x + 368 )(x7 + 89x6 + 237 x5 + 134x4 + 36x3 

+10lx 2+295x+263) 
-- --

(x + 356)(x20 + 10x19 + 334x18 + 52x17 + x16 + 252x15 + 24x14 +455x 13 

509 256 2 +83x 12 + 316x11 +407 x10 +463x 9 +487 x8 +465x 7 + 287 x6 +4O8x5 

+ 128x4+447x 3+318x 2+36x+ 113) 
-- --

(x+ 374)(x+432)(x 19+335x 18+66x 17 + 72x16+2O6x15 +332x 14+ 78x13 

521 262 3 +4O8x 12+48xll+2D7x 10 +459x 9+98x 8+342x 7 +387x 6+ 174x5 

+2O2x4+ 10lx 3 +351x 2+511x+ 186) 
-- --

(x+ 71)(x8 +29x 7 +435x 6 +3lx 5 +371x 4+91x 3+334x 2+43Ox+8O)X 

541 272 2 (x13+454x 12+ 374x11+478x 10+63x 9+226x 8+43x 7 +82x 6 + 10x5 

+ 347 x 4 + 368x3 + 28Ox2 + 313x + 391) 
-- --

(x+ 376)(x2+455x-t-424)(x 3 + 105x2 + 387 x + 398)(x17 +497 x16 + 547x15 

557 280 2 +327x14+258x 1s+26Ox 12+ 14lx11 + 184x10+262x 9+5O3x8+278x 7 

+ 14x6 +331x 5+ 123x4+64xL\-157x 2 +211x+528) 
-- --

x2B+90x 22+ 116x21+421x 20+ 110x19+25xt 8+ 12x17 -i-568xt6 + 108x15 

569 286 3 + 92x14+ 332x13 + 3O3x12 +67x 11 + 553x10 + 519x9 +416x 8 + 555x7 

+87x 6+442x5+497x 4+38x3+109x 2+239x+l46 
-- --

(x2+236x+344)(x 5-t-379x4+432x 3 -j-202x2+ 199x+ l lO)X 

577 290 5 (x16+68x 15+ 16x14+ 85x13+95x 12+538x 11+ 145xl0+51lx 9 

+ 78xB+275x7 + 187x6 -i-345x5+293x4+219x 3+559x 2+2O8x+ 131) 
-- --

(xll-t-498x 10+ 185x9+533x 8+487x 7 + 112x6 +46x 5+ 11 lx 4+274xB 

593 298 3 +294x 2 + 165x +455)(x 13 + 3Ox12 + 378x11+ 255x10 + 357 x9+ 5O3x8 

+ 157x7 +229x 6+328x 5 +516x 4+297x 3 +336x 2 +557x+448) 

(x2 + 316x+35l)(x 3+ 188x2+389x+ 122)(x19+ 154x18+398x 17 +562x 16 

601 302 7 +566x 15+446x 14+4O3x13+293x 12+29Ox11+48Ox 10 +329x 9+5OOxs 

+320x 7 +546x6+20x 5 +464x 4+2O9x 3 +8lx 2+ 187x+ 129) 
-- --

(x+549;(x 3 -t-69x2 + 579x+2O6)(x 3+259x 2 +383x+ 174) (x18 + 189xt7 

613 308 2 +42xt 6+ 354x15 +49lx 14+ 374x13 +65x 12 + 331x11+ 248x10+432x 9 

+ 165x8+605x 7 + 127x6+48x 5 +468x 4+488x 3 +351x 2 +22Ox+510) 
-- --

(x+ 579)(x4 + 188x3 + 16lx 2 +261x+ 26l)(x 6+ 285x5 + 212x4+ 392xa 

617 310 3 +34Ox 2 +247x+ 194)(x14+ 147x13+ 77x12+253xn+ 134x10+352x 9 

+389x 8+ 185x7 + 153x6 +42x 5 +521x 4+225x 3 +4O9x2+379x+537) 
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(x +29)(x + 184)(x+ 277)(x+ 387)(x +492)(x8+533x 7 +508x 6+473x 5 

641 322 3 + 7x4+542x 3 +569x 2 + 128x+ 341)(x13+39Ox12+38Ox11+ 116x10+602x 9 

+60x 8+223x 7 + 33Ox6+ 154x5+29x4+269x 3 + 389x2+ 242x+57O) 

(x+278)(x+435)(x 2+36x+65l)(x 2+559x+366)(x 2+617x+651)X 

653 328 2 (x4+18Ox3+273x 2+649x+2O7)(x 15+594x 14+574x 13+617x 12 

+ 142x11 +532x 10+ 132x9+576x 8+576x 7 +279x6 + 7Ox5+ 171x4 

+435x 3+644x 2+374x+546) 

(x+214)(x+475)(x 2+328x+47)(x 5+416x4+461x 8+254x 2+479x 

661 332 2 + 522)(x8 +428x 7 + 581x6+ 596x5+ 259x4 + 117 x8+426x 2+ 192x+447) X 

(xi0+32Ox9 +23x 8+595x 7 +240x8+432x 5+287x 4+222xs+604x 2 

+396x+99) 

(x+ 16O)(x + 18l)(x 1 + 347 x2+ 31 lx + 2O9)(x22 + 182x21 +63x 20 + 526x19 

673 338 5 + 19lx 18+547x 17 +389x 16 +55x 15+652x 14 + 134x18+566x 12+ 179x11 

+ 142xi0 +413x 9 +475x8 +8x7 +46Oxe+ 276x5+575x 4 +28lx3 +484x2 

+18x+175) 
--

(x +459)(x 27 +493x 26 +464x 25 + 269x24 + 263x23 + 97 x22 + 342x21 

677 340 3 +338x 20+586x 19+ 103x18+ 352x17 +55Ox16+497x 15+41x 14+591x 13 

+ 3O6x12 +417x 11+2O2x10+ 324x9+ 243x8+ 38x7 + 541x6 +267 x5 

+ 663x4 + 252x3 + 289x2+ 32Ox + 98) 

(x2 + 543x + 14)(x4+ 12x3 +616x 2 + 557 x + 18)(x4+ 169x3 + 575x2 

701 352 2 + 104x+443)(x 6+ 135x5+543x 4+679x 8+ 583x2 + 369x+281) X 

(x6+ 529x6+ 572x4 +25x 8+422x 2+284x+ 125)(x7 + 140x6+431x 5 

+672x4+667x 8 +533x 2 +525x+443) 
--

(x5+434x 4 + 33Ox8 +258x 2 +565x+ 35l)(x 8+615x 7 + 128x6+ 588x5 

709 356 2 +625x4+5O3x 3+373x 2+519x+60)(x 16+603x 15+287x 14+38Ox13 

+45x 12 + 185xll+ 321x10 +662x 9+ 373x8 + 144x7 +212x 6+ 518x6 

+464x4+247x 8 +3O9x2 +58x+493) 
-- --

(x2+ 59x+ 73l)(x 28+465x 27 +683x 26+ 598x25+227x 24 + 704x23 

733 368 2 + 182x22 + 157 x21 + 71x20 +498x 19 + 66lx17 + 53x16 + 245x15 +610x 14 

+ 73Ox13+45Ox12+467x 11+ 139x1D+295x9 +498x8+57x 7 +515x 6 

+555x 5+310x 4+43x8+644x 2 +204xt83) 

(x+ 19O)(x+539)(x 12+575x 11+439x 10+ 7O3x9+ 77x8+3Ox 7 + 103x6 

757 380 2 +578x 5+ 722x4+68xB+486x 2+218x+ 116)(x17 +267x1 6 + 137x15 

+267 x14 + 3lx 13+645x 12+477x 11 + 599x10+569x9 + 351x8 +228x7 

+363x 6 +291x5+575x4+38Ox 8+727x 2 +212x+200) 
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