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Stiefel-Whitney Homology Classes
and Riemann-Roch Formula

Akinori Matsui and Hajime Sato

§ 1. Introduction

In this note, we give a Riemann-Roch type theorem for certain maps
between Euler spaces. These are the cases where Halperin’s conjecture
holds, although it is not true in general [6].

Let X be a locally compact n-dimensional polyhedron. For a point
x in X, let X(X, X—x) denote the Euler number of the pair (X, X—Xx).
The polyhedron X is called a mod 2 Euler space or simply an Euler space
if for each x in X, 2(X, X—x)=1 (mod 2) (Halperin and Toledo [3]).

Let K’ denote the barycentric subdivision of a triangulation K of a
polyhedron X. If X is an Euler space, the sum of all k-simplexes in K’ is
a mod 2 cycle and defines an element s5,(X) in H,(X; Z,) (cf. [3]). The
element s,(X) is called the k-th Stiefel-Whitney homology class of X.

In the book [2], Fulton and MacPherson defined the notion of a
homologically normally nonsingular map. As an analogy to the Riemann-
Roch formula for singular algebraic spaces, they introduced Halperin’s
conjecture (|2, p. 112]):

If ¢: X—Y is a homologically normally nonsingular map of Euler
spaces, then

$:(X) =5, (¥Y) N (WNy) ™,

where (WN,)™* is the inverse of the cohomology Stiefel-Whitney class of the
normal space of ¢ defined by Thom’s formula using the Steenrod squares.

If Y is an Euclidean space and ¢ is an embedding, then ¢ is homolo-
gically normally nonsingular if and only if X is a Z,-homology manifold.
In this case, Halperin’s conjecture is equal to the equation

5. (X)=[XTNw*(X),
which is proved by Taylor [8], Veljan [9] and Matsui [4].
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But we have shown in [6] that, in general, there are many examples
where the conjecture does not hold.
The main result of this paper is the following.

Theorem. Let X and Y be Euler spaces and ¢: X —Y be an embedding
such that it has a normal block bundle v (Rourke-Sanderson [T]). Then the
Sollowing Riemann-Roch theorem holds,

5:(X)=¢'s,(Y) N w)™
where w(v)~! is the inverse of the Stiefel-Whitney cohomology classes of v.

A similar result is announced in [2, p. 67]. By virtue of a result of
Taylor [8], this theorem will probably hold when ¢ has a normal Z,-
homology bundle.

In this paper, homologies and cohomologies are always with Z,
coefficient.

§ 2. Characterization of Stiefel-Whitney homology class

In this section, we give a characterization of the Stiefel-Whitney
homology classes of an Euler space. Let X be an Fuler space embedded
in a Euclidean space R*. Let R be a regular neighborhood of X, R its
boundary, and ¢: X—R be the embedding. Let N (R, R) denote the
unoriented differentiable bordism group (cf. [1]). We define a homomor-
phism .

e;: Ny(R, R)—>Z,

as follows ([4, p. 322]).

Let f: (M, 8M)—(R, R) be an element in N,(R, R). Then there exist
a triangulation of M and a PL-embedding g: (M, M )—(R X D?, R X D?),
where D? is the disc of sufficiently large dimension such that g~ f X {0}
and (¢ X id)(X X D?) is block transverse to g by Transversality Theorem
[4]. Put Z=(¢Xxid)(X XD?)Ng(M). Then Z jis an Euler space. We
define e,(f, M) to be the modulo 2 Euler number e(Z) of Z. This defini-
tion is independent of the choice of the representative (f, M) by Transver-
sality Theorem.

Proposition 1 (characterization of Stiefel-Whitney homology class).
Let X be an Euler space embedded in a Euclidean space R*. Let R be a
regular neighborhood of X in R*, and let ¢: X—R be the embedding. Then
the Stiefel-Whitney homology class s, (X) is the unique homology class in
H,(X) satisfying the relation
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CIRIN) ¢4 (54(XD), LM N wH(M))) =ey(f, M),
Sor any (f, M) € N (R, R).

This is a conjunction of Lemma 6 and Lemma 7 of Matsui [5]. In
[4], this is proved when X is an Euler space satisfying the Poincaré duality.
In Veljan [9], this is proved when X is an Euler manifold, a little narrower
category.

§ 3. Characteristic classes of block bundles

Let & be a g-block bundle over a complex K [7]. In this paper, we
write

§=(E, B, ¢)a

where B=|K/|, FE is the total space and ¢: B—FE is the inclusion. We
write E for the total space of the (g— 1)-sphere bundle of E. Let B,(E, E)
denote the unoriented bordism group consisting of PL-maps from Euler
space pairs to (E, E) (see [4]). We will define a homomorphism

e.: B, (E, E)Y—>2Z,

as follows ([4, p. 326]).

Let R be a regular neighborhood of the polyhedron B embedded in
Re, for « sufficiently large. Let i: B=—>R be the inclusion and let p: R—~B
be the retraction. Let p*&é=(p*E, R, ¢5) be the induced bundle. For
each (g, N) € B (E, E), we can choose an embedding /: (¥, 6N)—(p*E,
p*E) such that A~iog. By Transversality theorem, we can assume that
R(N) is block transverse to ¢,: R—p*E. We define e,(g, N) to be the
modulo 2 Euler number e(Z) of the intersection Z=¢z(R) N A(N). This
is independent of the choice of (g, N) by Transversality Theorem.

Let U, e HYE, E) be the Thom class of & and let T#: H*(B)—
H**%(E, E) be the Thom isomorphism defined by T#(x)=(¢*)"'(x) U U..

Proposition 2. Let £=(E, B, ¢) be a block bundle over a polyhedron
B.  Then the inverse Stiefel-Whitney cohomology class w(§)™" is the unique
cohomology class in H*(B) satisfying the relation

<T:=k(w($)_1)a g*(s*(N)» :ef(g’ N)’
for any (g, N) e B(E, E).

Proof. There exists a unique cohomology class @ in H*(E, E) satis-
fying the relation (@, g.(s,(N))>=e.(g, N) for any (g, N) e B,(E, E)
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([4, Lemma 3.2]). Since the natural map ¢: N, (E, E)->H,(E, E) defined
by o(g, N)=>, g4+5.(N) is surjective, we can suppose that N is a triangula-
tion of a smooth manifold. Then, as in the definition of e,, we can
choose an embedding 4: (N, O0N)—(p*E, p*E), h=~iog, such that Z=
éx(R)NA(N) is a PL-manifold. Since s,(A(N))=[HN)]INw*(A(N)), we
have

CTEWE)™), g4(sx(N)))
=T 5:W(Pp*E)™), hy(s4.(N))>
={#H) ' W(p*) ™) U Upee, [N Nw*(A(N)))
={(¢H) ' w(p*e) ) Uw*(A(N)), [H(N)IN Upee)
=R W(p*) ) Uw*(h(N), (=)4[Z])
={wH(2), [Z])
=e(Z),

which completes the proof.

Remark. When £ is a vector bundle, Proposition 2 is proved in [9],
[4] using the axioms of Stiefel-Whitney cohomology classes. The proposi-
tion will still hold for Z,-homology bundles by a result of Taylor [8].

As a special case of Proposition 2, we have the following.

Corollary 3. Let £ =(E, B, ¢) be a block bundle. If the base space B
is an Euler space, then

(TEW(E)™), s4.(E)y=e(B).

Proof. Since B is an Euler space, so is E. Thus (id, E) is an element
of B,(E, E). Leti: B=—>R be the inclusion. The composition 7o id is
already transverse to ¢,. Consequently the intersection Z is equal to B.
Thus e,(id, E)=e(B), which completes the proof.

§ 4. Proof of Theorem

In order to prove the theorem, it is sufficient to consider the case
when Y itself is the total space of a block bundle v=(Y, X, ¢) over an
Euler space X. Then Y is an Euler space with boundary. The definition
of an Euler space with boundary is a natural extension of the definition
of an Fuler space (without boundary), and is given, e.g., in [4]. The
Stiefel-Whitney homology class s.,(Y) is an element in H,(Y,3Y). Let
Jr: Y—R2 be an embedding for « sufficiently large and let R be a relative
regular neighborhood of (Y, 3Y) in (R%,3R%). Put R=0R. We may
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suppose that R is also a regular neighborhood of X in R%. We regard
as an embedding

¥: (Y, 0Y)—>(R, R).
Put
W=($)""(sx(N)N V)N wk)" e H(X),

where U, is the Thom class of the bundle v as before. Since ¢'s, (Y)=
(4) (55(Y)N U,), it suffices to show that s, (X)=W. By Proposition 1,
this is equivalent to prove that

CCRIN) (W) W, LM TN W (M) =ey(f, M),

for any (f;, M) e N, (R, R). Note that W =(¢,) (s, (V)N T,(wk)™Y). We
may assume that f: (M, 9M)—(R, R) is an embedding which is already
block transverse to {¥#(X) and y(Y). Let £¢=(E, M, f;) be the normal
block bundle of M in R such that the restriction &|;, is the normal block
bundle of M in R. Here f: M —E is equal to f with the restricted target
space. Put

Z=f(M)NX, Y:=YNE.
Then Y is the total space of the Whitney sum &|,Bv|, over Z. We write
Yrg: Yp——>E, Je: Yg—>Y

for the inclusions. Let E be the boundary of E and let g: R—E/E be the
Thom map defined by collapsing R—E to the one point {E} in E/E.
Since w*{M)=w(&)"*, we have the following;
CURIN) (W) W, fLIM 1N w*(M)))

={HRINY W) WU wE) ™, [M])

={RIN) (W@ WUWE) ™, (fH)(EL U)

=UDHRIN) W W UwOHUTU,, [ET)

=D WE U U, [EINUH T *IRIN) () W

=D WE U U, 4.(v @) W)

=LTEWE) ™, (@) NTFW(E) ™))

=(TEWE) ™), Wp)uls:(Ye) N FETHWE) ™))

=PETEWE) U JETHwR) ™), 54(Ye))

=T ,01pWE DY) ™, 5.(Ye))

=e(Z) by Corollary 3.

The proof is complete.
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