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(===}AiBi- 1• If Ai is rational, (therefore an integer by the assumption of 
Theorem), then \Ail= ViU;1. Therefore, we are done with, in this case. 

Suppose At is irrational. We have 

where 

Here, taking L 0 sufficiently large, we can suppose that 

and that 

I t'i I <Lo 112• 

If ,t +t't> 1, then we are done with, by the same theorem in [12]. It 
is impossible that r;;t+t't= 1, as At is irrational. Suppose, then, r;;t+t't<I. 
This means that etQi <O and 1 >r;;t+t't> l-L 0112, as r;;t> 1. Let us put as 

Then C~L~12• And then, 

(\A;\BA-1t 1={(l +r;;i-l)- 1Ai+Ai}{(l +r;;i-l)- 1Bi+Bi}- 1 

={r;;;(At + A;)+ A;}{r;;;(Bt + B;)+ Bi}- 1• 

Therefore the theorem in [12] tells us that 

Also we have 

We have 

\At \BA- 1 -(Bt +B:)(At +A;)- 1 

=ei{(A;+A;)(r;;;(A;+AD+AD}- 1~Lo112(A;+AD- 2• 

We can suppose that A and B are [K, K')-regular. Then, calculations, 
similar to the proof in the case ptq-;1>G1112 of 4.4.15 (iii), applied to 
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tell us that there are O(Lr;11'P 2) of (A, B, A', B'). Then such a gives a 
minor contribution O(L 0115P 2) to 4.1.5, by taking L 0 sufficiently large. 

4.4.20. Lemma. Suppose we have 

\a\=BA- 1 +w, 

\A;\= vpi 1+ Q 1 

and 

so that 

and 

V1B= t;q;Bt + ttqiB;, 

UiA = t;q;Ai + tiqtA;, 

We have, then, 

Proof It is easy. 

Remark. We will use this lemma, in the form that 

w=s{A(Aa*+A')t1, 

AB'-BA' =s ( = ± 1), 

a*>l (real number), 

and A, B, A', B', A;, ti, q;, t;, q; are to satisfy 4.4.14, where .,i"r and jjP 
are ,4_·, and .B' of 4.4. 9 (ii) with s' = s. 

4.4.21. Lemma. With the notation of 4.4.20, we put 

We suppose that, s=st, (See 4.4.14). We have, then, 

(HogoP)-2 ~\ Mt I~ G'(H 01P)- 2• 

Proof We have, from 4.4.1, that (I <)a*~g~, because A*~ ~a*A 
and A=A*. The rest is easy. 
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4.4.22. Remark. Suppose that e ( = ± 1) a, b, ai, bi (i = 1, · · . , 4) are 
fixed. Suppose.land B are given so that A=al" and B=bB lie in the 
interval [gi12P, g0P]. We have, then, by choosing K sufficiently large, at 
most one possibility of (Ai, BJ such that ai\ Ai, bi\ Bi and that Ai and Bi 
belong to [H01P, H0P]. See 1.4.1.1. We have uniquely 1·r and W such 
that 

and 

We have, also, uniquely Ai and Bi such that 

and 

These mean that, supposing that e, a, b, ai, b1 are fixed and K is sufficiently 
large, the possibility for ti, ti, Pi, qi, Pi, qi (i = 1, · · ·, 4) in 4.4.14 is one at 
most, if 1· and Bare fixed. Therefore, fixing e, a, b, ai, bi, we can divide 
the set of (l", B)'s disjointly, according to t0 ti, Pi, qi, Pi, qi (i= 1, · · ·, 4) 
in 4.4.14. 

These arguments go similarly when we begin with a, b, 1· and 1·r, in 
place of a, b, 1· and B. 

Note that we have not used the assumptions (iv) and (v) up to now. 
These heavy assumptions will be needed in 4.5. 

4.5. Kloosterman's domain II 

4.5.1. Lemma. Suppose that we have the conclusion of 4.4.14. Sup­
pose that A;(2A:)- 1 has "good partial fractions with respect to H0, 2.2.10". 
(We suppose that such a, that gives a minor contribution to 4.1.5, is not con­
sidered here, according to 4.1.3, 4.4.1, 4.4.3, 4.4.3.1, 4.4.4, 4.4.15, 4.4.19 
and 4.4.21.) We put as 

sgn a=r;o (= ± 1), 

Fi=QiBA-1, 

Mi =e{\ili\A- 1(Aa* +A't 1 + tiq;(UiAAit 1}. 

Note that ei=e by 4.4.14. We have, then,for S;(a) in 4.1.4, that 
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Si(a)=_!_ Po(2AJ-1s(Bi)(swi)- 112 
2 At 

+I:(±) I; I; p.,((2ht-l)! !)- 1(-7Ji1J02n--/=T)'''- 1(2A,)- 1S}"'>(B') 
<i "' Vi A, 

Here~, is~? or~~ and± corresponds to this choice, h, is taken over 1 <h, 
<Hg00, v, is taken over \v;\~H~ 00 • Also Sj•,>(BJA,) is one of S(BtfA,) and 
S*(BJA,), and p0, p., are one of such p that p=O or p6= 1. Their choices 
are determined by the residues mod 8 of A,, B,, A;, B~, (c:;), and 1,, 1, 
being the odd divisor part of A,, and by residues mod 4 of v,. w,=F,+ 
M,. 

Proof We apply 2.2.12. Putting \l,a\=B,A; 1 +w,, we have w,= 
F,+M,, owing to 4.4.20. We have, on the other hand, by 4.4.19, that 

and, therefore, with O<O+, o: <l, 

w, =\A, \(BA- 1 + c:O +A-2)-B,A; 1 

=s0:A; 2+s0 +\l,\A- 2 

We have, then, 

and 

We have, combining with 2.1.4, that 

S;(a)= I;(±) I; p.,(2A,)- 1S;•,>(B')e(.!. w,e~-(2A,)- 1~,w,) 
<i ., A, 2 

X sgn (e,-v;(2A,w,)- 1)\w, \-112 • W,(\w, \112\e,-v;(2A,w;)- 1 \) 

+ O(H;2op112), 

where, v,, p., and S}''l( ... ) are as explained above. We substitute 2.2.5 
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(iv) with k=Hi 00 there. The term corresponding to 

in 2.2.5 (iv) appears as 

I:; p,i(2A1)- 1S?•'(B 1)e((8A 1)- 1eA~vDe(1-wJ~-(2A 1)- 1c;-"1v1) 
,, A 1 2 

We have 

Xsgn (c;-'1-v/2A1w1t1)iw1l-112 

X ~ e(- ~ w/c;-"1-vl2A 1w1)- 1)2)e( ! e). 

(8A1)-1eAM+½wic;-'~-(2A1)-1,;-"11,11-½wM1-1,1/2A,wt)-1)2 

=(8A 1)- 1eAM-(8A 1)- 2w;1v: 

=(8A 1)- 1eAM-(8A 1)- 2eA;(AtBt+A~M 

where we have put fit as !w1\-1=A/Atn+A:). We have 

I:; (the above sum) ,, 

= ~ p,, (2Ai)- 1 ·St•'(!:) · e( - ! efitv:) 

X sgn (c;-'1-1,1;(2Atw1)- 1) ·lw11-112e( ! e )· 
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As we have p,,=P-,, and sgn(c;-',-1,1;(2A1w1)- 1)= -sgn(,;-"1-(-1,1 1)(2A1w1)- 1) 
if v,;=#=O, the terms with 1,11=#=0 all cancel out each other. The term with 
v1=0 gives us 

which gives us the first term of the conclusion by adjusting Po· As for the 
other terms of 2.2.5 (iv), we have 

and that 

A;1121w, 1-1/2(\w, 1112\c;-" t -1,1;(2A,w,)-1 \)2H 

= (A,\w1 \)-tf2((A,\w, 1112)-'\1,11 -(2A,wJ1) \)2k-1 

~A~12(H0Hgo~2k-1, 
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((2k-1) ! !)- 1 ::;:((k-1)!)- 1~k-(l:-(l/2)). 

The choice k=Hg 00 is sufficient for the conclusion. 

4.5.2. Lemma. Under the same assumptions as in 4.5.I, we have 

((mx)- 1 (sin n-a))2Si(a) · · · Sia)= I: (- l)P(B- 1A)2e(A- 1µB) 
µ=O, ±1 

_!__po(2Ait1s(Bi) IMi1-112 
2 At 

+ I: I: I: I: c~'IMt 1z,-,.,Ai'+<112,-2,.,.;!' 
., •t ,., i, 

X TI 
i=l,···4, X 2A -112 s<••> (Bi) ( 1 F ~2) 

t • t Ai · e 2 TJoT/t ;<o; 

Here 

where ± corresponds to .;t=~t or~~- (lf vt=O, then v~= 1 and vi=O for 
l>O). Also l, is taken over O<lt~2ht-1. The other notations are the 
same as in 4.5.I, and we must take L 0 sufficiently large as the last but one 
step about 4.4.4. We have, also, that, after expanding the product on the 
right-hand side, each term is 

~H~go n (l+lc~'l(Hog~)Zht).p2 
i=l,•••,4 

and 

Remark. We will often write the right-hand side of the formula of 
the lemma as 

I: (·. · ), 
µ,(0,M,(h),(!) 

when it is expanded. 
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Proof We have 

((ira)- 1 (sin ira))2= · ~ (- l)P(4ir2)- 1(B- 1A)2e(A- 1µB)+o(l). 
µ=0, ±1 

We have, as for the first term in the right-hand side in 4.5.1, that 

Similarly 

Also 

(ei-(2Aiwi)- 1vir 1- 1= ¾ (2\~ 1 )~N-l) 1'(ev;{2Ai)- 1(\Ftl+\Mil)) 21i,-1-1, 

= ~(2ht-l)ei'(-1)1•i1+1(v;(2At\Mt\)-')21i,-1-z,(1 +0(221i,L;;-1gg)). 
z, It 

Taking L 0 sufficiently large with respect to o, H 0 and g0, we obtain the ex­
pansion to be proved. The rest is easy. 

4.5.3. Let the constants in 4.4.4, except G0, be fixed as have been 
explained up to now. To treat a which are left untouched in 4.4, we 
proceed as follows: We suppose that 

Then we take variables and constants, which are positive integers except 
e, 7Jo, a* and a, in the following order. 

(0) Let a0 be 

ao= n p. 
p;prime,K~p<K• 

Let e= ± 1, 7Jo= ± 1, a and b be fixed so that 

ab\a0, (a, b)= 1, 

and 

1 <v(x)< 10 log z for x=a, b. 

( i) Let us put, with u0 such that 2u0 \\[U1, • ·., U4], 

W~=2g'+uo+5ao( n p)K'XLl1(U1· .. U4; T) 
p;prime,p<K,p/ U1··· U4, 
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wi =2g'+ 5ao( IT p)K' x J 1( U1 V1 • • • u4 v4; T) 
p;prlme,p<K,pl U1V1•••Ui.V 4, 

XLC.M. of {(Uti, Ui,); i,, i2 =l, · · ·, 4 and:i,:;t=i2}, 

W*= W~fV1, ···,Vi] 
and 

See 2.3.9, 2.3.11.5 and 3.2.1. Clearly W* divides W0• 

(ii) t; 0:::;:;:t:::;:;:G', 

and 

(ii') t'; go112b<t'<ab. (4.4.9 (ii)). 
(iii) ti, t;, p,, q,, Pi, qi (i = 1, · · ·, 4); 

t,ti(Piq;+q,Pi+q,qD= U,V,ab, 
Pi~q,> 1, Pi~qi~ 1, (p,, q,)= 1, (Pi, qD= 1, 

tiqi>t;q;>0, t;(p;+qi)>t:p;, 

We impose the conditions in 4.4.15 on them. 
(iv) .l; has no prime divisor in [K, K"), 

p 8 '+ 1 ,r l' if pis a prime and 2:::;;:p<K, 

p 2 ,j' l" if pis a prime and p> K, 

goP>aA°>gJtzp, 

1,1(.A.) < 1.1 log log P. 

The last condition is admissible by a well-known theorem of Hardy and 
Ramanujan, Problem 20 on p. 31 [20], for insatnce. 

(iv') (A·~, ii~, .B0); Representatives enough to cover the set of 
(A'"', B"', .B), in which l""' is taken mod W0, and .B' and .B are taken mod 
2K'+uo+ 5a0, satisfying the following conditions; 

l"jjr -.ii.A.'"' =e, 

pK'+1,r ii if pis a prime and 2:::;;:p5:,K, 

p 2 ,r .ii if p is a prime and p > K, 

.ii has no prime divisor in [K, K"), 

l'"' +t'A·=o mod b, 

.ii"'+ t' B=-=O mod a, 
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( (Uia)- 1 
· 0 )(~. ~r)(t;(pt+qi) tJp~) e M 2 (Z), 

0 (Vib)- 1 A Ar -tiqi t;qi 

.J">,..P'>gos,..r, 
2c0 Vib~;'> t;((pi + qi)A. -qe·P) > t;(p;.A° + q;.1P') > H 02 Vib~?, 

(G' A·~ )ii> G1- 1A· 

(v) A'r; (A°, Ar)=l, 

A'r=A·g mod W0, 

.J'> A'r> g 08A0

, 

2c0 V;b~~'> t;((pi +qJA°-qiA.Y)> t;(p;A·+q;A·r)> H 02 V;b~t 

(v;) ii, sr; A·Br-BA·r=e, 

B=B 0 mod 2g'+u0 +sa0, 

(t+ l)A'> ii>max (tA·, G1- 1A). 

(Uia)- 1(t;(P1.+qi)B-tiqiBr) E Z, 

(U;a)- 1(t~p~B+t;q~BP') e Z, (2.3.11.5). 

(We have Br=B% mod 28 '+uo+sa0.) 

(vi) (BB'); B=b~: B'=a- 1(~~+1'~), 
A A' A=aA, A'=b- 1(Ar +t'A), 

163 

and A, A', B, B' are [K, K')-regular and satisfying the conditions in 4.4.15. 

(vii) (Bi B:); (U,a O )(Bi B:)=(~- 1.:)(tiPi+qi) t~p!), 
A; Ai O Vib Ai A, A A -tiqi tiqt 

and A,, A:, B0 B; are supposed to satisfy the conditions in 4.4.15 and 
4.5.1. (A,, A:, B;, Bt are integers by (iv'), (v), (v').) 

(viii) a*; g0>a* > 1 (real). 
(viii') a=BA- 1+eA- 1(Aa* +A')- 1• 

We prepare the set 9' of A'r•s for a :fixed A. of (iv), for which all of (iv')­
(viii) are not satisfied. 

4.5.3.1. Explanation of 4.5.3. The existence of A·r, B, B% for given 
A·, A°%, B0, ii% is assured by 2.3.11.5, even to the modulus W~[Vi, · · ·, V.]; 
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or if they do not fall into the range stated above, they give minor contri­
butions to 4.1.5, as had been explained up to 4.4.22. We have 

AB'-BA'=s, A>A'>O, B>B'>O, 

tt=(UtaBi, VibAt), t~=(UtaBf, VtbAD, 

2c0~i'> Ai> Ai> H 02~r 
Especially 22g' +2 ,t ti. The conditions in (v) given by inequalities show that 
.Jr in (v) lies in an interval J((A.)), say, determined by (0)-(iv) of 4.5.3, 
not depending on A':, B[ and B0 in (iv') there. Let us use the notation 
((A.)) to suggest the choices of (0)-(iv) in 4.5.3. Therefore A·v in (v) of 
4.5.3 may be considered as those, for which 

and 

A."V E J((A.)), 

where A.0[ is one of (iv') in 4.5.3. In (viii') we may have cases to obtain 
such a that was treated in the preceding sections. Estimates there had 
been in "L1-norm", so we have no need to mind having such cases. By 
(viii') we can take a* in (viii) as a variable of integration in 4.1.5, after t, 
A, A' in J((A.)) are fixed. Owing to the length of this note, there are con­
fusions in the use of 4 and r. Those A.04, etc., in 2.3 and 3.2 should corre­
spond to A.017, etc., in 4.4. See the footnote of 4.4.9 (i). 

4.5.4. Lemma. We have, under ((A)) in 4.5.3.1 that 

Si•1l(!:)· · ·Si••l(!:)=16p(A1 • • -A4) 112 

in 4.5.2, where p=O or p8= 1, 

and p is determined if A°[, 111, • • ·, 114 are fixed under ((A)). 

Proof From 4.4.15 (iv), (v) and the moduli W0 and 2K'+uo+sa0, we 
have the same residues mod 8 of x, X and X with X=2"'X, (2<1' X), for X 
=A·, and A°[, or for X=B and B0, or X=A, and Af0l, or X=Bt and Bf0l. 

Then we can consult 2.3.8. 

4.5.5. We proceed from 4.5.2 and 4.5.3 as follows; 
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Lin us ((n-a)-1 (sin n-a))2S1(a) · · · S.(a)d/3 

= r; J da*(-e)(Aa*+A')-2x{the "main" terms in the} 
(4.6.S) a*; go>«*>l right-hand side Of 4.5.2 

+O(oH 02P2), 

where I:cu.s> is to suggest the choices in 4.5.3 and, in the integral, we use 
4.5.3 (viii'). We have, by the remark in 4.4.22, that this is 

= I: J I: {I:( .. ·)}da*+O(oH; 2P 2), 
l; ((A)) a* (1~, ii~ ,ii 0); (Iv') 1"; (v) 

where I:« 1)) suggests that the choices of (0)-(iv) in 4.5.3, g0>a* > l, and 
I:c1~,B~>;crv'> is taken over 4.5.3 (iv'). Also the sum I:1";<v> is taken over 
4.5.3 (v) and, if there do not exist B and B" of 4.5.3 (v')-(vii), we can 
regard as ,4·r e !/. 

4.5.5.1. We suppose that W0 =o(P). 

4.5.6. We have, through 2.3.8 and 3.2.4 with the notations 3.2.3, 
3.2.4 and si•,>( · · ·) in 4.5.1 with g' +4 in place of g' in W0 in 3.2.4, that 

I;(·.·)= I; . I; c~16-1(A1·. ·A4)-112si•,>(B1),. -S~·•>(B4) 
l";<v> µ,<•>,<11,>,<o,«> I',1" A1 A4 

X ri' -I Aw~ </>(A·~o) X (2ag'+uo+5ao)-1(28 ', A) 

X W01J .. ,,g(A')dA'"x 4,,f(B)e(A- 1µB) 
A B 

+ o(.r'1v \ S(A°")\) 
+O(GP 814(A', W0)x(log P)4). 

Here we have used the fact that, from 1,1(A) < 1.1 log log P, 

2•<1> <log P, 5<1t4>•<1> <(log P) 112, a _81.(A') <log P, 

and 

Also we have used the fact that (2g'+uo+5ao, A', Wo)=(2g'+uo+s, A', Wo)= 
(2B', A} 

4.5.6.1. By what were explained in 4.4.22. and 4.5.3.l, we have 

.. I: .. J da* I; I;" O(\S(A.")\)~o\l 1 • • ·.<4 \- 1' 2P 2• 

A; ((A)) a* (1~, ii~ Bo); (Iv') 117 
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We have, also, that, each time adjusting G suitably larger, 

2tA)) L. da* (A~,BHo);(iv')O(GP3/4(A·, Wo) (log P)4) 

<I: I: (A·, W0)XGP 314(logP) 4 

A 1[ 

<I: (A·, W0)X GW0P 314 log P)4, 
A 

which is, owing to 4.4.15 (ii) and 2.3.10.1, 

<G{T-1i.1(U 1V1 · · · UY 4)P+-r(Ll1(W 0 ; T))P}W 0P 3!4 (log P) 4 

<GP 2{T- 111(U1V1 · · · U4V4)+-r(.::11(U1V1 · · · U4V4; T))}W 0P- 114 (log P)4. 

This is 

<o\A1 .. ·A.\-112 p2 

by the assumption of the Theorem, as Twill be chosen= G011( U1 V1 • • · U4 V4) 

in 4.5.7.6. 

4.5.7. Let A·, under the choices ((A)), be fixed. Letµ, (~), (11), (h), 
(/) be fixed also. We consider the sum 

I: 16-1(A1 .. ·A4t11zs\••l(B1) .. -Si'•l(B4) 
(A~,B~,Bo);(iv') A1 A. 

arising from the plausible "main" term in the right-hand side in 4.5.6. 

4.5.7.1. We take up the modulus W* in 4.5.3 (i), which is a divisor 
of W0• Let (A·~, B~, B~)'s be representatives enough to cover the set of 
(A°t, Bt, B0)'s in 4.5.3 (iv'), in which A·~ is taken mod W* and B~ and Bo 
are taken mod 2g'+uo+5a0• We fix (A·~, B~, Bo) and let (A°g, B[, B0) run so 
that 

and 

As 2g' { X for X =A't. · · ·, Bo, we have the same power of 2 for A°g and 
A·~, etc. We have, then, through 2.1.2.1, 2.3.11.5, 2.3.7 and 4.4.15, that 

16-1(Ai .. ·A.t112s?•l(B1) ... s1••l(B4) =p I: J0((Pt+qt)A--qiA·t), 
A, A. i-1,···,4 (tlA)tlab))-1Uia 

where tlAl and tiab) have the corresponding meaning to tfAl and tfab) in 
2.3.5 given with respect to (A"~, B~, Bo). 
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4.5.7.2. We prepare Z, which will be the Z 0 in the Theorem, such 
that Z> T (~ 3), that Z> a0, that all common prime divisors of Uf . .. U! 
and V1 •• • V4 are <Z, that all common prime divisors of Ui, and Ui, 
(i1 =I= i2) are < Z, and that there exist one i0 (i0 = I, · · ·, 4) and a prime 
divisor Po of U!0 satisfying Po> Z (and, therefore, Po { U! for i * i0). 

4.5.7.3. We want to apply 2.3.9 with this Zand W*. We have 

I: fL JoC···) 
(A~, B~,Bo); (iv'), A~= A~modW*,B~ = B~ mod2g' +uo+5ao, 

I: CT Jo(···)+ O(I:ii') 1), 
1~;.A~::.A~modW* 0 

where I:<:.? is used to suggest that we will first perform the summation 
Ao 

I:µ,M,<hJ,W,m in 4.5.6, as were explained at the end of 3.2.5. We have, 
then, the sum is 

~(Uf · · · U!)- 112[Uf · · · U!]{.:l1(U1 ; Z) · · · Ll1(U4; Z)} log (U 1 • • • U4) 

X at n i ( Uia, Al 0)). i-(L11(.A°, Z)) 

+z- 1W0 W;j;1(log log P)2+Gv(U 1 • • • U4)T- 1 W0 W;j;1 

+Gv(U 1 • • • U4)+(log P}°·8 + I:u_)I, 
Ao 

because (U!1 , Ut,Ut.UtL1 1(Ut, Z)) in 2.3.9 is a divisor of L11(Ui,; Z). 

4.5.7.4. As for I:<:.~l I, we go backwards; 
Ao 

.. I:.. I: I:i? 
A;((A))(A~,ii~,iio) o 

(the "main" term in 4.5.6) 

= I: I: I:<:.n(I:.Jr;<vJ (( · · · ), the left-hand side in 4.5.6) ) 
.J <l~,.ii~,.iioJ Ag +0((· ··)in the right-hand side in 4.5.6) 

~I: I: ((n-at 1 (sinn-a)) 2 \S(a)· · ·Sla)\ 
A Ar E.9' 

+I: I: O(···)+O(o\21 ···A4 \-' 12P2), 

A Ar E.9' 

which is absorbed in the estimates in 4.5.6.1. 

4.5.7.5. Let us combine 4.5.7.3 with the "main" term in 4.5.6. We 
have, by 3.2.5.1, the "main" term on the right-hand side is 

because 
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Therefore the combined contribution of the "main" term of 4.5.6 and 
4.5.7.3 (without O(~~Pl)) to 4.1.5 is 

<{ ~ ~ ~ ~ X GWi/P 
s,a,b,t,t' t,i,t~,p,i,q,,p~,qi l (A~, ii~ ,iio) 

( (Uf···U:)- 112X···Xi-(Ll1(.1i";Z)) (asin4.5.7.3) ) 
X +z- 1W0 W;1 (log log P) 2 +GJ.1(U1 • • • U4){T- 1 W0 W; 1 + l}+(log P) 0· 8 • 

This, is, owing to 4.4.22, 

~ ~ ~ ~GW 01PX(· · ·), 
s,a,b,t,t' A A~ 

then 

~~ i-(.::11(.A.°; Z))X ~ CT (Uta, Ai0l) 
l 1~ i 

XGW 01P(Uf· · · U!)- 112[Uf, · · ·, U!]·{Ll1(U 1; Z), · ·L:l1(U4 ; Z)} 

xlog (U1 · · · U4) 

+P 2z- 1G (log logP) 2 +P 2T- 1GJ.1(U1 • • • U,) 

+P 2GW; 1 W*{J.1(U1 • • • U4)+(log P}°-8}. 

4.5.7.6. We put as 

with a large positive constant G0• We suppose that 

Z> G0 (log log P) 2 (and >T). 

We have 

W01 W*~2" 0 [V1, · · ·, V,]·[U 1V1, · · ·, U4Vi]- 1 

~min (p;1, (Go log P)- 0•8)~min cz-1, (Go log P)- 0•8) 

by the assumptions of the Theorem. It follows that the last three terms 
in 4.5.7.5 are 

by choosing G0 sufficiently large. 

4.5.7.7. We treat the first term in the last estimate in 4.5.7.5. We 
have, by 4.4.15 (ii), that 



We have 

Quadratic Farms 

~ r-(Ll1(,4°; Z))«..P (log P}°·8• 

A 

We have, then, the contribution of the first term is 

<( GP 2 • W01 W* · (log P}°-8 log (U 1 • • • U4) X (Uf · · · U:)- 112[Uf, · · ·, U!] 

XLlb,(U1)· · -Llb,(U4)XLl1(U1; Z)· · -L11(U4 ; Z) 

<( GP2 • (log P}°·8 log (U, · · · U4) X [U1 V1, • • ·, U4 V4]- 1[V1, • • ·, V4] 

X(Uf· • -un-112[Uf, '' ·, m]xLlb,(U1)·' -Llb,(U4) 

XLl1(U1; Z)· · -L11(U4; Z). 

This is 

by the assumptions of the Theorem. 
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4.5.7.8. Thus, as was proposed in 4.1.5.1, we have treated all of a·s 
and obtain the Theorem, under so many restrictive assumptions on J./s. 
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