§ 1. Introduction

In [3], Gromov introduced the notion of the bounded cohomology $H^b_\partial(M, \mathbb{R})$ of a manifold M. This is the cohomology of the complex of singular cochains ϕ which have the property:

There exists a constant c such that $|\phi(\sigma)| < c$ for any singular simplex σ.

Let S be a closed oriented surface of genus ≥ 2. In [1] and [5], it is shown that $H^3_b(S, \mathbb{R})$ is infinitely generated.

In this paper, we shall show

Theorem 1. $H^3_b(S, \mathbb{R})$ is infinitely generated.

Our method is an application of Thurston's theory of pleated (un-crumpled) surfaces in hyperbolic 3-manifolds ([7]).

§ 2. A construction of elements of $H^3_b(S, \mathbb{R})$

For a convenience, we choose and fix a complete hyperbolic structure on S.

Let f be a pseudo Anosov diffeomorphism of S. Let M_f be the mapping torus of f. It is the identification space obtained from $S \times [0, 1]$ by equivalence relation $(x, 0) \sim (f(x), 1)$ ($x \in S$). M_f admits a complete hyperbolic structure which is unique up to isometry ([6]). The projection onto the second factor $S \times [0, 1] \to [0, 1]$ induces a fibering $p: M_f \to S^1$. Let \tilde{M}_f be the infinite cyclic regular covering space of M_f, defined by the pull-back by p of $e: \mathbb{R} \to S^1$, where $e(t) = \exp 2\pi \sqrt{-1} t$, $t \in \mathbb{R}$. The hyperbolic structure on M_f can be lifted to the hyperbolic structure on \tilde{M}_f. There is a natural inclusion $S \times [0, 1] \subset \tilde{M}_f$, and let $j: S \to \tilde{M}_f$ be the embedding defined by $j(x) = (x, 0) \in S \times [0, 1] \subset \tilde{M}_f$.

Let Δ be the standard 3-simplex in \mathbb{R}^4. Let $\sigma: \Delta \to S$ be a singular 3-simplex of S. Then $j\sigma: \Delta \to \tilde{M}_f$ is a singular 3-simplex of \tilde{M}_f. The universal covering space of \tilde{M}_f is isometric to the hyperbolic 3-space H^3.
and there is a covering projection \(q: H^3 \to \tilde{M}_f \). There is a map \(\tilde{\sigma}: \mathcal{A} \to H^3 \) such that \(q \tilde{\sigma} = j\sigma \). Let straight \((j\sigma)\) be the geodesic 3-simplex in \(H^3 \) with the same vertices as \(\tilde{\sigma} \). The isometry class of straight \((j\sigma)\) depends only on \(j\sigma \). We define a singular 3-cochain \(\phi_f \) of \(S \) by

\[
\phi_f(\sigma) = \varepsilon \ \text{vol}(\text{straight}(j\sigma)),
\]

for each 3-simplex \(\sigma \), where \(\text{vol} \) denotes the hyperbolic volume and \(\varepsilon = 1 \) if \(\tilde{\sigma} \) maps \(\mathcal{A} \) into \(H^3 \) orientation preservingly and \(\varepsilon = -1 \) otherwise. Since the volume of geodesic 3-simplices in \(H^3 \) has a finite upper bound ([7]), \(\phi_f \) defines a bounded 3-cocycle of \(S \).

§ 3. Linear independence of \(\phi_f \)

Let \(\mathcal{A} \) be the space of all the geodesic laminations on \(S \) with geometric topology ([7] § 8). \(\mathcal{A} \) is compact. Any homeomorphism of \(S \) induces a homeomorphism of \(\mathcal{A} \). For a pseudo Anosov diffeomorphism \(f \) of \(S \), there are two mutually transverse geodesic laminations \(\lambda^s_f \) and \(\lambda^u_f \) such that they are invariant by \(f \), and for each simple closed geodesic \(\gamma \) on \(S \), \(f^k(\gamma) \to \lambda^s_f \) and \(f^{-k}(\gamma) \to \lambda^u_f \) as \(k \to +\infty \) ([2] [7]). \(\lambda^s_f \) and \(\lambda^u_f \) are called as the stable and the unstable geodesic lamination of \(f \) respectively.

Let \(T \) be a (not simplicial) triangulation of \(S \) such that it contains a simple closed geodesic \(\gamma \) and it has only one vertex lying on \(\gamma \). Let \(\tau_\gamma \) be the Dehn twist along \(\gamma \). Let \(T_n = \tau_\gamma^n T \) be the triangulation of \(S \) which is the image of \(T \) by \(\tau_\gamma^n \) for each non-negative integer \(n \) (\(T_0 = T \)). Let \(T_\infty \) be the ideal triangulation of \(S \) which is the limit of \(T_n \) as \(n \to \infty \).

Let \(c, c_n = \tau_\gamma^n c \) and \(c_\infty = \lim c_n \) be the singular 2-chains of \(S \) associated to \(T, T_n \) and \(T_\infty \) respectively which represent the fundamental class of \(S \).

Since \(f^*_uc_n \) is homologous to \(c_n \), there is a singular 3-chain \(d_n \) such that \(\partial d_n = f^*_uc_n - c_n \). We define a sequence of singular 3-chains of \(S \) by

\[
D_n(f)_k = \sum_{i=k}^{k} f^*_x d_n,
\]

for \(k = 1, 2, \ldots \) and \(n = 0, 1, \ldots, \infty \). Then \(\partial D_n(f)_k = f^{k+1}_x c_n - f^{-k}_x c_n \).

Proposition 1. Let \(f \) and \(g \) be two pseudo Anosov diffeomorphisms of \(S \). Let \(\lambda^s_f, \lambda^u_f, \lambda^s_g \) and \(\lambda^u_g \) be the stable and the unstable geodesic laminations of \(f \) and \(g \) respectively. If none of \(\lambda^s_f \) and \(\lambda^s_g \) coincides with any of \(\lambda^u_f \) and \(\lambda^u_g \), then \(\phi_f \) and \(\phi_g \) are linearly independent in \(H^3_b(S, \mathbb{R}) \).

Proof. Let \(j_f: S \to \tilde{M}_f \) and \(j_g: S \to \tilde{M}_g \) be the embeddings given in Section 2. For each \(n \) and \(k \), the image of the 3-chain \(j_f(D_n(f)_k) \) under the projection \(\tilde{M}_f \to M_f \) gives a singular 3-chain of \(M_f \) representing \((2k+1)\)-times the fundamental class of \(M_f \). Hence we have \(\phi_f(D_n(f)_k) \)
3-dimensional Bounded Cohomology of Surfaces

\[\lim_{k \to \infty} \frac{1}{2k+1} \phi_f(D_\infty(f)_k) = 0. \]

Next we consider \(\phi_f(D_\infty(g)_k) \). Projecting the chain of the ideal geodesic simplices, straight \((j_\delta(D_\infty(g)_k))\), from \(H^3 \) to \(\tilde{M}_f \), we may consider straight \((j_\delta(D_\infty(g)_k))\) as an ideal singular 3-chain of \(\tilde{M}_f \). The boundary, \(\partial \) straight \((j_\delta(D_\infty(g)_k))\), consists of two pleated surfaces \(S_k \) and \(S_{-k} \) which are the straightenings of the ideal triangulations \(g^{k+1}T_\infty \) and \(g^{-k}T_\infty \) of \(S \) in \(\tilde{M}_f \) respectively. The bending locus \(b(S_k) \) (resp. \(b(S_{-k}) \)) of \(S_k \) (resp. \(S_{-k} \)) is the geodesic lamination which is the straightening of the ideal 1-simplices of \(g^{k+1}T_\infty \) (resp. \(g^{-k}T_\infty \)). Since \(T_\infty \) contains a simple closed geodesic \(\gamma \), \(b(S_k) \) (resp. \(b(S_{-k}) \)) converges in \(\Lambda \) to a geodesic lamination \(\lambda_+ \) (resp. \(\lambda_- \)) which contains \(\lambda_\gamma^\pm \) (resp. \(\lambda_\gamma^\mp \)) as \(k \to \infty \). By assumption, none of \(\lambda_+ \) and \(\lambda_- \) contains any of \(\lambda_\gamma^+ \) and \(\lambda_\gamma^- \). By Thurston’s realization theorem of geodesic laminations in \(\tilde{M}_f \) ([7] 9.3.10), there exist two pleated surfaces \(S_+ \) and \(S_- \) in \(\tilde{M}_f \) whose bending laminations are \(\lambda_+ \) and \(\lambda_- \) respectively. Since \(T_\infty \) is an ideal triangulation of \(S \), both of \(S - \lambda_+ \) and \(S - \lambda_- \) consist of finite ideal triangles. Hence \(S_+ \) and \(S_- \) are uniquely determined, and the pleated surfaces \(S_k \) and \(S_{-k} \) converge to \(S_+ \) and \(S_- \) respectively as \(k \to \infty \) ([7] 9.5.6, 7). Therefore \(\phi_f(D_\infty(g)_k) \) converges to the volume of the compact region bounded by \(S_+ \) and \(S_- \) in \(\tilde{M}_f \) as \(k \to \infty \), and it is bounded. Hence,

\[\lim_{k \to \infty} \frac{1}{2k+1} \phi_f(D_\infty(g)_k) = 0. \]

Exchanging \(f \) and \(g \), we have

\[\lim_{k \to \infty} \frac{1}{2k+1} \phi_g(D_\infty(f)_k) = 0 \quad \text{and} \quad \lim_{k \to \infty} \frac{1}{2k+1} \phi_g(D_\infty(g)_k) = \text{vol}(M_g). \]

Now suppose that \(a\phi_f + b\phi_g = 0 \) in \(H^3(S, R) \) for some \(a, b \in R \) and \(ab \neq 0 \). Then \(a\phi_f + b\phi_g = \partial \omega \) for some bounded 2-cochain \(\omega \) of \(S \). For each \(0 \leq n < +\infty \),

\[(a\phi_f + b\phi_g)(D_n(f)_k) = (\partial \omega)(D_n(f)_k) = \omega(f^{k+1}_*c_n) - \omega(f^{-k}_*c_n). \]

As \(\omega \) is bounded and both of \(f^{k+1}_*c_n \) and \(f^{-k}_*c_n \) are sums of a constant number of simplices for each \(k \), it follows

\[\lim_{k \to \infty} \frac{1}{2k+1} (a\phi_f + b\phi_g)(D_n(f)_k) = 0. \]
Since ϕ_f and ϕ_g are continuous cochains, we have

$$\lim_{k \to \infty} \frac{1}{2k+1} (a\phi_f + b\phi_g)(D^k(f)) = 0.$$

Replacing $D^k(f)$ by $D^k(g)$, the same equality holds. However this contradicts to the above facts. q.e.d.

The above proposition can be generalized in straightforward way as follows,

Proposition 2. Let f_1, \ldots, f_m be pseudo Anosov diffeomorphisms of S. If the stable and the unstable geodesic laminations of f_1, \ldots, f_m are all distinct from each other, then $\phi_{f_1}, \ldots, \phi_{f_m}$ are linearly independent in $H^1(S, \mathbb{R})$.

Now let α and β be two simple closed curves on S such that $S-(\alpha \cup \beta)$ is a disjoint union of open 2-discs. Then $f_m^m = \tau^m_{\alpha} \beta^{-m}$ is a pseudo Anosov diffeomorphism of S for each positive integer m ([8]). In [4], Masur calculates the stable and unstable geodesic laminations λ^s_m and λ^u_m of f_m (in terms of measured foliations and quadratic differentials), and it is shown that $\lambda^s_m \to \alpha$ and $\lambda^u_m \to \beta$ as $m \to \infty$. Hence we may choose an infinite family $\{f_m\}$ of pseudo Anosov diffeomorphisms such that each finite subset of $\{f_m\}$ satisfies the condition of Proposition 2. This proves Theorem 1.

References

