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On p-Adic Vanishing Cycles
(Application of ideas of Fontaine-Messing)

Kazuya Kato

§0. Introduction

Let K be a complete discrete valuation field with perfect residue field
k such that char(K)=0 and char(k)=p>0. Let X be a smooth scheme
over the valuation ring Oy of K, and fix notations as

XK = X®0KK3 Y= X®0Kka
Xe=X®K, Y=YQ®.k, X=X®.O0x,

Y—sxd x s 7—xl x z

where K (resp. k) denotes the algebraic closure of K (resp. k) and O de-
notes the integral closure of Oy in K.

The sheaf of p-adic vanishing cycles i* R%j (Z/p"Z) was studied in [3]
[4] and used for the study of the etale cohomology group H*(Xz, Z/p"Z).
The purpose of Chapter I of this paper is to prove the following new result
concerning i*R%j(Z/p"Z). In Section 1, we define certain complexes
&Nz (r=1,0=<r<p)on Y, which come from the crystalline cohomology
theory, following the ideas of J.-M. Fontaine and W. Messing in their
“syntomic cohomology theory’ ([10]).

Theorem (Ch. I (4.3)). Let 0<r<p—1. Then for any n=1, there is
a canonical isomorphism

H S w(r)z) = if a>r

Here Z/p"Z(r) denotes the Tate twist of Z/p"Z. By the definition of
&,.(r)z in Ch. I § 1, the result means that i*R%j,(Z/p"Z) can be described
in terms of differential forms.

In Chapter II, we shall apply the above result to obtain the following
theoerm on the etale cohomology groups H (Y, i*R"j(Z/p"Z)) in the case

{l’*R"J’*(Z/p"Z(r)) if q<r
0
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X is projective, assuming e, (=ord.(p)) is one and p is sufficiently big.
Recall that Y is called of Hodge-Witt if the W-modules HY(Y, W Q%) are
of finite type for all ¢ and r ([12] IV (4.6)).

Theorem (cf. Ch. 11 (4.3)(4.4)). Assume X is projective over Oy, ex=1
and diim(X)<p—1. Then, the following three conditions are equivalent.

(i) Yis of Hodge-Witt.

(ii) The groups HU(Y, i*R"j (Z|p"Z)) are finite for all q, r and n.

(iii)  The spectral sequence

Ef"=HY, i*R'j(Z]p*Z)=—=H*(X, Z|p"Z)

degenerates for any n. If these equivalent conditions are satisfied, we have
the following (1) and (2) for any pair (g, r).

(1) There is a p-divisible group I" over Oy without multiplicative part
such that the Tate module T,(I") of I" satisfies

0,87, T (=) =Q,®z, lim H (Y, i*R7j (Z]p"Z))

as Q,[Gal(K/K)]-modules.

(2) (Concerning the problem of Serre [13} 1.7.) Assume k=k. Let
T be any simple subquotient of the Gal(K/K)-module HUY, i*R’j (Z/pZ))
and let h=dimpy (T). Then the action of Gal(K/K) on T has the form

x;(io+i1p+---+ih-1ph“1)

such that i,,=r or r—1 for any m and i,,=r for some m. Here X, denotes
the “fundamental character of level b ([9] 5.1; ¢f. Ch. II (3.6)).

This theorem generalizes, under the assumptions in this theorem, the
corresponding results on HY(Y, i*R"j (Z/p"Z)) and H*(Xg, Z/p"Z) ob-
tained in [3] [4] assuming Y is “ordinary” ({12] IV (4.12), [4] § 7), to the
case Y is of Hodge-Witt. (For example, in the case Y is ordinary, the
p-divisible group " is an etale p-divisible group. Cf. problems on the last
page of [3]). In particular, it shows (by the above spectral sequence) that
H*(Xg,0,) has a Hodge-Tate decomposition in the case ey =1, dim(X ) <
p—1 and Y is of Hodge-Witt.

This Hodge-Tate decomposition result was already proved with some
deeper results by Fontaine and Messing [10] without the Hodge-Witt
assumption.

This paper depends heavily on ideas of Fontaine and Messing [10].
Our method differs from theirs in that, to connect p-adic etale objects with
differential objects, we use the local results of [3][4] on p-adic vanishing
cycles whereas p-adic vanishing cycles are not considered in [10]. This
method enables us to obtain results on the cohomology of p-adic vanishing
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cycles as in the above theorem, and to understand the relation between the
method of [3] [4] and that of [10].

I received recently the paper Faltings [18] which proves the Hodge-
Tate decomposition conjecture completely generally. In the introduction
of [18], it is explained that the main result of [18] furnishes a purely algebraic
proof of the fact that the Hodge spectral sequence degenerates in charac-
teristic zero. Our result Ch. II Prop. 2.5 (1) can be used for another purely
algebraic proof of the degeneracy. I thank Professor W. Messing for a
correspondence on this fact.

The study of i*R%(Z/p"Z(r)) (not only that of i*R%(Z/p"Z) of
this paper) will be important for the p-adic algebraic geometry.

I express my sincere gratitudes to Professors J.-M. Fontaine and W.
Messing for explaining me their method in [10] and for helpful discussions.
The reader will see in the content of this paper that I owe much to them.
I am also obliged to Professor S. Bloch, from whom I learned much about
the field considered in [3] [4].
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Notations

In the following,
p denotes a fixed prime number
k denotes a perfect field of characteristic p,
W (resp. W,) denotes the Witt ring W(k) (W ,(k)),
¢ denotes the frobenius W—W.

For a W-module M, M‘ denotes the W-module whose underlying
abelian group is M but on which W acts by WX M—M; (a, x)—>a(a)x,

For a scheme T,

T, denotes TQR,Z/p"Z,

D(T,,) denotes the derived category of the category of all abelian
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group sheaves on the small etale site T,

Q5 denotes the absolute de Rham complex £, on T,.

The notations for cohomology H*, R%, etc. mean the etale coho-
mology unless the contrary is explicitly indicated.

Chapter I.  Local study

§1. The definition of %, (r)

According to Fontaine and Messing, we call a morphism of schemes
syntomic if it is flat and is complete intersection in the sense of [15] VIII §1.
Let X be a syntomic quasi-projective scheme over W. In this Section 1,
we define objects &,(r)x (n=1, 0<r<p) of the derived category D((X))e,)
where X,=X®Z/pZ, by using the crystalline cohomology theory (cf. (1.6)).

Remark (1.1). J.-M. Fontaine and W. Messing defined a site X,
called the syntomic site and a sheaf S on X, by using the crystalline
cohomology theory. In terms of their theory, &,(r)z is isomorphic to
Rz, (S7) where = : X, ,—X,; is the canonical morphism of sites, though we
do not discuss this fact in this paper. We define &, (r), directly in this
section by following the ideas of Fontaine-Messing in their definition of
S7, and study &,(r)y in the subsequent sections by using its explicit defi-
nition. (We do not use the syntomic topology in this paper.)

Definition (1.2). Let 7 be a scheme over /. A morphism of scheme
f: T—T is called a frobenius of T if f®Z/pZ: T,—T, is the absolute
frobenius induced by 0,,—0;,; t—t?, and if the diagram

T—f———>T

Spec( W)L>Spec (W)

is commutative.

Take an immersion i : X——»Z over W such that Z is a smooth scheme
over W endowed with a frobenius f: Z—Z. The existence of (Z, 1, f)
follows from the fact that the projective space has a frobenius. Let

be the divided power envelope with respect to the canonical divided power
structure of pW, C W, ([2] Section 3). Let J,_ be the ideal of D, defining
X,, and let J1(r=0) be its r-th divided power. Since the underlying
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space of D, coincides with that of X;, we can regard sheaves on (D,),; as
sheaves on (X)), For r=0, we denote the well known complex of
sheaves on (X)).;

d d
IG—T5 Qs , 7e—>IG 70, 05—+ -
(deg. 0) (deg. 1)

by Ji%.z. (We denoted i~'(£2%,) simply by 2%.. For i<0, J¥1=0,, by
convention.) We denote JI% , by E, x,,.

Lemma (1.3). (1) For 0<r<p, fJEDCp0,,.
(2) For any r, m and n, the sequence

J LA 1o I ANy 105

m+n Dm+n Dm+n

Jy—50
is exact.

Corollary (1.4). (1) For 0=r<p, fUYL,)CP'E, 1.z
(2) For any r, m and n, the sequence

p™ pr can.
Jgfln,x,z—"Jgrfln,X,z"—)J%}fn,X, z—*JEZEY,z——*O

is exact.
Indeed, (1.4) (1) follows from (1.3) (1) and from
F@Hcp'Ry (i=0).

Proof of (1.3). (I learned the following proof from Fontaine and
Messing.) For (1), it suffices to show f(x"1) e p’@,, for x e J,,, and for
r'=r. Write f(xX)=x?+py, ye 0p,. We have

SO =f (= (62 -y = p (p — D 1X 1),

but pt"1e (p7). For (2), the problem is etale local, so we may assume
that X is defined by a regular sequence (f, ---,f;) in Z ([15] VIII, 1.2).
Consider the cartesian diagram

X, -S>z, fi

Spec(W,)——> A, =Spec(W,[t,, - -+, 1,) L.

0<«—it,.
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Since the right vertical arrow is flat on some open neighbourhood of X, in
Z, ([16] Ch. 0, 15. 1.21), we can apply [2] 3.21 to obtain

DXn(Zn) = Zn X A“WnDSpec(Wn)(AiVn)'

From this, the problem is reduced to the case X=Spec(W), Z= 43, and

X—E»Z is the immersion to the origin. In this case, 0, =W, -« -, t,>
([2] 3.20 (5)) and J%1 is the free W,-module with base {#,1*3. - - ¢[*d; § 4 - - .
+i=r}

Corollary (1.5). Let 0=<r<p. There is a unique homomorphism of
complexes

.fT:JE:EY,Z )En,X,Z
SJor which f: I3, . z7——>E, ., x, 7 factors as

. can. 7 fr T
Jn+r,X,z—> n,X,z‘—>En,X,z—_>En+r,X,z-

Definition (1.6). We define the complex &, (r)y,, (this depends on f
but we abbreviate it) to be the “mapping fiber’” of

fr—1
JE:.]X’,Z—>E12,X,Z

(1 means the inclusion map), and we define &#,(r), to be the image of
& (1) x,, in the derived category D((X).,)-
Precisely, the degree i part of &, (r)x, , is

5@, 25)D(0,®,, 25
and the differential of &, (r)y,, is given by

(x, P)——>(dx, (f,— D(x)—dy)
(x e J5,9Q,, 2%,y € 05,8,, 95)).

We see that &, (r) is independent of the choice of (Z, f), as follows. For

two pairs (Z, f) and (Z’, f*), we take the third immersion X- —i>Z><WZ ’
where Z X Z’ is endowed with the frobenius /X /. Then, the canonical
maps

cyn(”).fr,z““"yn(r)x,z><Wz'a yn(")x,z"‘-“)yn(")x,zxwz'

are quasi-isomorphisms as is seen from theory of crystalline cohomology
([2] Theorem 7.2).
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Remark (1.7). Inlater sections, we shall be concerned with syntomic
schemes over O (cf. § 0), which can not be syntomic over W (unless it is
empty). So we slightly generalize the definition of &,(r) to schemes of
such type. Generally, let X be a scheme such that there are directed
inverse systems (X}),¢, and (Z,),., of W-schemes, and a system of immer-
sions i;: X;—~Z; and a system of frobenius f,: Z,—>Z, (1 ¢ A) which
commute with the transition maps such that

(1.7.1) Each X, is syntomic over W,

(1.7.2) Each Z, is smooth over W,

(1.7.3) The transition maps X,,— X, and Z,,—Z, (1’ = A) are affine,

(1.74) X=lim X,.

For 0<r<p, we define &,(r)x to be the image of lim &, ,(r)x, z, in
D((X))e;)- Then, one sees that &,(r)x is independent of the choice of

systems XD, (Z), (@), (ﬁl)

Remark (1.8). The hypothesis that X is quasi-projective in this section
is not indispensable for the construction of .#,(r). Indeed, not assuming
X quasi-projective, let X’—X be an affine open covering and take a W-

. . c .
immersion X’'——>Z such that Z is a smooth scheme over W endowed
with a frobenius. Assume that X is separated (even this assumption is
unnecessary if we use the technique in [2] 7.8, proof) and let

XD=X"X g+ XX, ZOV=ZX -+ XwpZ (itimes),

70 X®Y——>X the canonical morphism.

Then, we define &,(r); , (0=<r<p) to be the complex associated to the
double complex

(ﬂl)*(yn(r)zl’(l’,Z(1)2_'_)(ﬂ2)*(yn(r)X(2’,Z‘”)—-) Tt
(deg. 0) S (deg. 1)

By the argument in (1.6) using \the fact x; are affine morphisms (for X is
separated) and acyclic for quasi-coherent sheaves, we see that the image
& o(r)x of #,(r)z.z in the derived category is independent of the choices
of X’ and Z. In this paper, we restrict ourselves to the quasi-projective
case for the simplicity of the description of the theory. This is sufficient
for the study in Ch. I which is local. Indeed, the cohomology sheaves
HUF,(r)y) can be defined by considering only the quasi-projective case
(for one can glue local definitions), and Ch. I concerns these cohomology
sheaves. In Ch. II, if we use the above general definition for X not
necessarily quasi-projective, we can generalize the results in Ch. II Section
2, Section 4 to smooth proper schemes X over W which need not be

projective.
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§ 2. The product structure

In this section, we define a product
<Spn(r)X,Z><‘y'n(r/)"L’,Z_—>'y'n(r—{_",)X,Z (rs r,g(), r+r/<p)'

(2.1) Generally, let T be a topos, and let 4=(A49),.5 be a complex
of abelian groups in 7. We call 4 a ring-complex if a global section 1 of
A® and a homomorphism of complexes AQA—A4; xQy—>xy are given
satisfying the usual axioms of the ring. By the definition of the tensor
product of complexes, this means that @®,., A* is endowed with a ring
structure with the unit 1 whose additive structure is the original one, such
that 4947 C A?*¢" and

d(xy)=dX)y+(—1)xd(y) (¢, 9" € Z, x e A% y € AY).

(Here x € A? means that x is a local section of 4%.)

Now let 4 and B be ring-complexes in T, and let g, & : A—B be two
homomorphisms of complexes preserving the ring-complex structures. Let
S be the mapping fiber of g—h: A—B. (So, S?=A'PB*"!, and d: S'—
St is (x, y)y—(dx, g(x)—h(x)—dy).) We define the product

S@S—>S by (%), ¥)=0x', (=)%Y +yh(x))
((x,)) e S*=A"@® B, (x,y) e ST=AYDB ).

We can prove easily

Lemma (2.2). With the unit section (1,,0) e S°, the above product
defines a ring-complex structure on S.

Lemma (2.3). Assume that A and B satisfy
xy=(=1)"yx

for any q, q' € Z and for any homogeneous local sections x and y of degree
q and q’ respectively. Then we have

xy=(—=1)"yx

Sfor any q, q' € Z and for any local sections x (resp.y) of the cohomology
sheaf H#(S) (resp. H#7(S)).

(24) Now let X and Z be as in Section 1. We apply the above
arguments to the case
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A= @ Jikz  B= @D E,x:

0=r<p 0=r<p
g= @ f» h= @ 1
0=sr<p 0=r<p

(1 means the natural inclusion). Here the ring-complex structure of B is
defined by

(an ) xp-l)(yoa v "yp—1)=(zoa R} zp—l)

where Zg= 25 X;;
. i+j=q

with the natural product x;y; in E, y, ,, and that of 4 is induced from this

via the natural inclusion A——>B. We obtain thus a product
LN, QL (1 )x,z—>F(r+1")x 2
(r,r'=0, r+r’'<p). As is seen by the argument in (1.6), the induced
product structure
L
L)z @ Lo(r)x—>L o (r+1)x

in the derived category is independent of the choice of Z.

§3. Symbols

Let X be a syntomic scheme over W. In this section, we define a
“symbol map”

03,8 Q0%,,,—>H"(F(rx) (<p)

r times

and prove that this map is surjective if r<p—1. (See Theorem (3.6)).
(3.1) In (3.1)-(3.5), we assume that X is quasi-projective. We first
define a homomorphism

O% ol = 11— (D«
in D((X).,). This will induce a canonical map
OX, ) =1 (X 11, 0%, )—>H (X, F1(Dx)
and by the product structure of &,(r), in Section 2, a map

@(Xnﬂ))(@' : ’®0(Xn+l)x——)Hr(Xla yn(")x) (I’<p)

¥
7 times




216 K. Kato

defining (without the quasi-projective assumption) the above symbol map.
Take i : X—>Z and f:Z—>Z asin Section 1. Let

N=XKer(i '(0%,,)—>0%..)

Zp+1
and let C be the complex
N—>i ™ 0%,.,)

(deg. 0) (deg. 1)

on (X,),. Clearly, C is quasi-isomorphic to 0% ,[—1]. We define a
homomorphism of complexes

5:C—>F,(Dy,z

which induces the desired map 0%, ,.[—1]1->%,(1)y in D((X))..), as follows.
Denote the map i (0, , )—>0,,., as a—d. Then, the degree zero part
of s is

N—>JB1; ar—>log(a).
The degree one part of s is
iM%, )—>(05,,, 927,)D 0,
a—>(a~da, p~*log(f(a)a™?)).
Here, since f(@)a™? € 1-+p0,, ., we have log(f(a)a"?) € p0,,.,. The no-

tation p~' log(f(@)a~?) means the unique element of ¢, whose image under
p: 0, —0,, coincides with log (f(a)a™?).

Proposition (3.2). Assume p=c2. Let h: O0(X,, Y —H'(X,, ¥.(Dx)
be the canonical map defined above, and let x and y be elements of 0(X,.,)*
such that x+y=1or x+y=0. Then

h(h(N=0  in H*(X,, ¥ (2)x).

We give here the proof for the case x-+y=1; the case x4+y=0 is
proved similarly and follows also from (2.3). We prove a slightly general

Lemma (3.3). Assume p2. Let x ¢ O(X,,,)%, a e 0(X,,,) and as-
sume that 1 —a?"x is invertible. Then

hOR(l—a?x)=0  in H'X,y &.(2))-

Proof. Since the problem is local and the definition of # is functorial,
we may assume that
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X=Spec(WIS, T, T, (1 —S*"T)"1)),

and x=T, a=S. Let Z=Spec(WIS, T]) and let f: Z—Z be the frobenius
defined by S+~ S?, T—T?. Then, Dy (Z,)=X,, and the degree one part
of the map s

§n+1.—__)gi¥n®0xn

in (3.1) satisfies

T——>(T"'dT, 0)

1—-S?"T——>(—(1-S?"T)"'S?"dT,

p ' log((1—S*""*T?)(1—S8*"T)"?)).
From this, we see that /(T)h(1—S*"T)( e H¥(X,, &.(2)y)) is the class of
0, —p~'log((1 —S?""'T?Y(1—S8*"T)"?)TdT) e ['(X,, %, D 2%).
This class is zero, for
ptlog((1—=S?"'T?)(1 —S?"T) )T 'dT=du in 0%,

where

u= 3 iYSP"T) e ['(X,, Ox,).
(1,p)=1
=1

(This formal power series u e W,[[T, S]I[T*] belongs to the subspace
I'(X,, 0x)).

Remark (3.4). Proposition (3.2) suggests that there are chern class
maps K, (X)—H*~(X,, &.(r)x), but the author has not yet studied this
problem.

Remark (3.5). The complex &, (r)y is similar to the complex of
Deligne-Beilinson

1 o -1
Z(r) Ox /e ce $ 9% 0

(deg. 0)

on a complex manifold ([1]). Indeed, if X is smooth over W and has a
frobenius f, &,(r)y has the form

—d —d —d
0——")@;(" \“Q}Y',, Fe e ‘Q};Z
(deg. 1)

R e S et N
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in which the part Q}nﬁiﬁj}n corresponds to Z(r) on a complex manifold.

Theorem (3.6). Let X be a syntomic scheme over W.
(1) Let 0Zr<p. Then the cohomology sheaves #(F,(r)y) vanish

Sor g>r.
(2) Assume r<p—1. Then the symbol map

0%,:.8 - Q0%,,,——>H"(L(r)x)
is surjective.

Proof. We may assume n=1. Since the problem is local, we may
assume that X is quasi-projective. Take Z as in Section 1. For the proof
of (1), it suffices to show that the map

fi=1:J% ) —>(Es x.2),

is an isomorphism if g>>r and is surjective if g=r. If ¢>r, f,=p?f,=0
—1
on (J'},7), and hence f,—1 is rewritten as 0p,®,, 2%,~—>05,Q,, 2%,
For g==r,the map is f,—1: 0,,Q, ZI.QTZI——»@ 2.8 Z‘Q’ZI and is seen easily
to be surjective.
(3.7) Now we prove (3.6) (2) in the case where X is smooth over W
and has a frobenius. The triangle

fr—1
yl(")x,x'—“’JE,T‘]r,Xr—‘)El,X,X

induces an exact sequence of cohomology sheaves

. 8 F-1 .
B Q) > H (L) )25 - > K (2k)-

Here F is the inverse Cartier operator ([11]1, 2.1.4) and 2%, ,., denotes
the kernel of d: 2%, —02%". By[11]1], 2.4.2, the kernel of F—1 is generated
locally by sections of the form b;'db, A\ - - - Ab;'db, with b,, - - -, b, inver-
tible. So, for X smooth with frobenius, (3.6) (2) follows from

Lemma (3.7.2). Let X be a smooth scheme over W with frobenius.
Let 0LZr<p. Then;
(1) Letnzl. Then the composite

0%,.8-- '®@:t<'n+1——)%T(‘Spn(")2‘)———>%r(',7[:%’,z?)='er’n,d=0

is the map b,® - - -@b,—~b;*db; N\ - - - \b;'db,.
(2) Let a be a section of Oy and let b,, - - -, b,_, be local sections of
O%. Then the image of (1+pa)®b,®- - -Qb,_, in #(F(r)y) under the
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symbol map coincides with the image of a*b;*db,/\ - - - \b;'db,_, under the
boundary map & : #" N (Q%)—>H"(F:(r)y) (cf. (3.7.1)).

This lemma is immediate from the definition of the symbol map.
(3.8) Next we give the proof of (3.6) (2) for the general case. By
(3.7), it suffices to prove the surjectivity of

(L)1) —>H (L () x)-
By f,- pf,“_-O on Ji7#1} (here we used the condition r+1<p), the map
fi—1:J% ,—E, & , induces an isomorphism of subcomplexes JE’,}“}—————)
JI#Y. Thus we have a distinguished triangle

L) g, z—> Ik z/Jg,r}}%ﬁ_’El £zl %
From this, we see that, if  denotes the ideal of @, defining X,, s#"(¥,(r)x)
is isomorphic to the cohomology sheaf in degree r of a complex of the
form

o 10y, @y ey I =D o 10r o,
(deg. r) (deg. r+1)
Let B be the kernel of this map (f,—1, —d), and on the other hand, let
A=Xer(2,,® 927, 1Lf—:——’—:—> %). We have a commutative diagram

with surjectlve horlzontal arrows

iT(A)—>i (A (S (1))

B —» H(F(r)y)
So it suffices to prove that the natural map i ~'(4)— B is surjective, but this
follows from the surjectivity of f, —1: 1073 —IQ7. .
§4. p-adic vanishing cycles
Let K, X, Y etc. and

be as at the beginning of Section 0. As in [3] [4], let
M;=*Rj(Z|p"Z(r)) (reZ,n=0)

where (r) denotes Tate’s twist. The sheaf M7 was studied in [3] [4] by
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using “symbols”. For any ring R, let

KI(R)=(R*®- - -QR)/J

q times

where J is the subgroup of the tensor product generated by all elements of
the form x,®- - -Qx, such that x,4x,=1 or x;+x,=0 for some 7=¢j.
An element ¢,Q - - - ®a, mod J of K¥(R) is denoted by {a,, - - -, a,}.

Definition (4.1). For a scheme T and x e 7, let ¢, ; be the strict
henselization of ¢, ,. Forxe Y, let

ssi(en L)
p

As in [4], we have a symbol map
Sip"Si—> M}

(M3 ; denotes the stalk of M2 at Spec(0y ;). This map is surjective, and
it is bijective if x is a generic point of ¥ (see [4] § 5, § 6). On the other
hand, we have

Lemma (4.2). Let xe Y. Then the symbol map
K (Oz5)——>H# (S (@)x)s  (q<D)
(cf. (3.2)) factors through the surjection
K§(Ox,2)—>SYp"S;.

Here the surjectivity of the last map follows from the facts that
(0g :{1/p])* is generated by (0 ;)* and K*, and that K*/(K*)*"=0. By
these facts, (4.2) follows from (3.3).

The purpose of this section is to prove the following

Theorem (4.3). Let X be as above.
(1) For 0<qg<p—1, there exists an isomprohism

Mi=AY(L(9)z)
compatible with symbol maps
Si—>»M?i, and Si—>»H#(L(Pz): (xe¥).

Q) If0g=<r<p—1, we have a canonical isomorphism
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AL D) —D—>H (S u(r)x)
where (r —q) means the Tate twist.
Note that by (3.6),
HU(L,(Ng)=0 if r<p and g>r.
In the following, we denote
B, = H¢,;(Spec (Og/p"Or)/ Wp, Ocrys)
where @,,., denotes the structural sheaf of the crystalline site,
J.=Ker(B,—>Og/p"Op),
JL3 the r-th divided power of J, (cf. [8] § 3).

Let p,»(O%) be the group of all p™-th roots of unity in Og. Then we have
a homomorphism

(0 g)—>J1; C%[C];log(ip")

where { is any lifting of £ to Oy, and f; ([{)=I[¢]. This induces a map
(defined by [10] for the syntomic sheaf S})

ﬂp"(oﬁ)_—_)Ho( Y_’ ey’n(l)X) c ngys(yn/ Wm @crys)
and hence a canonical homomorphism
LDzt —q)—>F,(F)x (0 g r<p, X quasi-projective).

The isomorphism of (4.3) (2) is induced by this homomorphism. By (4.3)
and by the remark after it, we have

Corollary (4.4). - Let 0<g<p—1, and assume that X is quasi-pro-
Jective. Then there exists a distinguished triangle

Zq—Dx(D—>F (@) x—> M —q].

The rest of this section is devoted to the proof of (4.3). We give some
remarks on the proof. The problem is etale local, so we may assume that
X is isomorphic to the affine space A7, and hence that X is obtained by
base change from a smooth scheme over . Thus we may assume O =W.

So in the following, we assume that X is a smooth quasi-projective
scheme over O,=W. From (4.7) on, we shall also assume that X has a
frobenius f without loss of generality.
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We begin with

Lemma (4.5). Define the homomorphism 6: Og[pOg— B, by 8(x)=2X?
where % is any lifting of x to B,. Fixing a p-th root (—p)'*? of —p, let e=
6((—p)"®).

(1) The homomorphism 0 induces an isomorphism

OK/POK—;’Bx/JEp]-

Q) Ifor<p, Ji I is generated by €™ as a Bi-module.
3) Ifosr<p, f,(¢)=1mod JF,
(4) For € e p,(Og), we have

f=— Z'; (1 —¢)*) mod J&,

Proof. (1) and (2) follow from [8] 3.4, and the proof of (4) is straight-
forward. Finally (3) follows from [9] Lemma 5.4, by the relation described
in [8] Section 3 between B, and the ring W(R) of [9].

Lemma (4.6). Let nz=1 and 0<r<p. Then the complex

JIQyy, Ox, —»J[T Qg .QX"————> ———»J[’ ARy, P% —>- -
(deg. 0) (deg. 1) (deg. q9)
represents J''% in D(Y,,). Here d denotes 1®d.

Proof. Let L be a finite extension of K, and let Spec(0,)—Z be an
immersion where Z is a smooth W-scheme having a frobenius. Then,
X'=X®, Oy is embedded in X X, Z. We have

DX/(XX W Z);XXW DSpec (OL)(Z)

by [2] 3.21.  So, JT%. xx, z 1S isomorphic to the tensor product of com-
plexes IS0, z2&w, 2%,- By [8] Section 3 Theorem 1, the lemma fol-
lows by a limit argument.

From now on, we assume that X has a frobenius f.

Corollary (4.7). The following complex represents & ,(r)z in D(Y,,):

do dt
JE:]@W,,, Oz, —> J%“”@Wn 2%,)P(B, By, Ox,)—> -
(deg. 0)

de- d
TRy, 2B, @, WD



Vanishing Cycles 223

Here each d? is defined by
(x, )——>(dx, (f,—1)(x)—dy).

For a scheme T over F,, let F: 24—0%/d024™" be the unique homo-
morphism which satisfies

F(abiidb, A - - - Ab;'db)=a?bydb, A\ - - - Ab7db, mod d Q3

for any local section a of @, and for any local sections b,, - - -, b, of 0
(111 1. 2.1.4).

Lemma (4.8). Let 0<q<r<p—1. Then, there exists an exact
sequence '

0> P— s (P (F) 1) —> O—>0

where P and Q are the following sheaves. Let ¢ be the class of (—p)¢-4+b/?
in Og/pOg. Then, P is the cokernel of

QL ——>0d(Q%); w—>F(w)—cw
(X, denotes XQZ[pZ). On the other hand, let
S=Y®, (Oglp®~+7+9/20y),
Then, Q is the kernel of F—1: Q%—Q%/d Q%"

Proof. By (4.6), the triangle &\(r)z—J"}—E["} induces an exact
sequence
0——>P'—>H#Y(F () —> Q0 —>0
where

— Coker (J7-0*9®, 041 /"3 B®, #1-1(2}))

Q —Ker (J[r q]®k ¢ - O/J[r q+1]® qu 1——>B ®k - 1(,Q ))
We show that there are canonical isomorphisms P =P’ and Q=Q’.
First, by f,=pf,.,=0 on JI"~*31Q, 247}_,, we see that

fr—

P’=Coker (J{~ /I Q0% 4 o> = B, e (2¥)-

Thus P’ is a quotient of B,/JPPIR), #7°1(2}), whereas P is a quotient of
Q4. By using (4.5), it is seen easily that the isomorphism
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ORF
05712 0,/p0: @252 25 BIIP®, #1-1(2y)

induces P = P’ by passing to the quotients.
Next we prove @=¢Q’. Since f,=0 on JI""*1Q, 2% ,_,, we see

r—1
0’ =Ker (J7-Jir-Q, Q% ,_ T3 BT -0, #405).

Let
M=J7-3Jr-NQ, Q% 4y  N=B/JT ""1Q, (2%/d2%7).

For any integer >0, let @,=(—p)"~2@-b7"a-2"% and let M* (resp. N¥)
be the B,-submodule of M (resp. N) generated by 8(a,.,) ® 2% 4., (xesp.
a,) R (2%/d0R% ). Let M= (resp. N°) be the B,-submodule of M (resp.
N) generated by [£]""¢@ 2% -, (resp. [C] ! ® 2%/d2%7") where { is a primi-
tive p-th root of unity. Then by (4.5), we have

M=M'DMD>M*>D. .., M“:(QOM“:,

N=N°DN'DN*D.--, N==MN-

i20
We can show easily (f,— I)(MHCN*for 0<i< oo,
We prove
Q'=Ker(f,—1: M—>N)=Ker(f,—1: M*—>N*)=0Q.

Indeed, for 0<i<oo, f,—1=f.: M /M**—>N?N**' and this map is in-
jective as is easily seen from (4.5). Consequently, f,—1: M/M*—N/N*
is injective and hence Ker (f,—1: M—N)=Ker(f,—1: M*—-N=). On
the other hand, by (4.5) we have a commutative diagram

r-ewew M =L, )60 @ w

IIIT ZIIT
X*Q@w R, 0% —>RQ, 0%/d02%" x*Qw
X®Wi—> x? QF(W)—x@w

where R= Og/p?~1"7*0/2-bQ,  This proves Ker (f,—1: M*—=N*)=Q.
In the following, we use the notation

o(T)= ’f{]}l ilr'i e Z,IT].

Lemma (4.9). (1) e(T,+Ty)=e(T,)e(T,) mod (T, T,)".
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@) e(—D)=[]21 (1—=T9D" mod T*Z,[[TT] (u: Moebius function).
3) e(T®)e(T) *=e(—pT) mod pT?Z [T].

Proof. The congruence (1) is classical. For (2), see [5] III Section 1.
We can prove easily the congruence (3) modulo (p) and also modulo (T?),
but (p) N(T7)=(pT?).

In the following, by fixing a primitive p™-th root of unity £, we call
the composite map

4.2 r-
55p" 5t 0 ) )52 S () )

(0L g<r<p) the symbol map.

Lemma (4.10). Let 0<g=<r<p—1, and let the exact sequence

0> P— s (L () ) — > O—>0

beasin(4.8). LetxeY.
(1) The stalk o factors as

bol
P,——>SYpS giz—n-l—o),%” ULz

where the first arrow is induced by
(4.10.1) Q¢ —>S¢pSt
abiidb, A\ - - - Abghdb, —>{e(—aC— 1P, By -, By}

(€ is the fixed primitive p-th root of unity, and & and b, denote liftings to Oy).
(2) The composite

1 5
S5/pSTTm% UL () D) 05

is the unique map which sends {a,, - - -, a,} (a;, + - -, a, € (Og 5)*) to ar'da; /\
.- Nagj'da,.

The proof of (2) is easy and we omit it.

Proof of (1). We first show that the map (4.10.1) is well defined and
annihilates d2%72. For any local ring 4, the kernel of

AQA*®- - - @A*—»QdQ""; d@b,Q- - - @b, —>abi'db, A - - - \b7'db,
q times

is generated by element of the form ¢,®%,Q- - -®a, (each a; € 4%) such
that a,=a, for some i=cj ([4] (4.2)). So, it is sufficient to show
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{e(—aC—=1)P77*9, a}=0 in S}/pS; (a € Uxrz),

but this follows easily from (4.9) (2).
Next, from (4.8) (3), it is deduced that the map (4.10.1) annihilates
elements of the form

@biidb, A\ - - - Nb:hdb,_ —cabdb N - - - Ab;tdb,_,

(ae 0z, 5 by -+, b, e O, ;)*) where c is the class of (—p)” 4172 (cf.
(4.9)). Thus, (4.10.1) induces P;—S%/pS2.
Finally we prove that the diagram

P25 P (1)2)s
by (4.10.1)\3‘ symbol
Se/pSe

is commutative. (The proof is rather long.) By (4.7), (¥ .(r)z) is the
cohomology sheaf of the complex

d, f,—1
Jr-eng, 0 I o 01 L VOB®, 251d05)
T'_Iy -
=l 2D p &, 00

Leta e Oy ; and let b,, - - -, b,_, be elements of (¢ ;)* such that f(b)=
b?mod p® (1<Li<g—1). By changing f if necessary, we may assume that
P, is generated by the classes of abdb, A\ - - - Ab;1db,_, where a, b,, - - -,
b,_, are as taken here. Let d ¢ B,Qy, 0y, be a lifting of a mod p? let
t ¢ B, be a lifting of ({—1)?"1""*% ¢ Og/p*Ox such that f(¢)=1¢? (for ex-
ample, we can take as ¢ the p*-th power of any lifting of ({—1)t®-t-7+a/r*
€ Og/p*Ox to B,), and let

u=-e(td) € (B,Qw, 0x, )"

By the definition of the product structure (Section 2), the image of
aby'db N\ - - - Nb7Ldb, s in (S (r)g); under

4,10.1
P40 60rps1 T e () )

coincides with the class of

(v, W) e JV "Rz 2%, ,_DB®; 04 3/d 0%

where
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v=—[CI""u 'du ANby'db,\ - - - Nb;1idb,_,,
w=—[~(p~" log (f@u )b db A\ - - - Abzhidb, .
Note that on the other hand, a;(abi'db,/\ - -- A\b;1db, ) € (S ()x)z

coincides with the class of (0, 8(a)b;'db, A\ - - - Ab;L,db,_,). We have easily

veJU R, 0L, , and hence

dw=(f,—DW)=(pf;.,— D)= —v.
On the other hand, by (4.9) (3) and f(#)=1?, we obtain
| w=[{]"~%ab;db, N\ - - - \b;lidb,_; mod JQy Q4 1/d 2%
From this we have

we JIr- eI, 01 1/d QL

N 7,7

FW)=0@bdb, A - - - Abhdb, ., in BTE® ()

Since the class of (dw, (f, — 1)(w)) in S#U(F(r)z); is zero, the class of (v, w)
coincides with that of

(v, w)+(@w, (f,—1)(W)=(0, 6(@bi*db,/\ - - - Nb;1:db,_,).
This completes the proof of (4.10).

Lemma (4.11). Let 0<g<r<p—landletxecY.

(1) The symbol map Sip"Si—HUS 1))z is surjective for any
x € Y, and is bijective if x is a generic point of Y.

(2) In the case n=1, more precisely, let U be the subgroup of S/pS?
generated by elements of the form

{1+a9 bla "'3bq—1} mOdpS.g;
a e Ker (0g ;— 0y 3), b,---,b,_,¢ <@3,5[—1—]>X.
p

Then the restriction of the symbol map SpSi—H#U(SF(r)g); to Uis in-
Jective, and we have a commutative diagram

@ d) SYDUTEN (P () p)efTm (U)

l l
dlog
{a, -+ a} K (Op2)p—> w(q)r .z

whose vertical arrows are bijective. Here v(q)y 5 denotes the kernel of
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F—1: 0% —>0% [dO%]

Y.,z°
and dlog denotes the map
{a, - - -, ay—>a7'da,\ - - - Nag'da,.

Here, in the diagram in (2), the existence of the left vertical iso-
morphism is easily seen. Note that the map dlog in this diagram is
surjective by [11] I, 2.4.2, and it is bijective if x is a generic point of ¥ by
[4] Section 2.

Remark (4.12). O. Gabber (unpublished) proved that dlog is bijective
for any x (he proved K¥(A)/p=yv(q), for quite general 4 including 0y ; as
above). If we use his result, we have Sp"Si=#Y(S ,(r)z); improving
(4.11) which will simplify the arguments in the rest of this section.

Proof of (4.11). By the diagram

Sypr-t —2 5 Sgyp» > Si/p —>0

co ALy (D) H (L () D> H (S () 2)e—> -

(1) is reduced to the case n=1 and hence to (2).
For a rational number s >0, let U, be the subgroup of S%/pS? gener-
ated by elements of the form

{14pa, b,, ---,b,.;} modpSE;
a e Oy, by ey bq-—l € (@X,i[—l‘]>x-
P

Then, (4.10) shows that for s=(p—1—r-+q)/(p—1), we have the following
commutative diagram of exact sequences in which the left vertical arrow is
bijective.

0—>U, > SYp >(S4/p)/U;—>0
!
0—>P;—> AL () x)s >0; >0

Furthermore, the right vertical arrow is surjective by [11]11, 2.4.2. So it
remains to prove that U/U,——>Q; (s=(p—1—r+q)/(p—1)) is injective
and that the composite map #U(F\(r)z)s—>0s—>v(q)y, : induces an iso-
morphism (S, (r)g):/Im (U)=v(q)y;. The former fact is reduced to
the following (4.13). For the latter fact, it suffices to prove that the map
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U—Ker (Q;—v(q9)r,z) is surjective, and this is reduced to the following
(4.14) (note that Og/p*Of is an inductive limit of artinian local rings).

Lemma (4.13). Let xe Y. For a rational number s such that 0<s
<1, let A;=0yx 3/p°0z5 Let Uand U, be as above. Then, the restriction
of the map

(SHYPIV—>2%  Aaw - -y a——ar da,\ - - - Nag'da,
(a, - -, a,e(0gz)) to UlU, is injective.

Proof. 1t is sufficient to prove that for 0<{s< 1/2, the induced map
UJU,;— 84, is injective. Let 02¢7'—U,/U,, be the surjective homo-
morphism '

aby'db, A\ - - - Ab71db, —>{1+p'd, by, - - -, b,_,).

Then, this map annihilates 2974 _,. Indeed, Q k-0 1s generated by dQ7;?
and elements of the form a?b'db, A\ - - - Ab;1,db,_,, but

1+4+p*a? =(1+p*/?a)? in A4,
Now the composite map
Y0 o —» U JUyy—>p* AM-!;).Q
is just ww>dw, and hence the second arrow is injective.

Lemma (4.14). Let R be an artinian local ring over F, and let A be a
local ring which is essentially smooth over R. Then, for any ideal I of R
such that R=1, the sequence

(1 +IAHR@AX)BO D —5 109 R——).QA/R/dQA,R
is exact, where the first map is given by a,Q - - - Qa,—ai*da,\ - - - Nag'da,.

Proof. We may assume /*=0. Then, F: 10%,,—Q5%,,/d %% is the
zero map, and 10%,, NdQ%L=1-d02%;} as d247} is an R-direct summand
of 24,. ButfortelandacA,

t-d(ab;db A\ - - - Nb;Ldb,_,)
=(1+ta)"'d(1 +ta) Ab*db A - - - Ab;2db, ..

Now we can prove Theorem (4.3). Let .S be the set of generic points
of Y, and let z: [],es Spec (k(v))—Y be the canonical morphism. By [4]
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Section 5, the symbol map S/p"Si—M¢Z ; is bijective if x ¢ S. So, by
(4.11) (1), we have an isomorphism

AL () D) =H (M)

(we neglect the Tate twist by fixing a primitive p*-th root of unity). This
defines a homomorphism #U(S,(r)g)—r.c*(M%). By [4] Section 6, the
canonical map Mi—r,c*(M2) is injective, and the diagram

St —»>H UL ()x)s

(xeY)
M} ;—— ¥ (M),

shows that the image of #YF,(r)z) in 7, c*(MZ) is contained in the image
of Mg Thus we obtain a homomorphism

HUS (1)) —> M,

which is compatible with the symbol maps. We prove that this is an iso-
morphism. For this, we may assume n=1." By [4] Section 4 and Section
6, the composite U—#U(S,(r)z)s—> M5 is injective (x ¢ Y and U is as in
(4.11)). So the commutative diagram

HU(S, /1 =
( (r)f) [Im (U );\v(q)y I
¢ JIm (U) %;tlonG

proves (S (r)z)s—> M

=i
st

Chapter I Application to Schemes with Hodge-Witt Reduction

§1. Varieties of Hodge-Witt

As in [12] IV (4.6), a smooth proper variety Y over k is called of
Hodge-Witt if the W-modules H{Y, WQ%) are of finite type over W.
Then, Y is of Hodge-Witt if and only if the spectral sequence

ETt=HYY, WQy)=—=HZ(YIW)

degenerates.
In this section (resp. the next section), for a smooth proper scheme Y
over k (resp. a smooth projective scheme X over W of dimension < p),
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we give a sufficient and necessary condition for Y (resp. for X ® k) to be
of Hodge-Witt, in terms of F-gauges (resp. filtered Dieudonné modules)
associated to Y (resp. to X). (See Theorem (1.16) and Theorem (2.15).)

The theory of F-gauges described below was developed by Ekedahl
and Fontaine. All results of this section are essentially contained in
Ekedahl [17], but since some definitions and results (e.g. the part concern-
ing GH™(Y/k)) seem not explicitly given in [17], we give the self-contained
introduction to their theory and a complete proof of (1.16).

(1.1) An F-gauge over k is a graded W-module D=@®,;, D, endowed
with W-linear maps F: D—D and ¥: D—D such that F is of degree 1 and
V is of degree —1 satisfying F-¥=V.F=p, and with a ¢-linear iso-

morphism ¢: Dw—iD_w where

Dw=lnII(Di"‘F""Di+1i>' . )

Vv Vv
D_,=lim (D,——>D;.,—>---).

F-gauges over k form an abelian category which we denote by FG,.

(1.2) Let Y be a smooth proper variety over k. For me Z and
n=1, we define the F-gauge GH™(Y/W,) as follows. For ie Z, let
W,02%(7) be the complex on Y

d d ) d ) d-C .
(W, 0p) 0 ——> -+ - —>(W, 25 ) —(W,25)) " —> W, 025"

d ) d
> W, 00

where (W,0%) is the image of F: WQ%,—W, 2% and C: (W,02%)—W, 2%
is the unique map for which the diagram
wo, 2% w0,
Fl /,’ l“p,,
(an;){"?WnHQi’

is commutative. (The existence of C follows from the injectivity of “p”.)
The F-gauge D=GH™(Y/W,) is defined as follows:

Dy=H™(Y, W,02@i)) forie Z,

F: D,—~D,,, (resp. V: D,—D,_,) is the map induced by the following
homomorphism of complexes
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d
> W2 > -

W00 20 %S Wy —Low,epe
1 1 PF P lp
R GO 7 A N o GRSV PR
(resp.
W00 Ly 0y om @0 LS w0 w0y
P P ic 1 11
W0y o LS 0y —w bW By )

and ¢: D,—D_,, is induced by the identity map (W, Q%) —W,2%.

In the case n=1, we denote GH™(Y/W,) by GH™(Y/k). We denote
by GH™(Y/W) the F-gauge D such that D,=lim, H™(Y, W,03()) with
F, V and ¢ obtained as the inverse limits of those of GH™(Y/W,). We
remark that the procomplex “lim” W,2%(7) is isomorphic to WQ2'(i, 1) of
Nygaard ([12] III § 3).

Lemma (1.3). The map WnQ}(i)—p>Wn+IQ}(i) is injective and the
canonical map W, . Qv /pW, .27 —05@) is a quasi-isomorphism. So,
in the derived category, we have a distinguished triangle

W2 ()" W, (D) —> 25 D).

This is proved just as the case of WnQ'Y—p> W, . 2y——>0Q5% given in
[11]1 (3.13).

Corollary (1.4). (1) There are long exact sequences

oo >GH™Y|W,)—>GH™(Y|W,,,)—>GH™(Y]k)
— SGH™ (Y| W,)——>GH™ \(Y|W,, ) —>GH™ (Y/k)—>- - -,

c —>GH™Y|W)-L>GH™(Y|W)—>GH™(YK)

— SGH™ N (YJW)-LSGH™ (Y|W)—>GH™ (YK —> - - -.

(2) Each graded component GH™(Y/W), (i € Z) is a finitely generated

W-module.

Here (2) follows from the second exact sequence in (1).

Now we give the definition of an F-gauge of Hodge-Witt. We say
that an interval 7in R is integral if any endpoint of 7 is an integer. (The
intervals [r, o) and (r, oo) for re Z are integral as they have unique
endpoint r.)

Definition (1.5). Let I be a closed integral interval. As in [17] II 2.1
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(ii), we say that an F-gauge D is of level I if F: D,—D,,, is an isomorphism
for any i =sup (I) and V: D,—D,_, is an isomorphism for any i <inf (7).

Definition (1.6). We say that an F-gauge D is of Hodge-Witt if the
following two conditions are satisfied.

(1.6.1) Each D, (i ¢ Z) is a W-module of finite type.

(1.6.2) As an F-gauge, D is isomorphic to the direct sum of a finite
family of F-gauges each of whose members is of level [i, i4-1] for some
i € Z (i may depend on each member).

We denote by FG, » the full subcategory of FG, consisting of all F-
gauges of Hodge-Witt. This subcategory has the following nice properties.

Proposition (1.7). (1) If D and D’ are F-gauges of Hodge-Witt and
h: D—D’ is a homomorphism of F-gauges, the F-gauges Ker(h) and
Coker (h) are F-gauges of Hodge-Witt.

(2) Let 0—>D'—D—D"—0 be an exact sequence of F-gauges and
assume that D’ and D" are of Hodge-Witt. Then D is of Hodge-Witt.

Corollary (1.8). The category FGy, uy is abelian.

For the proof of (1.7), we give some preliminaries.

Definition (1.9). A Dieudonné module over k is a W-module L
having a ¢-linear homomorphism F: L—L and a ¢~*-linear homomorphism

V: L—L such that Fo V=V o F=p.
To a Dieudonné module L, we associate an F-gauge D as follows:

D,=L ifi<0, D,=L® ifix=]l,

F:D,—D,,,is p: L—L if i<0 (resp. is F; L—»L(‘” if i=0, resp.
is the identity map L— L@ if i >0),

V: D,,,—>D, is the identity map L—>L if i<<0
(resp. is V: L —L if i=0, resp. is p: L9— L if i >0),

p: D,——D_ is the identity map L —>L.
We see easily ‘

"Lemma (1.10). The above correspondence induces an equivalence be-
tween the category of Dieudonné modules over k and the category of F-gauges
over k of level [0, 1].

By the theory of Dieudonné modules (cf. [5] Ch. III for example), we
have
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Corollary (1.11). Let D be an F-gauge of Hodge-Witt. Then, D has
a direct decomposition in FG,

(1.11.1) Dz(@ZDEi])@(.C_DZ Dins+1)

such that for each i ¢ Z, D'l is an F-gauge of level [f, i] and the translation
D@D [1] is the F-gauge corresponding to a Dieudonné module L (under
the correspondence (1.10)) such that F: L—L and V: L—L are topologi-
cally nilpotent for the p-adic topology. (The translation D[m] of an E-
gauge D is defined in the evident way.)

Definition (1.12). Let D be an F-gauge of Hodge-Witt, and let 7 be
an integral interval which need not be closed. We say that D is of level 1
if D has a direct decomposition as (1.11.1) such that D"} =0 unless i € I
and D% =0 unless (i, i+ 1)L

By (1.11), for a closed integral interval, the definition (1.12) coincides
with (1.5).

Lemma (1.13). Let I be an integral interval and J a closed integral
interval such that INJ=¢. Let D be an F-gauge of Hodge-Witt of level I
such that each D, is of finite length over W. On the other hand, let D’ be an
F-gauge of level J. Then

Hom (D, D’)=(0), Hom (D’, D)=(0),
Ext' (D, D")=(0), Ext' (D', D)=(0).

Here Hom and Ext' are taken with respect to the abelian category FG,.

Proof. By translation and by the theory of Dieudonné modules, it
suffices to consider the following two cases.

(1) I=[0,0].

(2) I= (0, 1) and the Dieudonné module corresponding to D satisfies
F=V=0.

In these cases, the proof of Hom =(0) is straightforward, and so we
consider the proof of Ext'=(0). We give here the proof of Ext! (D, D)=
(0) assuming I=(0, 1), J==[1, oo) and assuming that the Dieudonné module
corresponding to D satisfies F=¥V=0. The proofs for the other cases are
similar and left to the reader.

Consider an exact sequence of F-gauges

0—>D'——>E—5>D—>0.

Our task is to define a section D—E. The commutative diagram of exact
sequences
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0—>D)—>E-55D,— 50

Vluz Nl Ol
0—>D}—>E,—>D,—>0
&o

shows that g, induces an isomorphism
Ker (V: E,—>E)—>D,.

Let A,: D,—E, be the inverse of this isomorphism. For i>1, let &;:
D,—E, be the composite

Fi1 h -1
D4—D,— EIF >E,.

Let &,,: D,—E,, be the inductive limit of (4,);5, and let 4_,: D__.—E__ be
the unique homomorphism such that ggoh,.=h_.c¢, For i<0, we
define h,: D,—E; to be the composite
by V B by 7
2 5p “3E ZF,

Then, it is easily seen that (4;),.5 is a section of g: E—D.

Corollary (1.14). Let I and J be integral intervals such that INJ=¢
and let D (resp. D) be an F-gauge of Hodge-Witt of level I (resp. J). Then,

Hom (D, D')=(0),  Ext'(D, D')=(0).

Proof. This follows from (1.13) applied to D/p"D and D’/p"D’ (n=1)
by the inverse limit argument.

Corollary (1.15). For an F-gauge D of Hodge-Witt the direct decom-
position (1.11.1) is unique.

Now, Proposition (1.7) is a consequence of (1.14).

Theorem (1.16). Let Y be a smooth proper variety over k. Then the
following four conditions are equivalent.

(i) Y is of Hodge-Witt.

(ii) The F-gauges GH™(Y/k) are of Hodge-Witt for all m.

(iii) The F-gauges GH™(Y|W.,) are of Hodge-Witt for all m and n.

(iv) The F-gauges GH™(Y/W) are of Hodge-Witt for all m.

Proof. Forgq,re Z, H(Y, WQ%) (resp. H(Y, WQ%[p) where WQ7%/p
= WQ%/pW Q%) is a Diendonné module with the usual operators F and V.
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By writting the corresponding F-gauge (1.10) by D, we define A%" (resp.
B%") to be the translation D[—r]. By the definitions of GH™(Y/W) and
GH™(Y/k), and by (1.3), we have spectral sequences

(1.17.1) EDt=Ap"—>GH*(Y/W)
(1.17.2) Ept=By —>GH*(Y/k).

Assume now that Y is of Hodge-Witt. From the fact that the slope
spectral sequence of Y degenerates, it is easily deduced that the spectral
sequence (1.17.1) degenerates. Consequently, in FG,, GH™(Y/W) has a
filtration whose graded quotients are isomorphic to 4™ ¢ (0<g<m). By
(1.7) (2), this shows that GH™(Y/ W) is of Hodge-Witt. Next, the equiva-
lence (ii)&(iii) and the implication (iv)=>(ii) follow from (1.4) and (1.7).

Finally we prove (ii))=(i). To prove that HY(Y, WQ7%) are of finite
type for all ¢ and r (i.e. that Y is of Hodge-Witt), it is sufficient to show
that HY(Y, WQ%/p) are finite dimensional over k for all ¢ and r. Let
WQ%(i) be the (degree =r)-part of W23 (i) (so, the degree j part of
W Q%" (i) is that of WQ3(0) if j=r, and is zero if j<r). Let B%¥=" be the
F-gauge whose i-th graded component is H{Y, WQ%"(i)/p) and whose F,
V and ¢ are defined just as in the definition of GH? (Y/W). Then, B%="
is of level [r, o0), and we have a long exact sequence

‘e ____,Bg,»zwl >By=" BY" \B%H,zrﬂ_). ...

We prove the following statements by induction on .
(S,) B%=" are of Hodge-Witt for all q.
(S7) B%T are of Hodge-Witt for all q.

Note that (S7) is sufficient for the proof of the finiteness of H{Y, W Q% /p).
By assumption, (S;) is true. We prove that (S,) implies (S,,,) and (S}).
Let BL="=P®Q be the direct decomposition such that P? (resp. Q9 is
of level [r4-1, o) (resp. [r, r+1)).

Claim (1.17.3). The image of B%="*'—B%=" coincides with P

Indeed, the composite Bg;g'+1—>B§;2’Eﬂqu is zero by (1.13), and

hence it is sufficient for the proof of (1.17.3) to show the composite P?—
B%2"—B%" is zero. The graded k-module @®,.,(B%"),/V*(B%7), is a
quotient F-gauge of B%”, and is of Hodge-Witt of level [r, r4-1). Since
each (B¢"),/V"(B%"), is finite dimensional over k and (B%"),=lim, (B%"),/
V*(B%");, the vanishing of P?—B%" follows from (1.13).

Now, by (1.17.3) we have an exact sequence of F-gauges

(1174) 0—>Q*——>BY"—>BLLETH_,pari__5(),
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Consider the following diagram of exact sequences induced by the maps
V of the F-gauges in (1.17.4)

(1.17.5)
0'_—)(Qq)r+ 1____)Hq(Y, W‘Q;/p)*__)(B%+1,;r+1)7+1____)(Pq+1)7+1_>0
| 4 N

0—> (@), —>HY(Y, WQ3[p)—> (B™="*), —> (P**), —>0.

Since (P?*'), (resp. (Q9);) has the same finite dimension for any i (this is a
property of an F-gauge of Hodge-Witt annihilated by p), one sees from
(1.17.5)

dim, Coker (V)=dim, Ker (¥), where V is as in (1.17.5).

Since HY(Y, W27%/p) is a module of finite type over the non-commutative
ring k[[V]], this implies that HY(Y, WQ2%/p) is finite dimensional over k.
Hence B%" is of Hodge-Witt, and by (1.7) and (1.17.4), we see that B2+
is also of Hodge-Witt.

§2. Filtered Dieudonné module of Hodge-Witt

(2.1) As in Fontaine-Laffaille [9], by a filtered Dieudonné module
over W, we mean a W-module M endowed with the following structures.

(2.1.1) A decreasing filtration (#M?),., by W-submodules such that
M*=0 for i >0 and M?=M for i KO0.

(2.1.2) A family of ¢-linear homomorphisms (¢*: M*—>M),., such
that for each 7, the restriction of ¢* to M**! coincides with pp**'.

As in Winterberger [14], we denote by MFy, ., the category of filtered
Dieudonné modules over W satisfying the following conditions.

(2.1.3) For each i, M*is of finite type over W.

(2.1.4) For each i, M* is a direct summand of M (as a W-sub-
module).

(2.1.5) M=, o'(M").

Then, MFy, ., is an abelian category by [14] 1.4.1.

The contents of this section is as follows. First, we shall show that
if X is a projective smooth scheme over W, and if m<p or dim (X)< p,
then the de Rham cohomology HZ%.(X) has a structure of an object of
MFy, ;. (This fact was proved in Fontaine [8] assuming that H}(X) is
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torsion free.) Next we shall define a full subcategory MFy; 5y of MFy; ,,
consisting of objects of Hodge-Witt, and we prove that if dim (X)<p,
H7o(X) are of Hodge-Witt for all m if and only if X®,, k is of Hodge-
Witt (See (2.15)).

(2.2) We begin with the study of the relation between filtered
Dieudonné modules and F-gauges. Let MFj, ,, be the following category.
An object D of MFi, ,, is an F-gauge over k endowed with a W-sub-
module D* of D, for each i € Z satisfying the following conditions (2.2.1)-
(2.2.4).

(2.2.1) Each D, is of finite type over W.

(2.2.2) There are integers m, n such that the F-gauge D is of level
in [m, n] and such that D*=D, if i<m and D*=0if i >n.

(2.2.3) V(D)D" for any i
(2.2.4) The sequence

oV i
0—>D'— 5D, XD D50

is exact.
Note that the condition (2.2.4) is equivalent to the exactness of

(¥, (F,—1
225 0—0-"p eop®p Lo

The morphism in MF7, ,, is defined in the evident way.
Lemma (2.3). The two categories MFy, ,, and MF7, ., are equivalent.

The definition of the equivalence is the following. For an object M
of MFy, ,;, we define the corresponding object D of MF4, ,, as follows.
Let D'=M for all i. For iO0, let D,=M, F: D,—D,,, the multiplica-
tion by p, and V: D,—D,_, the identity map. We proceed by induction
on i. Assume that D,_, and the inclusion D*"*CD,_, are already defined.
Then, D, is defined as the push out

Mi C}Mi—l_:Di—l CEDi_l

p

and the map F: D,_,—D, and the inclusion Di—C>Di are defined as the
dotted arrows in this diagram. The map V: D,—D,_, is defined to be the
unique homomorphism such that ¥o F=p and such that the composite
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14
maps M*—-D,——>D,_, and M oM =' 5 D,_, coincide. Finally, the
map ¢: D,—D_,, is defined to be the unique homomorphism such that
the composite

u-Ssp, Fp ¢

coincides with ¢’ for any i. By [14] 1.6, ¢ is an isomorphism. It is clear
that D satisfies the conditions (2.2.1)-(2.2.4).
Conversely, for an object D of MF7, ,,, we define the corresponding

filtered Dieudonne modulé M as follows.
) . . Vv’
Let M=D__, M*® the image of the composite DiC——>Di—1>D_w,

and let ¢*; M*— M be the composite

W ol
w2 pF%p ?p

To see that M is an object of MFy, ,,, the only non-trivial thing is that
M* is a direct summand of M. To show this, it suffices to prove that the
maps Mp"M*—M**/p"M*~! are injective for all n==1 ([14] 1.5.3), and
so it suffices to show the injectivity of V: D/p"D‘*—D,_,/p"D,_,. Let T,
be the kernel of this map. Then, by (2.2.5), we have an exact sequence

0——>T,——>D/p"D*—>D,_,/p"D,_®D'[p"D* D,/p"D, 0
from which we obtain
I(Dy[p"D)=I(D;_+/p"D; )+ 1(T)).
Here / means the length over W. However, for i >0 and j €0,
I(Dyfp"D;)=I(D..[p"D.)=I(D_.[p"D_.)=I(D,/p"D)).
Thus we have T, =0 for all i.

(2.4) Let X be a projective smooth scheme over W. We show that
if m<p or if dim (X)< p, the de Rham cohomology groups H%,(X)=
H™X, Q%,w) and H}(X,)=H™X,, 2%,w,) (n=1) have structures of
objects of MFy, ;. Letn=1. Let M=H7%},(X,) and let (M?);., be the
Hodge-filtration on A, i.e. the filtration induced by the spectral sequence

(2.4.1) E7'=HYX,, Q%,w,)==H}(X,).

Assume m<p or dim(X)<p. Then, as in (2.5) (1) below, the map
H™Y, Q%% ,,)—M" is bijective. The homomorphism ¢*: Mé—M (i< p)
is defined to be
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M EHY, 03, ) 2 H™(Y, S )5 B (Y, E, x.5)
(Y=X®,k) with the notations in Ch. I Section 1. (Note M?=0).

Proposition (2.5). Let X be as above and assume that m<p or dim (X)
<p. Letnz=1, Then;

(1) The map H™(Y, 23, ,)— HEx(X,) is injective. Consequently,
the Hodge spectral sequence

Ept=HYX,, Q% w)==>H%x(X,)
(resp. E7'=HYX, Q%)== H% (X))

degenerates if dim (X)<Z p.

(2) With the filtration and with the homomorphisms ¢* defined above
(in the case of HTx(X), we take the inverse limit of the above definition),
H7o(X,) (n=1) and HEx(X) become objects of MFy, ;.

This (2.5) (2) is proved in [8] Section 1 under the assumption that
H#,(X) is torsion free.

(2.6) Let Z be as in Ch. I Section 1, and fix m=>0 and n=1. To
prove (2.5), we give some definitions. Let E{% ,=E, x , and define the
complex E{"% , (r=1) by induction on r, to be the push out

c
—1 —1
IT I ——ESR)
4 :
¥
JEA,,Z ........................ *Eéfzx’,z

(cf. (2.3)). We define an object D of MF7, ,, as follows. For 0<i<p,
let

Dy=H™Y, Ex,z),  D'=H"Y,J%7)

For i<0, let D,=D‘=H7%.(X,). For izp, let D,=H™(EZ%"). The
maps F, ¥ and ¢ of D are defined following the method in the definitions
in (2.3) except that for i>>p, the map F: D,_,—D, (resp. V: D,—D,_) is
defined to be the identity map (resp. to be the multiplication by p) and
that ¢ is defined to be the map induced by f,_,: EZ3! Z~>En, X7+

To see that D is indeed an object of MF7 ,, in the case m<p or
dim (X) < p, it suffices to prove the following (2.6.1) and (2.6.2).

Lemma (2.6.1). Let0<r<p. Then, the map f,: HYE{% 5)—
HYE, z.,) (H*=HYY, )) is an isomorphism for q<r. If dim(X)—1=<r,
it is an isomorphism for any q.
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Lemma (2.6.2). Let r<<p. Then the sequence

0—> H (I "> H™ES )@ H™ I )~ H™(E)—>0
(¢f. (2.2.5)) is exact for m<<p. If dim (X)X p, it is exact for any m.

We first prove that f,: HAE{, ,)—>HYE, ;) is bijective if g<{r and
is injective if g=r, and that it is bijective for any ¢ if dim (X)—1<r. For
this, by Lemma (2.6.3) below, it is sufficient to prove that the map between
cohomology sheaves f,.: #U(ESY, ;)—>H# UE, x,7) is bijective if g<r and is
injective if g=r, and that it is bijective for any ¢ if dim (X)—1<r. This
is a local problem and hence we may assume that X has a frobenius (and
need not be projective). We may also assume n=1. Then, f.: E{"} y—
E, y  is described as

0 0 0 d d
Ef) x=(O0r—>0%—> - —> 00— 500 Q75 .. )

[

Eprx =050 5005505,

So we are reduced to the fact that f; induces an isomorphism Q;—i
HHL2Y) (2] Theorem 8.5).
In the above argument, we used the following

Lemma (2.6.3), Let E=(EY7)y and E'=((E"}7) (s=2) be spectral
sequences and let E—E’ be a morphism of spectral sequences. Fix re Z,
8=2 and assume that E&7—(E"% (i, j € Z) is bijective if i+4j<r and is
injective if i+ j=r. Then Ef—>(E":i, is bijective if i-+-j<r and is injective
ifitj=r.

We next prove (2.6.2) by induction on m. Let C, be the cokernel of
the map Bin (2.6.2). By induction on m, we may assume that « is in-
jective and hence we have

IH™ED)=IH™ET)+I(C).

However, as we have seen above, the map f,_,: HYEP V) —>H™E,) is
injective. Hence

HHME) ZIH B ) =IH BN+ 3, 1(C).

This shows C;=0 for 1 <i<p.

Finally, if 0<g <{p, the above argument shows I(HY(E®))=
I(HY(E,)), and hence the injection f,: HYE®)—HYE,) is an isomorphism.



242 K. Kato

This completes the proofs of (2.6.1) and (2.6.2).
Now, Proposition (2.5) is a consequence of the existence of the object
D of MFi,,,, defined above, and of (2.3).

Remark (2.6.4) (added after I received the preprint [18] and a letter of
Prof. Messing). Proposition (2.5) (1) furnishes an algebraic proof of the
degeneration of the Hodge spectral sequence

E{’q=Hq(I/, Q;/F)—)H;FR(V/F)

for a projective smooth scheme V over a field F of characteristic zero.®
The following is a modification of an argument by Fontaine and Messing
in a letter of Prof. Messing to the author. Take a subring 4 of F which is
of finite type over Z, a projective smooth scheme ¥ over A4 such that V=
V®, F, and a prime number p such that p is a prime element in 4 and
dim (V)<p. It suffices to show that the Hodge spectral sequence for the
scheme V®, A, over A, degenerates. Let k’ be the residue field of 4,
and let k=(k’)*"". Then there is a faithfully flat embedding A4 ,,— W(k),
and hence we are reduced to (2.5) (1).

Definition (2.7). Let X be as in (2.6), and assume m<p or dim (X)
<p. We denote by H%, (X) the W-module H7,(X,) regarded as an
object of MF,, ,; as above.

We next define and study filtered Dieudonné modules of Hodge-Witt.
We give some preliminary definitions and lemmas.

Definition (2.8). Let M be an object of MFy, ,, and let I be a closed
integral interval. We say that M is of level I if M*=M for i<inf(I) and
M*™*=0 for i=sup ().

Definition (2.9). Let G: MF, ,,— FG, be the composite functor

MFw,tfb%))MF;V,tfeFGk where the second arrow is the “forgetful

functor”.
The following (2.10) is proved easily.

Lemma (2.10). Let M be an object of MFy, ,, and let I be a closed
integral interval. Then, M is of level I in the sense of (2.8) if and only if
G(M) is of level I in the sense of (1.5).

Lemma (2.11). Let M be an object of MFy, ,; which is of finite length
over W. Let me Z, and let S be a subobject of G(M) such that S is of level

* Added in proof: Better treatments of this problem have been given by
Fontaine-Messing and Deligne-Illusie.
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(— o0, m] and such that G(M)/S is of level [m, o). Then there exists a
unique subobject L of M in MFy, ,, such that S=G(L).

Proof. The uniqueness follows from the fact that G is a faithful exact
functor between abelian categories.

Let D be the object of MF4, ,, corresponding to M. So, D,=G(M),
and D'=M" Let S*=S; N M* where the intersection is taken in D,. For
the proof of the existence of L, it suffices to show that (S;, S%),. is a sub-
object of M in MF%, ,,. For this, it is sufficient to prove that the sequence

.11.D) 0—>S* V>Si_1 F\Si/Si 0

is exact for any i € Z. First, let i<m. By the surjectivity of F; D, ,—
D,/D* (cf. (2.2.4)), and by the bijectivity of ¥V: D,/S,—D,_,/S,_, which
follows from the condition on the level of G(M)/S, we see that the multi-
plication by p=Fo ¥ on D,/(D*+ ;) is surjective. This proves D,=D‘+
S,. Thus

-
(2.11.2) D!S*=D,/S;=D;_,/S;_;.

Now the exactness of (2.11.1) follows easily from (2.11.2) and (2.2.4).
Next, let i=m+1. By the injectivity of ¥: S*—S,_,, and by the bijectivity

of F: Si_,—g—>Si which follows from the condition on the level of S, we
see that the multiplication by p on S¢ is injective. Hence S?=0 and this
proves the exactness of (2.11.1).

Definition (2.12). Let M be an object of MFy, ,,. We say that M
is of Hodge-Witt if there is a finite sequence of subobjects (M ;))p<i<, I
MFy, ,,; such that

0=M(O)CM(1)C . CM(7)=M

and such that each M;/M,_,, is of level [m;, m;+-1] for some integer m;.
We denote by MFy, 5y the full subcategory of MFy, ,, consisting of
objects of Hodge-Witt.

Proposition (2.13). Let M be an object of MFy ,;. Then, M is of
Hodge-Witt if and only if the F-gauge G(M) is of Hodge-Witt.

Proof. The implication
M € MFW,HW:7A>G(M) € FG]‘;,HW
follows from (1.7) (2) and (2.10). The converse follows from
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Lemma (2.14). Let M be an object of MFy,,,, such that G(M) is of
Hodge-Witt, let m € Z, and let G(M)=S®PT be the direct decomposition in
FG, yw such that S is of level (— oo, m] and T is of level (m, c0). Then,
there exists a unique subobject L of M in MFy, ,, such that S=G(L).

Proof. By (2.11), let L, be the subobject of M/p"M such that G(L,)
=S/p"S in G(M/p"M). Then, L=lim, L, is the unique subobject of M
such that G(L)=S.

Theorem (2.15). Let X be a smooth projective scheme over W, and let
Y=X® k. ‘

(1) Assume m<p or dim(X)ZLp. Then, H}, (X) (see (2.7)) is of
Hodge-Witt if and only if GH™(Y/k) is of Hodge-Witt.

2) Ifdim (X)< p, the following three conditions are equivalent.

(i) Y is of Hodge-Witt.

(ii) HTx(X) are of Hodge-Witt as objects of MFy, ., for all m.

(i) H%p (X) are of Hodge-Witt for all m and n.

By (2.13), (2.15) (1) is a consequence of

Lemma (2.16). Let X be as above and assume m<p or dim (X)< p.
Then

G(Hng,l(X)) =GH™(Y/[k).

Proof. Let r<p and let E{"} , be as in the proof of (2.6). By the
definition of E{7} ,, we have

(2.16.1) 5 @ VY% T DDITY 4.

By using (2.16.1) we obtain a quasi-isomorphism
hy: Ey ——>2y(r)  (0=r<p)
as follows. For 0<i<r, let JU% ,/J5 %5, —0Q%(r) be the map of complexes
whose component of degree ¢ is
TE IRy, 500, R0,, 25,2550,
if 1<, and is zero if >i. Let JI'} ,—~Q3(r) be the map of complexes
whose component of degree ¢ is
nat.

J[r tj@”zl ‘QLZ1 0171@”21 : _——>‘Qt

if # <r, and is the natural map 05,0, 2%,—2% if t>r. The map h, is
defined as the sum of these maps with respect to the identification (2.16.1).
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To see that h, is a quasi-isomorphism, we may assume that X has a
frobenius (and need not be projective). Then, the map A, is described as

0 0 0 d
ECy x=(Or—> @y > Q-5 057 ..

hrl fol fll frl 1l
d d d doC

2y@) =(Opy—>0%—>- - 2% 4o Qs ),

This shows that £, (r € Z) are quasi-isomorphisms and induce G(H% (X))
=GH™Y/k).

Now we prove (2.15) (2). By (1.16) and by (2.15) (1), the condition
(i) is equivalent to the fact that H%, ,(X) are of Hodge-Witt for all m. So
we have (ii)=>(i) and (i)=>(iii). The implication (iii)=>(ii) follows by the
inverse limit argument.

§3. Theory of Fontaine-Laffaille

Let K be the field of fractions of W and K the algebraic closure of K.
In this section, we apply the theory of Fontaine-Laffaille [9] concerning the
functorial correspondence between filtered Dieudonné modules and p-adic
representations of Gal (K/K), to filtered Dieudonné modules of Hodge-
Witt. The definition of their correspondence was modified by Fontaine
and Messing using the crystalline cohomology of Oz/p"O% (see [8] § 3),
and we use this latter definition in the following. Let B,, JI¥, etc. be as in
Ch. I Section 4.

Definition (3.1) ([9] [14D). (1) Let MFy, ;, be the full subcategory of
MF,, ,; consisting of all objects whose underlying W-modules are of finite
length. Let MFY, ,, (resp. MF%, ;) be the full subcategory of MF%, .,
(resp. MF%, ;) consisting of objects of level [0, p—1].

(2) For an object M of MF% ;; and for 0= r<p, let (M) (resp.
A,(M)) be the kernel (resp. cokernel) of the homomorphism

fr—1: Fl" (B.Qw, M)—>B,Qw, M
where # is any integer =1 such that p"M =0,
Fil" (B,Qw, M)=> JPQy, M *CB,Qw, M,
120

and f, is the unique map which coincides with f;®¢"~* on each JI2Q,, M" ¢
(0<i<p). (The existence of f, follows from the fact that JLI/JL+* are
free W,-modules. It is clear that (M) and A,(M) are independent of
the choice of n.)

Since the functors M —» M are exact on the category MFy, ,;, (this is a
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consequence of (2.3)) and since JI/JE+1 are free W,-modules, we see that
the functors M —Fil" (B,®y, M) (n is any integer such that p"M=0) are
exact on MF%, ,,. Consequently,

Lemma (3.2). If 0—D’'—D—D"—0 is an exact sequence in MF¥, ,;,
we have an exact sequence

00— (D")——>4(D)——>,(D")—>4,(D")—>4(D)

——>A,(D")—>0.

(3.3) We recall the classification of simple objects of MFy, ,, in the
case k=Fk established in [9]. For an integer £>1 and for a function i:
Z|hZ—Z, denote by E(h, i) the following object M of MFy, ,,. Asa W-
module, M is the A-dimensional k-vector space with base (e,,)necz/nz- FOr
re Z, M" is the subspace generated by e,’s such that 7,,>r. The map ¢":
M7 M is defined by

€ms1 ifi,=r

elen)= {0 if i,>r.

If the period of i is just £ (i.e. if the map i does not factor through
ZIhZ—Z[W Z for any divisor ' of h different from k), E(h, i) is a simple
object of MFy, ;. If k=k, any simple object of MF,, ,, is isomorphic to
such E(h, i) for a unique (4, ©).

The following proposition is a consequence of [9] Theorem 5.3, and
so we omit the proof.

Proposition (3.4). Let h=1, i a function Z|hZ —Z such that 0<i,<p
forany me Z[hZ, and let 0<r<p—1.

) Ifr<sup, (i), then -, (E(h, i))=0.

@ Ifrzsup, (i), ¥, (E(h, 1)) is an F,vector space of dimension h.
There is a one-to-one correspondence between the set of all (p*—1)-th roots
of —p and the set of all non-zero elements of \r,(E(h, i)) defined by

ar—> > fr i (0(aZ= 2T NRe, € A, (E(h, 1))
meZ/h
(a?"~'= —p, see Ch. 1 Section 4 for the definition of : Oz—>B,.)

Definition (3.5). Let Repy,,, (resp. Repy,;;) be the category of all
Z,-modules of finite type (resp. of finite length) endowed with a continuous
action of Gal (K/K).

By (3.4), D++r(D) (0<r<p—1) are functors MF¥% ,,—Repx.,,.

Definition (3.6). (1) For aninteger #>1, let X,: Gal (K/K,,,)—>(F )"
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be the unique homomorphism (K, denotes the maximal unramified exten-
sion of K) such that X,(g) is the image of g(a)a™' in k for any ge
Gal (K/K,,) and for any (p"— 1)-th root « of any prime element of K.

(2) For h=1 and for a function i: Z/hZ—Z, let S(h, i) be the fol-
lowing object of Repy__..;; S(h,i)=F,, and an element g of Gal(K/K,,)
acts on S(h, i) as the multiplication by

Ap(g)lorpimare et Ttion @ (Fpp)%.

Then, a simple object of Repy, ., is isomorphic to some S(h,i).
Furthermore,

by (3.4) (2) ([9] Theorem 5.3).

Corollary (3.7). Let M be an object of MF%, ,; and let 0<r<p—1.

(1) The canonical map r, _(M)(1)—r, (M) induced by p,.(Og)—B,
(Ch. 1 Section 4) is injective.

(2) Assume k=k, and let T be a simple subquotient of
V(MY —1)[4 (M)1—r). Then T is isomorphic to some S(h, i) such that
inf,, (i,)=0 and sup,, (i,)=r. If M is of Hodge-Witt, T is isomorphic to
S(h, i) such that i,,=r or r—1 for any m and such that i,,=r for some m.

Proposition (3.8). Let h=1, i a function ZIhZ—>Z such that
0<i,<pforany me ZhZ, and let 0<r<p—1. Then;

(D) If r=zsup, (i,) or r<inf, (i,), then A,(E(h,i))=0.

) Ifinf, (i,)<r<sup, (i.), then A.(E(h, 1)) is an infinite group.

Proof. Let E=E(h,i). Assume first r=sup (i,,). Since f,(Fil"*! (B,
®;. E))=0, the image of Fil"*!'(B,Q, E) in 4,(E) is zero. So it suffices to
prove the surjectivity of

fi—1: gr' (B,®; E)—>(B,&Q); E)/Fil"** (B,X)y E).

Here, the groups on the both sides are B,/J7-modules. Since B,/JPP1=
Oz/pOg (Ch. 1 (4.5)), we are reduced to (3.9) below. (To see the sur-
jectivity of f,, use f,(a®z,)=f,_; (@Re,,, (a € J~*"I) and Ch. I (4.5) (3).)

Next assume r<inf(i,). Then, Fil"(B,®, E)=B,Q.E. So, it is
easily seen that for each m, the image of B,®z,, in 4,(E) is contained in the
image of B,®e,,.,. We may assume i, >r for some m (otherwise, i,,=r
for any m and this case is very easy). For this m, f,(B,®z2,)=0 and hence
the image of B,®e,, in 4,(E) is zero. This proves A,(E)=0.

Finally assume inf (i,,) <<r<sup (i,,). Then we find a, b € Z such that
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a<b and i,>r>i,, and such that i,,=r if a<<m<Cb. The composite map

—1
Fil” (B.® E)—>B,®. E—»B//J,
where s is the surjection

2 Xp®2zp—> 3 ()"

mEZ/h a<msb

is the zero map. This shows that A,(E) is infinite.

Lemma (3.9). Let R=C0g/pOy, let M and N be R-modules of finite
type, and let 2 M — N be a surjective additive map such that f(ax)=a"f(x)
(MaeR,Vxe M). Let h: M—N be an R-homomorphism. Then, f+h: M
—N is surjective.

Proof. We may assume M=N=R" and f is the map (x,) ;<.
(D)igicn- Let h: On—0% be an Og-linear map which lifts 2. Thus the
morphism of schemes 43— A3 . x=(x,);~(x2);+ A(x) is finite and faith-
fully flat, and hence it induces a surjection Oz—Op between the sets of
O p-rational points. This proves (3.9).

Corollary (3.10). Let M be an object of MF%, ;.

(1) Let0<r<p—1. If A.(M) is not zero, it is an infinite group.

(2) If M is of Hodge-Witt, A (M)=0 for any 0<r<p—1. IfMis
not of Hodge-Witt, there is an integer r such that 0<r<p—1 and such that
A (M) is an infinite group.

Corollary (3.11). Let 0Zr<p—1. Then, the functor +r, is exact on
the full subcategory of MF?%, . consisting of objects of Hodge-Witt.

For an object M of MF?¥, ,, of Hodge-Witt and for 0<r<p—1, let
V(M) =lim - (M/p"M),
which is an object of Repy,, ;.

Proposition (3.12). Let M be an object of MF%, ,, of Hodge-Witt and
let 0r<p—1. Then, there is a p-divisible group I" over W without multi-
plicative part such that the Tate module T(I") satisfies

Q,Qz, T(IN=Q,Qz, ¥ (M)/(Y- . (M)1))
as Q,[Gal (K/K)]-modules.

Proof. By (2.14) and (3.4), we may assume that the F-gauge corre-
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sponding to M is of level (r—1, r]. Let M{r] be the translation (defined
by (M[r])!=M*" etc.) of M and let N be the object S#om (M[r], W) of
MFy ., (cf. [14] 1.7). We may assume p==2. Then, N corresponds to a
p-divisible group I" over W via the contravariant functor ILM of [9] Sec-
tion 9. Since the F-gauge G(N) is of level {0, 1), I" has no multiplicative
part. By [9]9.12 and [8] 3.8, we have

Q,Qv-(M)=Hom,r, (N, Q,Qlim B)=Q,®T(I')
where Hom,, ., means homomorphisms of “filtered modules™ in the sense
of [6].
§4. Cohomology of the sheaf of p-adic vanishing cycles

In this section, X denotes a projective smooth scheme over W, Let
K be the field of fractions of W, and K the algebraic closure of K. Let
Y=XQ,k, Y=Y®,.k, - -- etc. be as in Ch. I Section 4.

Lemma (4.1). Assume that m<p or dim (X)) <p, and let r<p. Then
we have an exact sequence

The author learned this type of result from Fontaine and Messing
(who considered the syntomic cohomology H™(X,,,, S©)).

Proof. By Ch. 1 (4.6), there is a spectral sequence
Bt =TS OQH (X, Q)=>HH(T, J1))

which degenerates at E7 %! (s=>1, £=0) by (2.5). From this, we see that
the canonical maps

JHQH™Y, JTz)—H™Y, JTY). (OZi<r)

induce an isomorphism

Fil" (B,@H 3,,(X)——>H"(T, IV}
So (4.1) follows from the commutative diagram

. r—1

Fil" (B,@H 3 11X )25 B,@H ,,(X)
i z
H™Y, JU ) ———>H™Y, E, x).

By (4.1) and (3.10), we obtain
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Lemma (4.2). Assume that m< p or dim (X)<p. Then the follow-
ing two conditions are equivalent.

(4.2.1) The F-gauge GH™'(Y/k) is of Hodge-Witt.

(4.2.2) For any r such that 0<r<p—1, H™Y, &\(r)z) are finite
groups.

Furthermore, if GH™ (Y/k) is of Hodge-Witt, we have
H™Y, & (r) ) =¥ (HE (X))

Theorem (4.3). Assume m<p—1 or dim (X)<p, and assume that
GH™(Y]k) and GH™ '(Y[k) are of Hodge-Witt. Let r<p—1 and n=1.
Then;

(1) The group H™ (Y, M?) is finite and there is an exact sequence

00—, (HE 2, X))V ——>Y(HEp o X))—>H™ (Y, M7)—0.

(2) Let T be a simple subquotient of the Gal (K/K,,)-module H™ (Y,
M) (—r). Then T is isomorphic to S(h, i) (cf. (3.6)) for some h=1 and i:
ZIhZ —Z such that i,,=r or r—1 for any m, and such that i,,=r for some
m.

(3) There is a p-divisible group I" over W without multiplicative part
such that the Tate module T,(I") of I" satisfies

Q,QT,(IN=Q,@lim H""(Y, M})

as Q,[Gal (K/K)}-modules. In particular, for any simple subquotient T of
the Q,[Gal (K/K)]-module Q,Qlim, H™ (Y, M;), T has a Hodge-Tate
decomposition of the form

CRT=Ci®C,(1)  with i>0.

Indeed, (1) follows from (4.2) and Ch. I (4.4). Next (2) (resp. (3))
follows from (1) and (3.7) (resp. (3.12)).

Theorem (4.4). Assume dim (X)<p—1. Then the following condi-
tions are equivalent.

(1) Y is of Hodge-Witt.

(ii) HYY, M}) are finite for any q and r.

(i) HYY, M) are finite for any q, r and n.

(iv) The spectral sequence

Efr=HY, M{)(—r)==>H*(Xx, Z|pZ)

degenerates.
(V) The spectral sequence
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Egm=HY(Y, Mi)(—r)=—=>H*(Xz, ZIp"Z)

degenerates for any n.

Indeed, the implication (i)=>(v) follows from (4.3) (2). Note M7=0

if r=p—1, by the assumption dim (Xz)<p—1. The implications (v)=
(ii))=(ii) and (v)=(iv)=>(ii) are easy by using the finiteness of H*(Xg,
Z{p"Z). Finally the implication (ii)=»(i) follows from (4.2) and Ch. I (4.4).
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