On the Resolution of the Hypersurface Singularities

Mutsuo Oka

Dedicated to Professor M. Nakaoka on his 60th birthday

§ 1. Introduction

Let $f\left(z_{0}, \cdots, z_{n}\right)$ be a germ of an analytic function at the origin such that $f(0)=0$ and f has an isolated critical point at the origin. We assume that the Newton boundary of f is non-degenerate. Let V be the germ of the hypersurface $f^{-1}(0)$ at the origin. Let $\Gamma^{*}(f)$ be the dual Newton diagram and let Σ^{*} be a simplicial subdivision. It is well-known that there is a canonical resolution $\pi: \tilde{V} \rightarrow V$ which is associated with Σ^{*} ([8]). However the process to get Σ^{*} from $\Gamma^{*}(f)$ is not unique and a "bad" Σ^{*} produces unnecessary exceptional divisors. The purpose of this paper is to study this resolution through a canonical simplicial subdivision.

In Section 3, we will show that there is a canonical way to get a simplicial subdivision from $\Gamma^{*}(f)$. (Lemma (3.3) and Lemma (3.8))

In Section 4, we will recall the construction of the resolution $\pi: \tilde{V} \rightarrow V$ which is associated with a given simplicial subdivision Σ^{*}.

In Section 5, we will study the topology of the exceptional divisors using the canonical stratifications.

In Section 6, we will show the following: Assume that $n=2$. Then the resolution graph Γ of the resolution of V is obtained by a canonical surgery from $S_{2} \Gamma^{*}(f)$ (= the two-skeleton of $\Gamma^{*}(f)$ which is considered as a graph by a plane section). Let P be a vertex of Σ^{*} such that $\Delta(P)$ is a two-dimensional face of $\Gamma(f)$. Then the genus of the exceptional divisor $E(P)$ is equal to the number of the integral points in the interior of $\Delta(P)$. The other exceptional divisors are rational. (See Theorem (6.1) of $\S 6$.)

In Section 7, we will study the fundamental group of the exceptional divisor $E(P)$. Assume that $n>2$ and $\Delta(P)$ is an n-simplex. Then we will show that $\pi_{1}(E(P))$ is a finite cyclic group and its order is determined by $\Gamma^{*}(f)$ (Theorem (7.3)).

In Section 8, we will study the divisors of the exceptional divisor $E(P)$ in the case of $n=3$.

In Section 9, we will study the canonical divisors of the resolution space \tilde{V} and of the exceptional divisors $E(P)$. (Theorem (9.1) and Theorem (9.2))

This paper consists of the following sections:
§2. Newton boundary and the dual Newton diagram.
§3. Canonical simplicial subdivison.
§4. Resolution of V.
§ 5. Topology of the exceptional divisors.
§6. Surface singularities.
$\S 7$. Fundamental group of $E(P)$.
§8. Exceptional divisors of the three dimensional singularities.
§9. Canonical divisors.

§ 2. Newton boundary and the dual Newton diagram

Let $f\left(z_{0}, \cdots, z_{n}\right)=\sum_{\nu} a_{2} z^{\nu}$ be the the Taylor expansion of f where $z^{\nu}=$ $z_{0}^{\nu_{0}} \cdots z_{n}^{\nu_{n}}$ as usual. Recall that the Newton boundary $\Gamma(f)$ is the union of the compact faces of $\Gamma_{+}(f)$ where $\Gamma_{+}(f)$ is the convex hull of the union of the subsets $\nu+\left(R^{+}\right)^{n+1}$ of R^{n+1} for ν such that $a_{\nu} \neq 0$. For any (closed) face Δ of $\Gamma(f)$, we associate a polynomial $f_{\Delta}(z)=\sum_{\nu \in \Lambda} a_{\nu} z^{\nu}$. We say that f is non-degenerate on Δ if

$$
\frac{\partial f_{A}}{\partial z_{0}}=\cdots=\frac{\partial f_{\Delta}}{\partial z_{n}}=0
$$

has no solution in $\left(C^{*}\right)^{n+1}$. We say that f is non-degenerate if f is nondegenerate on any face Δ of $\Gamma(f)$ ([9], [16]).

Let N^{+}be the space of positive vectors of the dual space $\hat{R}^{n+1} \cong R^{n+1}$. We denote the vectors in N^{+}by column vectors. For any vector $A=$ ${ }^{t}\left(a_{0}, \cdots, a_{n}\right)$ of N^{+}, we associate the linear function A on $\Gamma_{+}(f)$ which is defined by $A(x)=\sum_{i=0}^{n} a_{i} x_{i}$. Let $d(A)$ be the minimal value of A on $\Gamma_{+}(f)$ and let $\Delta(A)=\left\{x \in \Gamma_{+}(f) ; A(x)=d(A)\right\}$. We introduce an equivalence relation \sim in N^{+}by $A \sim B$ if and only if $\Delta(A)=\Delta(B)$. For any face Δ of dimension k of $\Gamma_{+}(f)$, there is an equivalence class Δ^{*} which is defined by $\Delta^{*}=\left\{A \in N^{+} ; \Delta(A)=\Delta\right\}$. Note that $\operatorname{dim} \Delta^{*}=n-k$. (The cone of Δ^{*} has the dimension $n-k+1$). The collection of Δ^{*} gives a polyhedral decomposition $\Gamma^{*}(f)$ of N^{+}which we call the dual Newton diagram of f. As each cell of $\Gamma^{*}(f)$ is a cone, we identify $\Gamma^{*}(f)$ with its projection on the hyperplane $L=\left\{x_{0}+\cdots+x_{n}=1\right\}$. We may assume that a vertex $P={ }^{t}\left(p_{0}, \cdots, p_{n}\right)$ of $\Gamma^{*}(f)$ is a primitive integral vector. If P is strictly positive, i.e. $p_{i}>0$ for each $i, \Delta(P)$ is a compact face of $\Gamma(f)$.

Example (2.1). Let $f(x, y, z)=x^{4}+y^{4}+z^{4}+x y z$. Then $\Gamma(f)$ has three two-dimensional faces and $\Gamma^{*}(f)$ is the following.

We say that a polyhedral decomposition Σ^{*} of $\Gamma^{*}(f)$ is a simplicial subdivision if the following conditions are satisfied ([8], [20]).
(i) Σ^{*} is a subdivision of $\Gamma^{*}(f)$ by the cones over the simplexes $\sigma=$ (P_{0}, \cdots, P_{k}) where P_{0}, \cdots, P_{k} are primitive integral vectors which can be extended to a basis of Z^{n+1}. The intersection of two simplexes is a simplex. Each boundary of a simplex is a simplex.
(ii) Assume that $\Gamma(f)^{I}$ is non-empty where

$$
\Gamma(f)^{I}=\left\{x \in \Gamma(f) ; x_{i} \neq 0 \text { only if } i \in I\right\}
$$

and I is a subset of $\{0, \cdots, n\}$. Then $\sigma_{I}=\left\{P \in N^{+} ; p_{i}=0\right.$ if i is not in $\left.I\right\}$ is a simplex.

Remark (2.2). We can assume that $\Gamma(f)^{\{i\}}$ is non-empty by adding monomials z_{i}^{N} of sufficiently high degree, if necessary. In this case, the vertices which are not strictly positive are $E_{i}={ }^{t}(0, \cdots, \stackrel{i}{1}, \cdots, 0)(i=0$, \cdots, n).

§3. Canonical simplicial subdivision

Let $P_{i}={ }^{t}\left(p_{0 i}, p_{1 i}, \cdots, p_{n i}\right)(i=1, \cdots, k)$ be given integral vectors of N^{+}. We define a non-negative integer $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)$ by the greatest common divisor of all $k \times k$ minors of the matrix $\left(p_{j i}\right)$ and we call $\operatorname{det}\left(P_{1}\right.$, \cdots, P_{k}) the determinant of P_{1}, \cdots, P_{k}.

Lemma (3.1). Let $A=\left(a_{i j}\right)$ be a unimodular matrix. Then $\operatorname{det}\left(P_{1}\right.$, $\left.\cdots, P_{k}\right)=\operatorname{det}\left(A P_{1}, \cdots, A P_{k}\right)$.

The proof is an easy exercise of linear algebra.

Lemma (3.2). Let P_{1}, \cdots, P_{k} be given integral vectors such that $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)=1$. Then there exist integral vectors P_{k+1}, \cdots, P_{n+1} such that $\operatorname{det}\left(P_{1}, \cdots, P_{n+1}\right)=1$.

Proof. Let M be the subgroup of Z^{n+1} generated by P_{1}, \cdots, P_{k}. Then by the structure theorem of a finitely generated abelian group, there is a subgroup M^{\prime} of rank k such that $M \subset M^{\prime}$ and M^{\prime} is a direct summand of Z^{n+1}. Then the assumption $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)=1$ clearly implies that $M=M^{\prime}$.

(I) Division of $S_{2} \Gamma^{*}(f)$.

Let $P={ }^{t}\left(p_{Q}, \cdots, p_{n}\right)$ and $Q={ }^{t}\left(q_{0}, \cdots, q_{n}\right)$ be given integral vectors of N^{+}.

Lemma (3.3). Let $c=\operatorname{det}(P, Q)$ and assume that $c>1$.
(i) Any integral vector P_{1} on the line segment $\overline{P Q}$ such that $\operatorname{det}\left(P, P_{1}\right)=1$ can be written as $P_{1}=\left(Q+c_{1} P\right) / c$ for some integer $c_{1}>0 . c_{1}$ is unique modulo c.
(ii) There exists a unique c_{1} such that $0<c_{1}<c$.

Proof. By Lemma (3.1) and Lemma (3.2), we may assume that $Q=$ ${ }^{t}(1,0, \cdots, 0)$. Then c is nothing but g.c.d. $\left(p_{1}, \cdots, p_{n}\right)$. Let $P_{1}=\lambda P+$ μQ for $\lambda \geqq 0, \mu \geqq 0$ and assume that P_{1} is an integral vector satisfying $\operatorname{det}\left(P, P_{1}\right)=1$. As $\operatorname{det}\left(P, P_{1}\right)=\mu \operatorname{det}(P, Q)=\mu c=1$, we have $\mu=1 / c$. As P_{1} is an integral vector, $\lambda p_{i} \in Z$ for $i=1, \cdots, n$. This implies that λ can be written as $\lambda=c_{1} / c$ where c_{1} is an integer such that $c_{1} p_{0}+1 \equiv 0$ modulo c. The last equation has a unique solution in $0<c_{1}<c$ as g.c.d. $\left(c, p_{0}\right)=$ g.c.d. $\left(p_{0}, \cdots, p_{n}\right)=1$.

Remark (3.4). By the abuse of language, we say that P_{1} is on the line segment $\overline{P Q}$ if $P_{1}=\lambda P+\mu Q$ for some non-negative numbers λ and μ.

Definition (3.5). Let $\overline{P Q}$ be a line segment of $S_{2} \Gamma^{*}(f)$ (=the twoskeleton of $\left.\Gamma^{*}(f)\right)$. We say that the sequence of primitive integral vectors P_{1}, \cdots, P_{k} is the canonical primitive sequence of $\overline{P Q}$ if the following conditions are satisfied.
(i) If $c=\operatorname{det}(P, Q)>1$, there are non-negative integers $c_{i}(i=0, \cdots, k+1)$ such that

$$
c=c_{0}>c_{1}>\cdots>c_{k}=1>c_{k+1}=0
$$

and

$$
P_{i+1}=\left(Q+c_{i+1} P_{i}\right) / c_{i} \quad(i=0, \cdots, k)\left(P_{0}=P, P_{k+1}=Q\right)
$$

(ii) If $c=1, n=2$ and P and Q are strictly positive, $k=1$ and $P_{1}=P+Q$. (This condition is to have a good resolution.) Otherwise $k=0$.

The existence of the canonical primitive sequence is obvious by Lemma (3.3).

Lemma (3.6). Assume that $c=\operatorname{det}(P, Q)>1$ and let P_{1}, \cdots, P_{k} be the canonical primitive sequence of $\overline{P Q}$. Let c_{i} be as above and let $m_{i}=$ $\left(c_{i-1}+c_{i+1}\right) / c_{i}(i=1, \cdots, k)$. Then each m_{i} is an integer such that $m_{i} \geqq 2$ and

$$
\frac{c}{c_{1}}=m_{1}-\frac{1}{m_{2}-} .
$$

Let $P_{i}={ }^{t}\left(p_{0 i}, \cdots, p_{n i}\right)$. Then

$$
m_{i}=\left(p_{j i-1}+p_{j i+1}\right) / p_{j i} \text { for any } j=0, \cdots, n
$$

Proof. We prove the assertion by the induction on k. Assume that $k=1$. Then $P_{1}=(P+Q) / c$. Thus $m_{1}=(c+0) / c_{1}=c$ and $c=\left(p_{j}+q_{j}\right) / p_{j i}$. Assume that $k>1$. As $P_{1}=\left(Q+c_{1} P\right) / c$ and $P_{2}=\left(Q+c_{2} P_{1}\right) / c_{1}$, we have that

$$
\operatorname{det}\left(P, P_{2}\right)=\operatorname{det}\left(P, Q+c_{2} P_{1}\right) / c_{1}=\operatorname{det}(P, Q)\left(1+c_{2} / c\right) / c_{1}=m_{1} .
$$

Thus m_{1} is an integer and $m_{1} \geqq 2$. As P_{2}, \cdots, P_{k} is the canonical primitive sequence of $\overline{P_{1} Q}$, by the induction's hypothesis $m_{i}(i=2, \cdots, k)$ are integers greater than or equal to 2 and we have

$$
\begin{gathered}
m_{1}-\frac{1}{m_{2}-}=\frac{c+c_{2}}{c_{1}}-\frac{1}{\frac{c_{1}}{c_{2}}}=\frac{c}{c_{1}} \\
\quad-\frac{1}{m_{k}}
\end{gathered}
$$

completing the proof of the first assertion. The second assertion is immediate from the equality;

$$
\left(c_{i-1}+c_{i+1}\right) P_{i}=c_{i}\left(P_{i-1}+P_{i+1}\right) .
$$

Remark (3.7). By the same argument, the assertion of Lemma (3.6)
is true for every primitive sequence P_{1}, \cdots, P_{k} on $\overline{P Q}$ such that $\operatorname{det}\left(P_{i}, P_{i+1}\right)=1$ except that we have $m_{i} \geqq 1$ instead of $m_{i} \geqq 2$. They are canonical if and only if $m_{i} \geqq 2$ for $i=1, \cdots, k$ by the first expression of m_{i}. In particular, P_{k}, \cdots, P_{1} is the canonical primitive sequence of $\overline{Q P}$ if and only if P_{1}, \cdots, P_{k} is the canonical primitive sequence of $P Q$.
(II) Division of $S_{k} \Gamma^{*}(f)(k \geqq 3)$.

Lemma (3.8). Let Δ be a k-simplex with primitive integral vertices P_{i} $(i=0, \cdots, k)$. Assume that $c=\operatorname{det}\left(P_{0}, \cdots, P_{k}\right)>1$ and $\operatorname{det}\left(P_{0}, \cdots, P_{k-1}\right)$ $=1$.
(i) Let R be an integral vector in the triangle Δ such that $\operatorname{det}\left(P_{0}, \cdots\right.$, $\left.P_{k-1}, R\right)=1$. Then we can write

$$
R=\left(c_{0} P_{0}+\cdots+c_{k-1} P_{k-1}+P_{k}\right) / c
$$

for some non-negative integers c_{0}, \cdots, c_{k-1}. They are unique modulo c.
(ii) There exists a unique R such that $0 \leqq c_{i}<c$ for each $i=1, \cdots, k-1$.

Proof. We assume that $R=\sum_{i=0}^{k} d_{i} P_{i}$ for non-negative rational numbers d_{0}, \cdots, d_{k}. As $\operatorname{det}\left(P_{0}, \cdots, P_{k-1}, R\right)=1=c d_{k}$, we have that $d_{k}=1$. As $\operatorname{det}\left(P_{0}, \cdots, R, \cdots, P_{k}\right)$ is an integer and it is equal to $d_{i} c$, we can write $d_{i}=c_{i} / c$ for some non-negative integer and c_{i} is unique modulo c. To prove the existence, we may assume, by Lemma (3.1) and Lemma (3.2), that $P_{0}={ }^{t}(1,0, \cdots, 0), \cdots, P_{k-1}={ }^{t}(0, \cdots, \stackrel{k}{1}, \cdots, 0)$ and $P_{k}={ }^{t}\left(p_{0}, \cdots\right.$, $\left.p_{k}, 0, \cdots, 0\right)$. Then c is nothing but p_{k}. The integrability of R implies

$$
c_{i}+p_{i} \equiv 0 \quad \text { modulo } c \text { for } \quad i=0, \cdots, k-1
$$

Thus there exists a unique c_{i} such that $0 \leqq c_{i}<c$, completing the proof of Lemma (3.8).

Remark (3.9). (i) Note that R divides Δ into $k+1 k$-simplexes ($P_{0} \cdots, R, \cdots, P_{k}$) with the respective determinant c_{0}, \cdots, c_{k-1} and 1 .
(ii) If $\operatorname{det}\left(P_{0}, \cdots, P_{i-1}, P_{i+1}, \cdots, P_{k}\right)<c$, then $c_{i}>0$. In particular, R is not on the $(k-1)$-simplex spanned by $P_{0}, \cdots, P_{i-1}, P_{i+1}, \cdots, P_{k}$.

Proof. Assume that $c_{0}=0$ for brevity's sake. Then $\operatorname{det}\left(P_{1}, \cdots\right.$, $\left.P_{k-1}, R\right)=\operatorname{det}\left(P_{1}, \cdots, P_{k}\right) / c$ which implies that $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)$ is divisible by c. Thus $\operatorname{det}\left(P_{1}, \cdots, P_{k}\right)=c$. In this case, the subdivision of Δ is the cone of the subdivision of $(k-1)$-simplex $\left(P_{1}, \cdots, P_{k}\right)$.
(iii) Assume that $c_{i}>1$. As $\operatorname{det}\left(P_{0}, \cdots, P_{k-1}, R\right)=1$, $\operatorname{det}\left(P_{0}, \cdots, P_{i-1}\right.$, $\left.P_{i+1}, \cdots, P_{k-1}, R\right)=1$. Thus we can apply Lemma (3.8) to the simplex
$\left(P_{0}, \cdots, R, \cdots, P_{k}\right)$ to divide it into smaller simplexes. Therefore by the induction on c we can subdivide Δ into k-simplexes with determinant 1. We call such a subdivision a canonical subdivision of Δ. By (ii), a canonical subdivision is canonical on its faces.

Now we consider the simplicial subdivision of $\Gamma^{*}(f)$. We first subdivide $S_{2} \Gamma^{*}(f)$ by the canonical primitive sequences. Assume that $S_{k-1} \Gamma^{*}(f)$ is subdivided into simplexes with the respective determinant 1. Let ξ be a $(k-1)$-dimensional cell of $S_{k} \Gamma^{*}(f)$. We first subdivide ξ into $(k-1)$-simplexes ξ_{1}, \cdots, ξ_{s} without adding any other vertices. We may assume that this subdivision is compatible with the subdivision of $S_{k-1} \Gamma^{*}(f)$. Assume that $\xi_{1}, \cdots, \xi_{m-1}$ are subdivided into simplexes with the determinant 1 so that they are compatible each other and compatible with the subdivision of $S_{k-1} \Gamma^{*}(f)$. Take ξ_{m}. If a $(k-2)$-dimensional face of Δ has determinant 1 , we apply Lemma (3.8) to subdivide ξ_{m} into simplexes with determinant 1. In this process, no vertices are added on $\xi_{m} \cap$ $S_{k-1} \Gamma^{*}(f)$ by Remark (3.9). We may also assume by Remark (3.9) that this subdivision is compatible with the subdivisions of $\xi_{1}, \cdots, \xi_{m-1}$. If the determinant of every face of ξ_{m} is greater than 1 , we first take a canonical subdivision of a ($k-2$)-face and take the cone subdivision of ξ_{m} and apply Lemma (3.8) to subdivide each of the simplexes. By the induction on m, we can subdivide ξ into simplexes with the determinant 1 . Thus applying this argument to every $(k-1)$-cell of $S_{k} \Gamma^{*}(f)$, we can subdivide $S_{k} I^{*}(f)$ into simplicial complexes which are compatible with the subdivision of $S_{k-1} \Gamma^{*}(f)$.

Remark (3.10). There does not exist a unique way to subdivide a k-cell into k-simplexes. See [8], [15] and [21] for further information.

§ 4. Resolution of V

Let f be an analytic function with an isolated critical point at the origin. We assume that f has a non-degenerate Newton boundary. Let Σ^{*} be a given simplicial subdivision of $\Gamma^{*}(f)$. For each n-simplex $\sigma=$ $\left(P_{0}, \cdots, P_{n}\right)$ where $P_{j}={ }^{t}\left(p_{0_{j}}, \cdots, p_{n_{j}}\right)$, we associate the $(n+1)$-dimensional Euclidean space C_{σ}^{n+1} with the coordinate $y_{\sigma}=\left(y_{\sigma, 0}, \cdots, y_{\sigma, n}\right)$ and the birational mapping $\hat{\pi}_{\sigma}: \boldsymbol{C}_{\sigma}^{n+1} \rightarrow \boldsymbol{C}^{n+1}$ which defined by $\hat{\pi}_{\sigma}\left(y_{\sigma}\right)=\left(z_{0}, \cdots, z_{n}\right)$ and $z_{i}=y_{\sigma, 0}^{p_{i 0}} \cdots y_{\sigma, n}^{p_{i n}}$. By the abuse of the notation, we write $z=\left(y_{\sigma}\right)^{\sigma}$. Let X be the union of C_{σ}^{n+1} for σ which are glued along the images of π_{σ}. Let $\hat{\pi}: X \rightarrow \boldsymbol{C}^{n+1}$ be the projection map and let \tilde{V} be the proper transform of V. It is well known that $\pi: \tilde{V} \rightarrow V$ is a resolution of V where π is the restriction of $\hat{\pi}$ to $\tilde{V}([8])$.

Let $d_{i}=d\left(P_{i}\right)$ and $\Delta_{i}=\Delta\left(P_{i}\right)$. By the definition of the simplicial sub-
division, we have

$$
\begin{equation*}
\bigcap_{i=0}^{n} \Delta_{i}=\{Q\} \tag{4.1}
\end{equation*}
$$

for some vertex Q of $\Gamma(f)$. We define

$$
g_{\Lambda_{i}}\left(y_{\sigma}\right)=f_{\Delta_{i}}\left(\hat{\pi}_{\sigma}\left(y_{\sigma}\right)\right) / \prod_{j=0}^{n} y_{\sigma, j}^{d_{j}} .
$$

By the definition, $g_{A_{i}}\left(y_{\sigma}\right)$ is a function of n variables $y_{\sigma, j}(j \neq i)$. If P_{i} is strictly positive, $g_{\Delta_{i}}$ is a polynomial with a non-zero constant. We can write

$$
\hat{\pi}_{\sigma}^{*} f\left(y_{\sigma}\right)=\prod_{i=0}^{n} y_{\sigma, i}^{d_{i}} f_{\sigma}\left(y_{\sigma}\right)
$$

By the definition of $\tilde{V}, \tilde{V} \cap C_{\sigma}^{n+1}$ is defined by $f_{\sigma}=0$ and

$$
\begin{aligned}
\left\{y_{\sigma} \in\right. & \left.C_{\sigma}^{n+1} ; f_{\sigma}\left(y_{\sigma, 0}, \cdots, y_{\sigma, n}\right)=y_{\sigma, i}=0\right\} \\
& =\left\{y_{\sigma} \in C_{\sigma}^{n+1} ; y_{\sigma, i}=g_{\Delta_{i}}\left(y_{\sigma}\right)=0\right\}
\end{aligned}
$$

Thus if P_{j} is strictly positive, we have

$$
\begin{equation*}
\tilde{V} \cap\left\{y_{\sigma, j}=0\right\} \neq \phi \tag{4.2}
\end{equation*}
$$

if and only if $\operatorname{dim} \Delta_{j}>0$.
Remark (4.3). Recall that $S_{k} \Gamma^{*}(f)$ is the union of the cells of $\Gamma^{*}(f)$ whose dimension is less than or equal to k. (The dimension of a cell decreases by 1 if we consider the projection into a hyperplane.) Note that P is in $S_{n} \Gamma^{*}(f)$ if and only if $\operatorname{dim} \Delta(P) \geqq 1$.

Corollary (4.4). Assume that $\sigma \cap S_{n} \Gamma^{*}(f)=\phi$. Then $\tilde{V} \cap C_{\sigma}^{n+1} \subset$ $\left(C_{\sigma}^{*}\right)^{n+1}$.

Let P be a vertex of Σ^{*} such that $\operatorname{dim} \Delta(P) \geqq 1$ and let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be an n-simplex such that $P_{n}=P$. We define

$$
E(P ; \sigma)=\left\{y_{\sigma} ; y_{\sigma, n}=0, g_{\Delta(P)}\left(y_{\sigma, 0}, \cdots, y_{\sigma, n-1}\right)=0\right\} .
$$

$E(P ; \sigma)$ is a smooth divisor of $\tilde{V} \cap C_{\sigma}^{n+1}$ in the neighbourhood of $\pi_{\sigma}^{-1}(0)$ by the non-degeneracy assumption of the Newton boundary $\Gamma(f)$. By the definition of π_{σ}, we have

$$
\begin{equation*}
\pi_{\sigma}(E(P ; \sigma))=\{0\} \text { if and only if } P \text { is strictly positive. } \tag{4.5}
\end{equation*}
$$

Now we will study the gluing map between $\boldsymbol{C}_{\sigma}^{n+1}$ and $\boldsymbol{C}_{\tau}^{n+1}$ where
$\tau=\left(Q_{0}, \cdots, Q_{n}\right)$. We can write

$$
Q_{i}=\sum_{j=0}^{n} \lambda_{j i} P_{j} \quad \text { for } \quad i=0, \cdots, n .
$$

Then $y_{\sigma}=\hat{\pi}_{\sigma}^{-1} \cdot \hat{\tau}_{\tau}\left(y_{\tau}\right)=\hat{\pi}_{\sigma-I_{\tau}}(y)$ where $\sigma^{-1} \tau$ is the matrix $\Lambda=\left(\lambda_{i j}\right)$. Namely we have

$$
\begin{equation*}
y_{\sigma, i}=y_{t, 0}^{i_{i}^{i}} \cdots y_{t, n}^{\lambda_{i}, n} \quad(i=0, \cdots, n) . \tag{4.6}
\end{equation*}
$$

In particular, if $Q_{n}=P_{n}=P$, we have $\lambda_{i n}=0$ except for $i=n$. Let $\Lambda^{\prime}=$ $\left(\lambda_{i j}\right)_{0 \leq i, j<n}$ and let $y_{r}^{\prime}=\left(y_{\tau, 0}, \cdots, y_{\tau, n-1}\right)$ and $y_{\sigma}^{\prime}=\left(y_{\sigma, 0}, \cdots, y_{\sigma, n-1}\right)$. Then $y_{\sigma}^{\prime}=\left(y_{z}^{\prime}\right)^{\lambda^{\prime}}$ and $y_{o, n}=y_{r=0}^{\lambda_{n},} \cdots y_{r, n}^{\lambda_{n}^{n n}}$ and $\lambda_{n n}=1$. Thus $E(P ; \tau)$ is birationally glued with $E(P ; \sigma)$. Thus the union of $E(P ; \sigma)$ for n-simplexes σ such that σ contains P as its vertices is a divisor of \tilde{V} and we denote this by $E(P)$. If P is a strictly positive vertex, $E(P)$ is a compact divisor such that $\pi(E(P))$ $=\{0\}$. The topology of $E(P)$ will be studied in the following sections.

We say that vertices P_{0}, \cdots, P_{k-1} of Σ^{*} are adjacent if there is an n-simplex which contains P_{0}, \cdots, P_{k-1} as its vertices.

Lemma (4.7). Let $P_{i}(i=0, \cdots, k-1)$ be mutually distinct vertices of Σ^{*} with $\operatorname{dim} \Delta\left(P_{i}\right) \geqq 1$ for $i=0, \cdots, k-1$. We assume that P_{0} is a strictly positive vertex. Then the intersection $E\left(P_{0}\right) \cap \cdots \cap E\left(P_{k-1}\right)$ is non-empty if and only if $\left\{P_{i}\right\}(i=0, \cdots, k-1)$ are adjacent and $\operatorname{dim} \cap_{i} \Delta\left(P_{i}\right) \geqq 1$. $\cap_{i} E\left(P_{i}\right)$ is a compact manifold of dimension $n-k$.

Proof. Note that $E\left(P_{i}\right) \cap C_{o}^{n+1}$ is non-empty only if P_{i} is a vertex of σ. Thus if $\Delta=\cap_{i} \Delta\left(P_{i}\right)$ is non-empty, there exists an n-simplex $\sigma=$ $\left(P_{0}, \cdots, P_{n}\right)$. We have

$$
\begin{aligned}
& \bigcap_{i} E\left(P_{i}\right) \cap C_{\sigma}^{n+1} \\
& \quad=\left\{y_{\sigma} \in C_{\sigma}^{n+1} ; y_{\sigma, i}=0(i=0, \cdots, k-1) g_{\lrcorner}\left(y_{\sigma, k} \cdots y_{\sigma, n}\right)=0\right\} .
\end{aligned}
$$

Thus this is non-empty if and only if $\operatorname{dim} \Delta \geqq 1 . \bigcap_{i} E\left(P_{i}\right)$ is compact as it is a closed subspace of the compact divisor $E\left(P_{0}\right)$. The smoothness is immediate from the non-degeneracy assumption of $\Gamma(f)$.

It is easy to see that the divisor $E(P)$ is connected if $\operatorname{dim} \Delta(P)>1$. However

Lemma (4.8). Assume that P is a strictly positive and $\operatorname{dim} \Delta(P)=1$. Then $E(P)$ has $(r(\Delta(P))+1)$ connected components where $r(\Delta(P))$ is the number of the integral points of the relatively interior of $\Delta(P)$. Each component is rational.

Proof. We can find a simplex $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ such that $P=P_{n}$ and $\Delta\left(P_{i}\right) \supset \Delta(P)$ for $i=0, \cdots, n-2$ and $\Delta\left(P_{n-1}\right)$ is one of the boundary of $\Delta(P)$. Let $f_{\Delta(P)}(z)=\sum_{i=0}^{r+1} a_{i} z^{z_{i}}$ where $\nu_{i}(i=0, \cdots, r+1)$ are the integral points on $\Delta(P)$ in this order and a_{0} and a_{r+1} are non-zero. Then $E(P ; \sigma)$ is defined by $y_{\sigma, n}=0$ and $g_{\Delta(P)}\left(y_{\sigma, n-1}\right)=0$. As the number of the integral points on $\Delta(P)$ and on the support of $g_{\Delta(P)}\left(y_{\sigma, n-1}\right)$ is equal, we may assume that

$$
g_{\Delta(P)}\left(y_{\sigma, n-1}\right)=\sum_{i=0}^{r+1} a_{i} y_{\sigma, n-1}^{i} .
$$

Thus the non-degeneracy assumption on $\Delta(P)$ implies that $E(P ; \sigma)$ is the disjoint union of $r+1(n-1)$-dimensional planes

$$
L(\sigma)_{i}=\left\{y_{\sigma, n-1}=\xi_{i} \text { and } y_{\sigma, n}=0\right\}
$$

where $\xi_{i}(i=0, \cdots, r+1)$ are non-zero and mutually distinct. As $E(P)$ is a non-singular algebraic variety, this implies the assertion. We can directly see this as follows. Let $\tau=\left(Q_{0}, \cdots, Q_{n}\right)$ be an n-simplex such that $\Delta\left(Q_{j}\right) \supset \Delta(P)$ for $j<s$ and $Q_{s}=P$ and $\Delta\left(Q_{k}\right)$ is a single point for $k>s$ for some s. We can find a simplex $\theta=\left(R_{0}, \cdots, R_{n}\right)$ such that $R_{j}=Q_{j}$ for $j<s$, $R_{n}=P$ and $\Delta\left(R_{k}\right) \supset \Delta(P)$ for $k<n-1$. Watching the gluing map carefully, we can see that $E(P ; \tau) \subset E(P ; \theta)$. Thus $E(P)$ is covered by $E(P ; \sigma)$ where σ is of the above type. Assume that σ and θ are as above. Then the gluing matrix $\Lambda=\left(\lambda_{i j}\right)$ of C_{σ}^{n+1} and C_{θ}^{n+1} satisfies $\lambda_{i n}=0$ for $i<n$ and $\lambda_{n n}=1$. As $\left\{P_{0}, \cdots, P_{n-2}, P_{n}\right\}$ and $\left\{R_{0}, \cdots, R_{n-2}, R_{n}\right\}$ generate the same Z module, we have that $\lambda_{(n-1) i}=0$ for $i<n-1$ and $\lambda_{(n-1)(n-1)}=\varepsilon$ where ε is 1 or -1 according to whether R_{n-1} is on the same side of P_{n-1} or not with respect to $\Delta(P)^{*}$. Thus the component $y_{o, n-1}=\xi_{i}$ corresponds to the component $y_{\theta, n-1}^{\varepsilon}=\xi_{i}$. Thus the union of $E(P ; \sigma)$ for σ is a disjoint union of $r+1$ rational varieties as desired.

§ 5. Topology of the exceptional divisors

Let $g\left(u_{1}, \cdots, u_{n}\right)$ be a polynomial with support $S(g)$. We say that g is globally non-degenerate $(=0$ - non-degenerate in [20]) if the equation

$$
g_{\Delta}(u)=\frac{\partial g_{\Delta}(u)}{\partial u_{1}}=\cdots=\frac{\partial g_{\Delta}(u)}{\partial u_{n}}=0
$$

has no solution in $\left(C^{*}\right)^{n}$ for any face Δ of $S(g)$. In [17], we have proved
Theorem (5.1). Let g be a globally non-degenerate polynomial. Then (i) $\quad \chi\left(\left(C^{*}\right)^{n}-g^{-1}(0)\right)=(-1)^{n} n!n$-dim. volume $S(g)$.
(ii) If the dimension of $S(g)$ is greater than or equal to $3, \pi_{1}\left(\left(C^{*}\right)^{n}-\right.$ $\left.g^{-1}(0)\right)$ is a free abelian group of rank $n+1$.

By the additivity of the Euler characteristics and (i) of Theorem (5.1), we have

Corollary (5.2) ([20]). Let g be as above and let $V^{*}=g^{-1}(0) \cap\left(C^{*}\right)^{n}$. Then $\chi\left(V^{*}\right)=(-1)^{n+1} n!n$-dim. volume $S(g)$. (Here n-dim. volume implies the n-dimensional volume.)

In this section, we study the topology of exceptional divisors of the resolution $\pi: \tilde{V} \rightarrow V$ constructed in Section 4. Let $\sigma=\left(P_{0}, \cdots, P_{k-1}\right)$ be a ($k-1$)-simplex of Σ^{*}. We define $E(\sigma)=E\left(P_{0}, \cdots, P_{k-1}\right)$ by $\bigcap_{i=0}^{k-1} E\left(P_{i}\right)$ and $E(\sigma)^{*}=E\left(P_{0}, \cdots, P_{k-1}\right)^{*}$ by $E(\sigma)-\bigcap_{Q \neq P_{i}} E(Q)$. We define $\Delta(\sigma)=$ $\Delta\left(P_{0}, \cdots, P_{k-1}\right)=\bigcap_{i=0}^{k-1} \Delta\left(P_{i}\right)$. We fix a strictly positive vertex P such that $\operatorname{dim} \Delta(P) \geqq 1$. The collection of $E(\sigma)^{*}$ for σ which contains P as a vertex gives a canonical stratification of $E(P)$.

Theorem (5.3). (i) Assume that $\tau=\left(P_{0}, P_{1}, \cdots, P_{k-1}\right)$ be a $(k-1)$ simplex of Σ^{*}. Let $\sigma=\left(P, P_{1}, \cdots, P_{n}\right)$ be an n-simplex such that $\tau \subset \sigma$. Then

$$
\chi\left(E(\tau)^{*}\right)=(-1)^{n-k+1}(n-k)!(n-k)-\text { dim. volume } S\left(g_{\Delta(\tau)}\left(y_{\sigma}\right)\right) .
$$

In particular, the Euler characteristic $\chi\left(E(\tau)^{*}\right)$ is non-zero if and only if $\operatorname{dim} \Delta(\tau)=n-k$.
(ii) The birational class of $E(\tau)$ depends only on the coefficients of f on $\Delta(\tau)$. It does not depend on the particular choice of Σ^{*} either.
(iii) $\chi(E(P))=\sum \chi\left(E(\tau)^{*}\right)$ where the sum is taken for simplexes τ which contain P.

Corollary (5.4). (i) $\chi\left(E(P)^{*}\right)=(-1)^{n+1}(n+1)!(n+1)$-dim. volume $C(0, \Delta(P)) / d(P)$ where $C(0, \Delta(P))$ is the cone of $\Delta(P)$ with the origin.
(ii) The birational class of $E(P)$ depends only on the coefficients of f on $\Delta(P)$. If $\operatorname{dim} \Delta(P)=r$ is smaller than n, there exists a compact algebraic manifold $M(P)$ of dimension $r-1$ such that $E(P)$ is birationally equivalent to $P^{n-r} \times M(P)$.

The proof of Theorem (5.3) and Corollary (5.4) occupies the rest of this section. Let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be a simplex of Σ^{*} and let $\tau=\left(P_{0}, \cdots, P_{k-1}\right)$. By the definition, $E(\tau)^{*} \subset C_{o}^{n+1}$ and $E(\tau)^{*}$ is equal to

$$
\left\{\left(y_{\sigma, k}, \cdots, y_{\sigma, n}\right) ; g_{\Delta(\tau)}\left(y_{\sigma}\right)=0 \text { and } y_{\sigma, j} \neq 0 \text { for } j \geqq k\right\} .
$$

The polynomial $g_{\Delta(\tau)}\left(y_{\sigma}\right)$ is defined by the equation

$$
f_{\Delta(\tau)}\left(\pi_{\sigma}\left(y_{\sigma}\right)\right)=\prod_{i=0}^{n} y_{\sigma, i}^{d\left(P_{i}\right)} g_{\Delta(\tau)}\left(y_{\sigma}\right) .
$$

Thus it is easy to see that $g_{\Delta(\tau)}$ is globally non-degenerate as f is nondegenerate on $\Delta(\tau)$. (Compare with Lemma (5.2) of [17]). Thus the assertion of (i) of Theorem (5.3) is immediate from Corollary (5.2). The assertion (iii) of Theorem (5.3) is also obvious by the additivity of the Euler characteristics.

Assume that $P=P_{0}$ and $\operatorname{dim} \Delta(P)=n . \quad$ Then $E(P)^{*}$ is defined by

$$
y_{\sigma, 0}=g_{\Delta(P)}\left(y_{\sigma, 1}, \cdots, y_{\sigma, n}\right)=0 \quad \text { and } \quad y_{\sigma, i} \neq 0 \quad \text { for } \quad i=1, \cdots, n
$$

where

$$
f_{\Delta(P)}\left(\pi_{\sigma}\left(y_{\sigma}\right)\right)=\prod_{i=0}^{n} y_{\sigma, i}^{d(P i)} g_{\Delta(P)}\left(y_{\sigma}\right) .
$$

Thus we have the equality

$$
\begin{aligned}
& (n+1) \text { ! volume } C(0, \Delta(P))=(n+1) \text { ! volume } C\left(0, S\left(\pi_{\sigma}^{*} f_{\Delta(P)}\right)\right) \\
& \quad=(n+1)!\text { volume } S\left(g_{\Delta(P)}\right) d(P) /(n+1) \\
& \quad=n!\text { volume } S\left(g_{\Delta(P)}\right) d(P)
\end{aligned}
$$

This proves the assertion (i) of Corollary (5.4).
Now we prove (ii) of Theorem (5.3). Let Σ^{*}, be another simplicial subdivision of $\Gamma^{*}(f)$ and let $\pi^{\prime}: \tilde{V}^{\prime} \rightarrow V$ be the associated resolution. We denote the exceptional divisors in this resolution by $E^{\prime}(P), E^{\prime}(\tau)$ etc. Let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be a simple x of Σ^{*} and let $\sigma^{\prime}=\left(Q_{0}, \cdots, Q_{n}\right)$ be a simplex of $\Sigma^{*^{\prime}}$. We assume that there is an integer $k, 0<k<n$, such that $\Delta(\tau)=\Delta\left(\tau^{\prime}\right)$ and $\operatorname{dim} \Delta(\tau)=n+1-k$ where $\tau=\left(P_{0}, \cdots, P_{k-1}\right)$ and $\tau^{\prime}=\left(Q_{0}, \cdots, Q_{k-1}\right)$. $E(\tau)$ is defined in C_{σ}^{n+1} by

$$
y_{\sigma, 0}=\cdots=y_{\sigma, k-1}=0 \text { and } g_{\Delta(\tau)}\left(y_{\sigma, k}, \cdots, y_{\sigma, n}\right)=0
$$

$E^{\prime}\left(\tau^{\prime}\right)$ is defined in $C_{\sigma^{\prime}}^{n+1}$ by

$$
y_{\sigma^{\prime}, 0}=\cdots=y_{\sigma^{\prime}, k-1}=0 \text { and } \hat{g}_{\Delta_{\left(r^{\prime}\right)}}\left(y_{\sigma^{\prime}, k}, \cdots, y_{\sigma^{\prime}, n}\right)=0
$$

where

$$
\hat{g}_{\Delta\left(\tau^{\prime}\right)}\left(y_{\sigma^{\prime}}\right)=f_{\Delta\left(\tau^{\prime}\right)}\left(\pi_{\sigma^{\prime}}^{\prime}\left(y_{\sigma^{\prime}}\right)\right) / \prod_{i=0}^{n} y_{\sigma^{\prime}, i}^{d\left(Q_{i}\right)}
$$

By the assumption, the Z-modules generated by $\left\{P_{0}, \cdots, P_{k-1}\right\}$ and $\left\{Q_{0}, \cdots, Q_{k-1}\right\}$ respectively are equal and they are equal to the submodule
of Z^{n} which is generated by the integral points of Closure $\left(\Delta(\tau)^{*}\right)$. Therefore the matrix $\Lambda=\sigma^{-1} \sigma^{\prime}$ satisfies that $\lambda_{j i}=0$ for $j \geqq k$ and $i<k$. Let Λ_{2} be the unimodular matrix defined by $\Lambda_{2}=\left(\lambda_{i j}\right)_{i, j \geqq k}$. Write $\boldsymbol{C}_{\sigma}^{n+1}$ as $\boldsymbol{C}_{\sigma}^{k} \times \boldsymbol{C}_{\sigma}^{n+1-k}$ and $y_{\sigma}=\left(y_{1}, y_{2}\right)$ where $y_{1}=\left(y_{\sigma, 0}, \cdots, y_{\sigma, k-1}\right)$ and $y_{2}=\left(y_{\sigma, k}, \cdots, y_{\sigma, n}\right)$. Similarly we write $\boldsymbol{C}_{\sigma^{\prime}}^{n+1}$ as $\boldsymbol{C}_{\sigma^{\prime}}^{k} \times \boldsymbol{C}_{\sigma^{\prime}}^{n+1-k}$ and $y_{\sigma^{\prime}}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$. By the definition, we have

$$
f_{\Delta(\tau)}\left(\pi_{\sigma}\left(y_{\sigma^{\prime}}^{4}\right)\right)=f_{\Delta\left(\tau^{\prime}\right)}\left(\pi_{\sigma^{\prime}}^{\prime}\left(y_{\sigma^{\prime}}\right)\right)
$$

As $y_{\sigma^{\prime}}^{A}=\left(y_{1}, y_{2}\right)$ and $y_{2}=\left(y_{2}^{\prime}\right)^{\Lambda_{2}}$, we have

$$
g_{\Delta(\tau)}\left(\left(y_{2}^{\prime}\right)^{\Lambda_{2}}\right)=\hat{g}_{\Delta\left(z^{\prime}\right)}\left(y_{2}^{\prime}\right) \prod_{i=k}^{n}\left(y_{\sigma^{\prime}, i}\right)^{\alpha_{i}}
$$

for some integers $\alpha_{k}, \cdots, \alpha_{n}$. The last equality implies that the birational mapping $\varphi: \boldsymbol{C}_{\sigma^{\prime}}^{n+1-k} \rightarrow \boldsymbol{C}_{\sigma}^{n+1-k}$ which is defined by $y_{2}=\left(y_{2^{\prime}}\right)^{1_{2}}$ induces the birational mapping of $E^{\prime}\left(\sigma^{\prime}\right)$ and $E(\sigma)$. This completes the proof of the assertion (ii) of Theorem (5.3).

Now we will prove (ii) of Corollary (5.4). Let P be a strictly positive vertex such that $\operatorname{dim} \Delta(P)=r$ and $0<r<n$. Let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be a simplex such that $P=P_{n-r}$ and $\Delta\left(P_{i}\right) \supset \Delta(P)$ for $i=0, \cdots, n-r-1$. Then $E(P)^{*}$ is defined by

$$
y_{\sigma, n-r}=0, y_{\sigma, i} \neq 0(i \neq n-r) \text { and } g_{\Delta(P)}\left(y_{\sigma, n-r+1}, \cdots, y_{\sigma, n}\right)=0
$$

which is isomorphic to $\left(C^{*}\right)^{n-r} \times E\left(P_{0}, \cdots, P_{n-r}\right)^{*}$. Thus we can take $E\left(P_{0} . \cdots, P_{n-r}\right)$ as $M(P)$. This completes the proof of Theorem (5.3) and Corollary (5.4).

§ 6. Surface singularities

In this section, we study the case $n=2$ in detail. Let $\pi: \tilde{V} \rightarrow V$ be the resolution of V constructed in Section 4. Let $E_{i}(i=1, \cdots, k)$ be the irreducible components of the exceptional divisor $\pi^{-1}(0)$. The resolution graph Γ is defined in the following way. For each E_{i}, we associate a vertex v_{i} with weight m_{i} which is the self-intersection number of E_{i} in \tilde{V}. When E_{i} is not a rational curve, we also put the genus $g\left(E_{i}\right)$ to v_{i}. If $E_{i} \cap E_{j}$ is non-empty, we join v_{i} and v_{j} by a line segment.

Recall that we identify $S_{2} \Gamma^{*}(f)$ with a graph which is the hyperplane section of $S_{2} \Gamma^{*}(f)$. Let Δ be a two dimensional face of $\Gamma(f)$. We define an integer $g(\Delta)$ as the number of the integral points on the interior of Δ. Let Ξ be a one dimensional face of $\Gamma(f)$. Recall that $r(\boldsymbol{\Xi})$ is defined as the number of the integral points on the interior of Ξ. Our main result of this section is

Theorem (6.1). Let $\pi: \tilde{V} \rightarrow V$ be the resolution of V which is associated with Σ^{*}. Then we have
(i) If P is a strictly positive vertex of Σ^{*} such that $\operatorname{dim} \Delta(P)=2$, the genus of $E(P)$ is $g(\Delta(P))$.
(ii) If P is a strictly positive vertex with $\operatorname{dim} \Delta(P)=1, E(P)$ is a disjoint union of $(r(\Delta(P))+1)$ copies of rational curves.
(iii) Assume that Σ^{*} is canonical in the sense of (3.5). Then the resolution graph is obtained by the following surgery of $S_{2} \Gamma^{*}(f): \quad$ Let $\overline{P Q}$ be a line segment of $S_{2} \Gamma^{*}(f)$ and assume that P is strictly positive. Let $c=$ $\operatorname{det}(P, Q)$. If $c>1$, let c_{1} be the unique integer such that $P_{1}=\left(Q+c_{1} P\right) / c$ is an integral vector and $0<c_{1}<c$. (Lemma (3.3)). Let

$$
\begin{aligned}
\frac{c}{c_{1}}=m_{1}-\frac{1}{m_{2}-} & \\
& \ddots \\
& -\frac{1}{m_{k}}
\end{aligned}
$$

where each $m_{i} \geqq 2$. We insert $r(\Delta(P) \cap \Delta(Q))+1$ copies of the following chain of rational curves

between P and Q. If $c=1$ and Q is also strictly positive, the above chain is -1
replaced by _._._. If $c=1$ and Q is not strictly positive, we do nothing. Those vertices which are not strictly positive are omitted after the surgery.
(iv) Assume that $\operatorname{dim} \Delta(P)=2$. Let Q_{1}, \cdots, Q_{s} be the vertices of $\Sigma^{*} \cap S_{2} \Gamma^{*}(f)$ which are adjacent to P. Let $P={ }^{t}\left(p_{0}, p_{1}, p_{2}\right)$ and $Q_{i}=$ ${ }^{t}\left(q_{0 i}, q_{1 i}, q_{2 i}\right)$. Then the self-intersection number of $E(P)$ is

$$
\frac{-\sum_{i=1}^{s}\left(r\left(\Delta(P) \cap \Delta\left(Q_{i}\right)\right)+1\right) q_{j i}}{p_{j}}
$$

for any $j=0,1,2$.
Proof. To prove (i) of Theorem (6.1), we need the following Lemma.
Lemma (6.2). Let Δ be a compact convex polyhedron in R^{2} with integral vertices P_{1}, \cdots, P_{k}. Then

$$
2 \text { volume } \Delta=2 g(\Delta)+\sum_{i=1}^{k}\left(r\left(\Delta_{i}\right)+1\right)-2
$$

where $\partial \Delta=\bigcup_{i=1}^{k} \Delta_{i}$.
Proof. Step 1. Assume that $k=3$ and the integral points of Δ are P_{1}, P_{2} are P_{3}. By a parallel translation if necessary, we may assume that $P_{1}={ }^{t}(0,0) . \quad$ Then P_{2} and P_{3} are primitive integral vectors as $\overline{P_{i} P_{j}}(i \neq j)$ contains no other integral points than P_{i} and P_{j} by the assumption. Assume that $c=\operatorname{det}\left(P_{2}, P_{3}\right)>1$. Then by Lemma (3.3), there is a positive integer c_{1} such that $Q=\left(P_{2}+c_{1} P_{3}\right) / c$ is an integral point and $0<c_{1}<c$. Thus Q is an integral point of Δ and $Q \neq P_{i}$ for $i=1,2,3$. This is a contradiction to the assumption. Thus $\operatorname{det}\left(P_{2}, P_{3}\right)=c=1$. This implies 2 volume $\Delta=1$. Thus the assertion is true for this case.

Step 2. Assume that $k=3$ and that either $r\left(\Delta_{1}\right)$ or $g(\Delta)$ is greater than 1. Then we can find an integral point P^{\prime} on Δ so that Δ is divided into two or three triangles as in the following figures.

It is easy to see that the right side of the assertion in Lemma (6.2) is additive under the above division. Thus the assertion is reduced to Step 1 by a finite subdivision.

Step 3. Assume that $k>3$. We prove the assertion by the induction on k. We assume that the assertion is true for polyhedra with $k-1$ vertices. We divide Δ into two polyhedra by adding the line segment $\overline{P_{1} P_{k-1}}$ to Δ. As the right side of the equality in Lemma (6.2) is also additive under this subdivision, the assertion is reduced to the induction's hypothesis. This completes the proof of Lemma (6.2).

Let P be a strictly positive vertex of $S_{2} \Gamma^{*}(f)$ such that $\operatorname{dim} \Delta(P)=2$. Let $\Delta_{i}(i=1, \cdots, s)$ be the boundaries of $\Delta(P)$ and let $Q_{i}(i=1, \cdots, s)$ be the vertices of $\Sigma^{*} \cap S_{2} \Gamma^{*}(f)$ which are adjacent to P and $\Delta(P) \cap \Delta\left(Q_{i}\right)$ $=\Delta_{i}$. Let $\sigma=\left(P, P_{2}, P_{3}\right)$ be any 2 -simplex of Σ^{*}. Then by Theorem (5.3), we have

$$
\begin{aligned}
\chi\left(E(P)^{*}\right) & =-2 \text { volume } S\left(g_{\Delta(P)}\right) \\
& =-2 g\left(S\left(g_{\Delta(P)}\right)-\sum_{i=1}^{k}\left(r\left(\Delta_{i}\right)+1\right)+2\right.
\end{aligned}
$$

Here we used the fact that $g(\Delta)=g\left(S\left(g_{\Delta(P)}\right)\right)$ and $r\left(\Delta_{i}\right)=r\left(S\left(g_{A_{i}}\right)\right)$ etc. By Theorem (5.3), we have

$$
\chi(E(P))=\chi\left(E(P)^{*}\right)+\sum_{i=1}^{k} \chi\left(E\left(P, Q_{i}\right)\right)
$$

which is equal to $-2 g(\Delta(P))+2$, completing the proof of (i) of Theorem (6.1). The assertion (ii) of Theorem (6.1) is immediate from Lemma (4.8).

We assume now that Σ^{*} is canonical. The assertion about the graph is obvious by Section 4 except the assertion about the self-intersection numbers. Let $\overline{P Q}$ be a line segment of $S_{2} \Gamma^{*}(f)$ such that P is strictly positive. (Then $\operatorname{dim} \Delta(P)=2$.) Let

$$
c=c_{0}>c_{1} \cdots>c_{k}=1>c_{k+1}=0
$$

be as in Definition (3.5). Then $\overline{P Q}$ has k vertices $P_{i}(i=1, \cdots, k)$ which are inductively defined by

$$
P_{i+1}=\left(Q+c_{i+1} P_{i}\right) / c_{i}
$$

where $P_{0}=P$ and $P_{k+1}=Q$. Let $\sigma_{i}=\left(P_{i}, P_{i+1}, R_{i}\right)$ be a fixed two simplex of Σ^{*} for each $i=0, \cdots, k$. We know that $E\left(P_{i}\right)$ is the union of $r(\Delta(P) \cap$ $\Delta(Q))+1$ disjoint rational curves. We consider the holomorphic function $\varphi_{j}=\pi^{*} z_{j}$ on \tilde{V} for fixed j. Let $P_{i}={ }^{t}\left(p_{0 i}, p_{1 i}, p_{2 i}\right)$ and $R_{i}={ }^{t}\left(r_{0 i}, r_{1 i}, r_{2 i}\right)$. Then in the chart $C_{\sigma_{i}}^{3}$,

$$
\varphi_{j}\left(y_{\sigma_{i}}\right)=y_{\sigma_{i}, 0}^{p_{j i}} y_{\sigma_{i}, 1}^{p_{j i}+1} y_{\sigma_{i}, 2 .}^{r_{j i}}
$$

Thus we get

$$
\left(\varphi_{j}\right)=\sum_{i=0}^{k+1} p_{j i} E\left(P_{i}\right)+D
$$

where D is a divisor which does not intersect with $E\left(P_{i}\right)$. By Theorem (2.6) or [10], we have

$$
\begin{equation*}
\left(\varphi_{j}\right) \cdot E\left(P_{i}\right)=0 \tag{6.3}
\end{equation*}
$$

which implies

$$
p_{j i-1} E\left(P_{i-1}\right) \cdot E\left(P_{i}\right)+p_{j i} E\left(P_{i}\right)^{2}+p_{j i+1} E\left(P_{i}\right) \cdot E\left(P_{i+1}\right)=0
$$

for $i=1, \cdots, k$. We can write $E\left(P_{i}\right)=\cup_{s=1}^{r} E_{i s}(r=r(\Delta(P, Q))+1)$ so that

$$
E_{i-1 s} \cdot E_{i t}=\left\{\begin{array}{lll}
1 & \text { if } & s=t \\
0 & \text { if } & s \neq t
\end{array}\right.
$$

As $E\left(p_{i-1}\right) \cdot E\left(P_{i}\right)=r(\Delta(P, Q))+1$, we obtain from (6.3) that

$$
-E_{i s}^{2}=\left(p_{j i-1}+p_{j i+1}\right) / p_{j i}
$$

which is equal to m_{i} where m_{i} is as in Lemma (3.6). The case where $c=1$ and P and Q are strictly positive can be treated in the same way. This proves (iii) of Theorem (6.1). The assertion (iv) of Theorem (6.1) can also be proved by the same argument using the equality $\left(\varphi_{j}\right) \cdot E(P)=0$.

In practice, the following is more convenient to compute $g(E(P))$.
Corollary (6.4). Let P be a strictly positive vertex of Σ^{*} with $\operatorname{dim} \Delta(P)=2$. Then

$$
2-2 g(E(P))=\frac{-6}{d(P)} \text { volume } C(0, \Delta(P))+\sum_{i=1}^{k}\left(r\left(\Delta_{i}\right)+1\right)
$$

where $\partial \Delta(P)=\Delta_{1} \cup \cdots \cup \Delta_{k}$.
Now we give several examples of the resolution.

(I) Pham-Brieskorn variety

Let $f(x, y, z)=x^{a_{0}}+y^{a_{1}}+z^{a_{2}}$ where $a_{i} \geqq 2$. Let $d=$ g.c.d. $\left(a_{0}, a_{1}, a_{2}\right)$ and let $r_{i}=$ g.c.d. $\left(a_{i-1}, a_{i+1}\right) / d$ where $a_{i+3}=a_{i}$. Then $r_{i}(i=0,1,2)$ are mutually coprime and we can write

$$
\begin{equation*}
a_{i}=d r_{i-1} r_{i+1} \hat{a}_{i} \quad(i=0,1,2) \tag{6.5}
\end{equation*}
$$

for some integers $\hat{a}_{i}(i=0,1,2) . \quad S_{2} \Gamma^{*}(f)$ is as in Figure (6.6).

Figure (6.6)
Here $P={ }^{t}\left(r_{0} \hat{a}_{1} \hat{a}_{2}, r_{1} \hat{a}_{0} \hat{a}_{2}, r_{2} \hat{a}_{0} \hat{a}_{1}\right), Q={ }^{t}(1,0,0), R={ }^{t}(0,1,0)$ and $S={ }^{t}(0,0,1)$. Thus the resolution graph is star-shaped and all the vertices are rational except possibly $E(P)$. This is well known by [18]. By Theorem (6.1) and Corollary (6.4), we have

Lemma (6.7). \quad The genus of $E(P)$ is

$$
d\left\{d r_{0} r_{1} r_{2}-\left(r_{0}+r_{1}+r_{2}\right)\right\} / 2+1
$$

In particular, $E(P)$ is rational (assuming $r_{0} \leqq r_{1} \leqq r_{2}$) if and only if
(i) $d=r_{0}=r_{1}=1$ or
(ii) $d=2, r_{0}=r_{1}=r_{2}=1$. Note that (i) and (ii) are equivalent to
(i)' a_{2} is coprime with a_{0} and a_{1} or
(ii)' g.c.d. $\left(a_{i}, a_{j}\right)=2$ for $i \neq j$, (Compare with [3].)

Example (6.8). Let $\left(a_{0}, a_{1}, a_{2}\right)=(2,3,5) . \quad$ Then $P={ }^{t}(15,10,6) . \quad$ The following are necessary data for the surgery.
(1) $\overline{P Q}: \operatorname{det}(P, Q)=2$ and $(P+Q) / 2={ }^{t}(8,5,3)$.
(2) $\overline{P R}$: $\operatorname{det}(P, R)=3$ and $(R+2 P) / 3={ }^{t}(10,7,4)$ and $3 / 2=2-1 / 2$.
(3) $\overline{P S}$: $\operatorname{det}(P, S)=5$ and $(S+4 P) / 5==^{t}(12,8,5)$ and

$$
\frac{5}{4}=2-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}
$$

$E(P)$ is rational by Lemma (6.7) and $-E(P)^{2}$ is $(8+10+12) / 15=2$. Thus the resolution graph is:

Example (6.9). Let $\left(a_{0}, a_{1}, a_{2}\right)=(2 s, 3 s, 5 s)$. Then we have the same dual Newton diagram. $\quad E(P)$ has genus $(s-1)(s-2) / 2$ and $-E(P)^{2}=2 s$. Each branch of the resolution graph is replaced by s copies.
(II) $T_{p, q, r}$ singularities ([1])

Let $f(x, y, z)=x^{p}+y^{q}+z^{r}+x y z$ where $1 / p+1 / q+1 / r<1 . \quad \Gamma^{*}(f)$ has three strictly positive vertices $P={ }^{t}\left(p_{0}, p_{1}, p_{2}\right), Q={ }^{t}\left(q_{0}, q_{1}, q_{2}\right)$ and $R=$ ${ }^{t}\left(r_{0}, r_{1}, r_{2}\right)$ which correspond to $y^{q}+z^{r}+x y z, z^{r}+x^{p}+x y z$ and $x^{p}+y^{q}+x y z$ respectively. They satisfy

$$
\begin{align*}
& p_{1} q=p_{2} r=p_{0}+p_{1}+p_{2} \tag{6.10}\\
& q_{0} p=q_{2} r=q_{0}+q_{1}+q_{2} \tag{6.11}\\
& r_{0} p=r_{1} q=r_{0}+r_{1}+r_{2} . \tag{6.12}
\end{align*}
$$

The dual Newton diagram is as follows.

where $S={ }^{t}(1,0,0), T=^{t}(0,1,0)$ and $U=^{t}(0,0,1)$. It is easy to see that the genera of $\Delta(P), \Delta(Q)$ and $\Delta(R)$ are zero. As $\operatorname{det}(P, S)=$ g.c.d. $\left(p_{1}, p_{2}\right)$ $=1$ by (6.10). Similarly we have that $\operatorname{det}(Q, T)=1$ and $\operatorname{det}(R, U)=1$. Note also that $r(\Delta(P, Q))=0, r(\Delta(Q, R))=0$ and $r(\Delta(R, P))=0$. Thus by Theorem (6.1), we have

Proposition (6.13). The resolution graph of $T_{p, q, r}$ is a cyclic chain of rational curves.

Example (6.14). $\operatorname{Let}(p, q, r)=(3,4,4)$. Then the resolution graph is

§ 7. Fundamental group of $\boldsymbol{E}(\boldsymbol{P})$

Let P be a strictly positive vertex of a fixed simplicial subdivision Σ^{*} and we assume that $n>2$ and $\Delta(P)$ is an n-simplex of $\Gamma(f)$, i.e. $\Delta(P)$ is spanned by $(n+1)$-vertices. In this section, we will show that the fundamental group of $E(P)$ is a finite cyclic group whose order is independent of the choice of Σ^{*}. First we show

Lemma (7.1). Assume $n>2$. Let $\sigma=\left(P, Q_{1}, \cdots, Q_{n}\right)$ be an n-simplex of Σ^{*}. Then the inclusion map $j: E(P ; \sigma)^{*} \rightarrow\left(C_{\sigma}^{*}\right)^{n}$ induces an isomorphism of the fundamental groups where $\left(\boldsymbol{C}_{\sigma}^{*}\right)^{n}=\left\{y_{\sigma} \in \boldsymbol{C}_{\sigma}^{n+1} ; y_{\sigma, 0}=0\right.$ and $y_{\sigma, i} \neq 0$ for $i \neq 0\}$.

Proof. When we move the coefficients of f on $\Delta(P)$ keeping the non-
degeneracy condition, then the corresponding exceptional divisor $E(P)$ moves diffeomorphically. Thus $E(P)^{*}$ also moves diffeomorphically. Thus we may assume that

$$
g_{\Delta(P)}\left(y_{\sigma, 1}, \cdots, y_{\sigma, n}\right)=c+\sum_{i=1}^{n} a_{i} y_{\sigma}^{\mu_{i}}
$$

where c and $a_{i}(i=1, \cdots, n)$ are non-zero. Here 0 and $\mu_{i}(i=1, \cdots, n)$ are the vertices which span $S\left(g_{\Delta(P)}\right)$. We consider the weighted homogeneous polynomial $h\left(y_{\sigma}\right)=\sum_{i=1}^{n} a_{i} y_{\sigma}^{\mu_{i}}$. Then we have a canonical fibration

$$
h:\left(C^{*}\right)^{n}-h^{-1}(0) \rightarrow C^{*}
$$

and $E(P)^{*}=h^{-1}(-c)$. In Theorem (5.3) of [17], we have proved the map $b:\left(\boldsymbol{C}^{*}\right)^{n}-h^{-1}(0) \rightarrow\left(\boldsymbol{C}^{*}\right)^{n} \times \boldsymbol{C}^{*}$, which is defined by $b\left(y_{\sigma}\right)=\left(y_{\sigma}, h\left(y_{\sigma}\right)\right)$, induces an isomorphism of the fundamental groups. Compared with the exact sequence of the homotopy groups of the above fibration, the assertion is now immediate from Theorem (5.3) of [17].

Let $\tau=\left(P, Q_{1}, \cdots, Q_{n}\right)$ be an n-simplex of Σ^{*}. We say that τ is good if $\operatorname{dim} \Delta\left(Q_{i}\right)>0$ for $i=1, \cdots, n-1$. Let $\xi=\left(P, R_{1}, \cdots, R_{n}\right)$ be any n simplex and assume that $\operatorname{dim} \Delta\left(R_{i}\right)>0$ if and only if $i \leqq k$. It is easy to see that there is a good p-simplex $\hat{\xi}=\left(P, \hat{R}_{1}, \cdots, \hat{R}_{n}\right)$ such that $\hat{R}_{i}=R_{i}$ for $i=1, \cdots, k$, By the definition of $E(P ; \xi)$, we have the inclusion $E(P ; \xi) \subset$ $E(P ; \hat{\xi})$. Thus we need only good simplexes to calculate $\pi_{1}(E(P))$ through the Van Kampen theorem.

Let $\tau=\left(P, Q_{1}, \cdots, Q_{n}\right)$ be a good simplex of Σ^{*} and let $e_{\tau, i}(i=1$, $\cdots, n)$ be the canonical generators of $\pi_{1}\left(E(P ; \tau)^{*}\right) \cong \pi_{1}\left(\left(C^{*}\right)^{n}\right) \cong Z^{n}$. Note that $e_{\tau, i}(i=1, \cdots, n-1)$ are trivial in $\pi_{1}(E(P ; \tau))$ because $E(P ; \tau) \cap$ $\left\{y_{\tau, i}=0\right\}$ is non-empty. Thus we get

$$
\begin{equation*}
\pi_{1}(E(P ; \tau)) \cong Z \tag{7.2}
\end{equation*}
$$

where Z is generated by $e_{\tau, n}$.
We fix a good simplex $\tau=\left(P, Q_{1}, \cdots, Q_{n}\right)$ from now on. For a vertex Q of Σ^{*}, we define $A_{\tau}(Q)$ by the determinant of the matrix $\left(P, Q_{1}, \cdots\right.$, $\left.Q_{n-1}, Q\right)$. The main theorem of this section is

Theorem (7.3). $\quad \pi_{1}(E(P))$ is a finite cyclic group of order d where d is the greatest common divisior of $\left\{A_{\tau}(Q)\right\}$ where Q is adjacent to P in Σ^{*} and $\operatorname{dim} \Delta(Q)>0 . \quad d$ is independent of the choice of Σ^{*}.

Proof. Let $\xi=\left(P, R_{1}, \cdots, R_{n}\right)$ be a good simplex of Σ^{*} and let $\Lambda=$ ($\lambda_{i j}$) be the gluing matrix. Namely $R_{i}=\sum_{j=0}^{n} \lambda_{j i} Q_{j}$ for $i=1, \cdots, n$. Note that $\lambda_{n, i}=A_{i}\left(R_{i}\right)$. Let $e_{\xi, i}(i=1, \cdots, n)$ be the canonical generators of
$\pi_{1}\left(E(P ; \xi)^{*}\right)$. Through the gluing map, $e_{\xi, i}$ corresponds to $\sum_{j=1}^{n} \lambda_{j i} e_{\tau, j}$. As $e_{\xi, i}$ is trivial in $\pi_{1}(E(P ; \xi))$ for $i=1, \cdots, n-1$, we have

$$
\begin{equation*}
\pi_{1}(E(P ; \xi) \cup E(P ; \tau)) \cong Z / d_{\xi} Z \tag{7.4}
\end{equation*}
$$

where d_{ξ} is the greatest common divisor of $A_{\tau}\left(R_{i}\right)$ for $i=1, \cdots, n-1$. For any vertex of Σ^{*} which is adjacent to P and $\operatorname{dim} \Delta(Q)>0$, there is a good simplex σ such that Q is a vertex of σ. Thus the first assertion of the theorem is immediate from the above argument.

Now we prove that d is independent of the choice of Σ^{*}. Let P_{1}, \cdots, P_{n+1} be the vertices of $\Gamma^{*}(f)$ which correspond to n-dimensional faces of $\Gamma(f)$ which are adjacent to $\Delta(P)$ i.e., $\partial \Delta(P)=\bigcup_{1=1}^{n+1}\left(\Delta\left(P_{i}\right) \cap \Delta(P)\right)$. Let $\Xi_{i j}$ be the n-dimensional cell of $\Gamma^{*}(f)$ which contains P and P_{k} for k such that $k \neq i, j$. Note that $\Delta(R)=\Delta(P) \cap\left\{\cap_{k \neq i, j} \Delta\left(P_{k}\right)\right\}$ for any vertex R of Interior $\left(\Xi_{i j}\right)$ and $\operatorname{dim} \Delta(R)=1$. We can take a good simplex $\tau=\left(P, Q_{1}\right.$, \cdots, Q_{n}) such that $Q_{1}, \cdots, Q_{n-1} \in \operatorname{Closure}\left(\Xi_{n-1,1}\right)$ and

$$
\begin{equation*}
Q_{1}=\sum_{j=1}^{i} a_{i j} P_{j}+b_{j} P, \quad i=1, \cdots, n-1 \tag{7.5}
\end{equation*}
$$

where $a_{i j}$ and $b_{i}(i=1, \cdots, n$ and $j \leqq i)$ are non-negative rational numbers. As $\operatorname{det}\left(P, Q_{1}, \cdots, Q_{i}\right)=1$ for $1 \leqq i \leqq n$, we can easily see by the induction on i that

$$
\begin{equation*}
a_{i i}=\operatorname{det}\left(P, P_{1}, \cdots, P_{i-1}\right) / \operatorname{det}\left(P, P_{1}, \cdots, P_{i}\right) . \tag{7.6}
\end{equation*}
$$

By (7.6), $a_{i i}(i=1, \cdots, n)$ are independent of the subdivision Σ^{*}. Let Q be a primitive integral vector of Σ^{*} with $\operatorname{dim} \Delta(Q)>1$.

By (7.5) and (7.6), we have

$$
\begin{align*}
A_{\tau}(Q) & =\operatorname{det}\left(P, Q_{1}, \cdots, Q_{n-1}, Q\right) \tag{7.7}\\
& =\operatorname{det}\left(P, P_{1}, \cdots, P_{n-1}, Q\right) / \operatorname{det}\left(P, P_{1}, \cdots, P_{n-1}\right) .
\end{align*}
$$

The last equality says that $A_{\tau}(Q)$ depends only on Q. Let $\xi_{i j}=\left(P, R_{1}\right.$, \cdots, R_{n}) be a good n-simplex such that $R_{k} \in \operatorname{Closure}\left(\Xi_{i j}\right)$ for $k=1, \cdots$, $n-1$. Then any integral vector Q on $\Xi_{i j}$, which is not necessarily a vertex of Σ^{*}, is contained in a Z-submodule generated by $P, R_{1}, \cdots, R_{n-1}$. Thus the ideals in Z generated by $\left\{A_{\tau}\left(R_{1}\right), \cdots, A_{\tau}\left(R_{n-1}\right)\right\}$ and by $\left\{A_{\imath}(Q)\right.$ for all integral vectors $\left.Q \in \Xi_{i j}\right\}$ respectively are equal. Thus the second assertion of the theorem is immediate from (7.7). This completes the proof of Theorem (7.3).

Corollary (7.8). Assume that $\Delta(P)$ is an n-simplex. Then the first Betti number of $E(P)$ is zero. In particular, the irregularity of $E(P)$ is also zero.

Example (7.9). Let $f(z)=z_{0}^{a_{0}}+\cdots+z_{3}^{a_{3}}$. Let $P={ }^{t}\left(p_{0}, \cdots, p_{3}\right)$ be the weight vector of $f . \quad \Gamma^{*}(f)$ has four other vertices $P_{0}=t(1,0,0,0), \cdots, P_{3}$ $={ }^{t}(0,0,0,1)$. Let Σ^{*} be a simplicial subdivision of $\Gamma^{*}(f)$ and let τ be as in the proof of Theorem (7.3). Let P_{i}^{1} be the vertex of Σ^{*} which is on the line segment $\overline{P P}_{i}$ and P_{i}^{1} is adjacent to P. Then P_{i}^{1} can be written as

$$
\begin{aligned}
P_{i}^{1} & =\left(P_{i}+c_{i} P\right) / \operatorname{det}\left(P, P_{i}\right) \\
& =\left(P_{i}+c_{i} P\right) / \text { g.c.d. }\left\{p_{j} ; j \neq i\right\}
\end{aligned}
$$

where c_{i} is a non-negative integer (Lemma (3.3)). By (7.7), $A_{r}\left(P_{i}^{1}\right)=$ $\operatorname{det}\left(P, P_{0}, P_{1}, P_{i}^{1}\right) / \operatorname{det}\left(P, P_{0}, P_{1}\right)$. Thus we have

$$
\begin{aligned}
& A_{z}\left(P_{2}^{1}\right)=p_{3} / \text { g.c.d. }\left(p_{2}, p_{3}\right) \text { g.c.d. }\left(p_{0}, p_{1}, p_{3}\right) \\
& A_{i}\left(P_{3}^{1}\right)=p_{2} / \text { g.c.d. }\left(p_{2}, p_{3}\right) \text { g.c.d. }\left(p_{0}, p_{1}, p_{2}\right) .
\end{aligned}
$$

As $p_{3} /$ g.c.d. $\left(p_{2} \cdot p_{3}\right)$ and $p_{2} /$ g.c.d. $\left(p_{2}, p_{3}\right)$ are coprime, we have that $d=1$. Namely

Proposition (7.10). The central divisor $E(P)$ of the Brieskorn variety is simply connected.

The following example shows that $\pi_{1}(E(P))$ is not trivial in general.
Example (7.11). Let $f(z)=\sum_{i=0}^{3}\left(z_{i}^{2} z_{i+1} z_{i+2}^{4}+z_{i}^{11}\right)$ where $z_{i+4}=z_{i}$ and $n=3$. $\quad \Gamma(f)$ has five compact 3 -dimensional faces which are the support of $\sum_{i=0}^{3} z_{i}^{2} z_{i+1} z_{i+2}^{4}$ and $\sum_{i=1}^{3} z_{j+i}^{2} z_{j+i+1} z_{j+i+2}^{4}+z_{j}^{11}+z_{j+3}^{11}(j=0, \cdots, 3)$. The corresponding vertices in $\Gamma^{*}(f)$ are P, P_{0}, \cdots, P_{3} where $P={ }^{t}(1,1,1,1)$, $P_{0}={ }^{t}(1,2,3,1), P_{1}={ }^{t}(1,1,2,3), P_{2}={ }^{t}(3,1,1,2), P_{3}={ }^{t}(2,3,1,1)$. For example,

$$
z_{1}^{2} z_{2} z_{3}^{4}+z_{2}^{2} z_{3} z_{0}^{4}+z_{3}^{2} z_{0} z_{1}^{4}+z_{0}^{11}+z_{3}^{11}
$$

is a weighted homogeneous polynomial of degree 11 by the weight P_{0}. Geometrically, P is at the barycenter of P_{0}, \cdots, P_{3}. As $\operatorname{det}\left(P, P_{i}\right)=$ $\operatorname{det}\left(P, P_{i}, P_{j}\right)=1$ for any $i \neq j$, we do not need any other vertices on the triangles $T\left(P, P_{i}, P_{j}\right)$ to get a simplicial subdivision Σ^{*}. We take $\tau=$ $\left(P, P_{0}, P_{1}, R\right)$ where $R=\left(P_{2}+2 P_{0}+3 P_{1}+2 P\right) / 5=^{t}(2,2,3,3)$. As $A_{\tau}\left(P_{2}\right)=$ $A_{i}\left(P_{3}\right)=5$ and $A_{i}\left(P_{i}\right)=0(i=0,1)$, we have that $d=5$. Therefore $\pi_{1}(E(P))$ $\cong Z / 5 Z$.

§ 8. Exceptional divisors of the three dimensional singularities

In this section, we will study the topology of exceptional divisors $E(P)$ of the three dimensional singularities. Thus we assume that $n=3$.

Let P be a strictly positive vertex of $\Sigma^{*}(f)$ such that $\operatorname{dim} \Delta(P)=3$. Let $\Delta_{1}, \cdots, \Delta_{s}$ be the two-dimensional faces of $\Delta(P)$ and let Ξ_{1}, \cdots, Ξ_{q} be one-dimensional faces of $\Delta(P)$. Each Ξ_{k} is an intersection of two of Δ_{j}. Assume that $\Xi_{k}=\Delta_{i} \cap \Delta_{j}$. Then this implies that $\Delta_{i}^{*}, \Delta_{j}^{*} \subset \bar{\Xi}_{k}^{*}$ where $\bar{\Xi}_{k}^{*}$ is the closure of $\Xi_{k}^{*}=\left\{Q ; \Delta(Q)=\Xi_{k}\right\}$. Let P_{i} be the unique vertex of $\bar{\Delta}_{i}^{*}$ which is adjacent to P. Let $T_{k}^{1}, \cdots, T_{k}^{\nu_{k}}$ be the vertices on $\bar{\Xi}_{k}^{*}$ which are adjacent to P and not on $\bar{\Delta}_{i}^{*}$ and $\bar{\Delta}_{j}^{*}$. See Figure (8.1).

Figure (8.1)
Definition (8.2). Let $c_{k}=\operatorname{det}\left(P, P_{i}, P_{j}\right)$. We say that $T_{k}^{1}, \cdots, T_{k}^{\nu_{k}}$ are canonical at P if T_{k}^{l} is inductively defined by

$$
\begin{equation*}
T_{k}^{l}=\left(P_{j}+c_{k, l} T_{k}^{l-1}+d_{k, l} P\right) / c_{k, l-1} \tag{8.3}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leqq c_{k, l}, d_{k, l}<c_{k, l-1} \quad\left(l=1, \cdots, \nu_{k}\right) \tag{8.4}
\end{equation*}
$$

and $c_{k, 0}=c_{k}, T_{k}^{0}=P_{i}, c_{k, \nu_{k}}=1$. See Lemma (3.8). For a vertex Q of Σ^{*} with $\operatorname{dim} \Delta(Q) \geqq 1$, we define a divisor $C(Q)$ of $E(P)$ by $C(Q)=E(P) \cap E(Q)$. This is non-empty if and only if Q is adjacent to P. Let $\{a, b\}$ be a pair of integers such that $0 \leqq a<b \leqq 3$. Let $P={ }^{t}\left(p_{0}, \cdots, p_{3}\right)$ and $Q=^{t}\left(q_{0}, \cdots\right.$, q_{3}). We define $|P, Q|_{a, b}$ by (a, b)-minor $\left(p_{a} q_{b}-p_{b} q_{a}\right)$ of 4×2 matrix (P, Q).

Theorem (8.5). (i) $C\left(T_{k}^{l}\right)$ is a union of $r\left(\left(\Xi_{k}\right)+1\right)$ copies of rational curves and the genus of $C\left(P_{i}\right)$ is $g\left(\Delta_{i}\right)$.
(ii) The Euler characteristics $\chi(E(P)$) is equal to

24 volume $C(0, \Delta(P)) / d(P)-2 \sum_{i=1}^{s} g\left(\Delta_{i}\right)+2 s+\sum_{k=1}^{q} \nu_{k}\left(r\left(\Xi_{k}\right)+1\right)$.
(iii) Let $T_{k}^{t}\left(t=1, \cdots, \nu_{k}\right)$ be the vertices on $\bar{\Xi}_{k}^{*}$ as above Let $-n_{l}$ be the self-intersection number of a component of $C\left(T_{k}^{l}\right)$ and let

$$
T_{k}^{1}=\left(P_{j}+\bar{c}_{k, 1} P_{i}+\bar{d}_{k, 1} P\right) / c_{k}
$$

where $c_{k}=\operatorname{det}\left(P, P_{i}, P_{j}\right)$. Then we have that $n_{m} \geqq 1\left(m=1, \cdots, \nu_{k}\right)$ and

$$
\frac{c_{k}}{\bar{c}_{k, 1}}=n_{1}-\frac{1}{n_{2}-} .
$$

(iv) Assume that $\left\{T_{k}^{t}\right\}\left(t=1, \cdots, \nu_{k}\right)$ are canonical sequence in the sense of Definition (8.2). Thus $\bar{c}_{k, 1}=c_{k, 1}$. Then $n_{l} \geqq 2$. In particular, ν_{k} and $\left\{n_{l}\right\}\left(l=1, \cdots, \nu_{k}\right)$ are determined by c_{k} and $c_{k, 1}$ through the continuous fraction representation of $c_{k} / c_{k, 1}$.
(v) The self-intersection number $C\left(P_{i}\right)^{2}$ is equal to

$$
-\sum_{Q}\left(r\left(P, P_{i}, Q\right)+1\right)|P, Q|_{a, b} /\left|P, P_{i}\right|_{a, b}
$$

where the sum is taken for Q such that $\left(P, P_{i}, Q\right)$ is a simplex of Σ^{*} and $\operatorname{dim} \Delta\left(P, P_{i}, Q\right) \geqq 1$ and $r\left(P, P_{i}, Q\right)=r\left(\Delta\left(P, P_{i}, Q\right)\right.$). (We assume that a, b are so chosen that $\left.\left|P, P_{i}\right|_{a, b} \neq 0\right)$.

Proof. Let $\sigma=\left(P, P_{i}, T_{k}^{1}, R\right)$ be a 3 -simplex of Σ^{*}. (If $\nu_{k}=0, T_{k}^{1}$ should be replaced by P_{j}.) Then we have seen in Section 4 that $C\left(P_{i}\right)$ is defined by $g_{A_{i}}\left(y_{\sigma, 2}, y_{\sigma, 3}\right)=0$. Note that $C\left(P_{i}\right) \cdot C\left(T_{k}^{1}\right)$ consists of $r\left(\Xi_{k}\right)+1$ points which are solutions of $g_{A_{i}}\left(0, y_{\sigma, 3}\right)=g_{s_{k}}\left(y_{\sigma, 3}\right)=0$. Thus we have

$$
\chi\left(C\left(P_{i}\right)\right)=\chi\left(C\left(P_{i}\right)^{*}\right)+\sum_{A_{i} \supset \dot{E}_{k}}\left(r\left(\Xi_{k}\right)+1\right) .
$$

The first term is equal to

$$
-2 g\left(\Delta_{i}\right)-\sum_{\Delta_{i} \supset \xi_{k}}\left(r\left(\Xi_{k}\right)+1\right)+2
$$

by Lemma (6.2) and Theorem (5.3) (i) and the invariance of the number of the integral points on a polyhedron by a unimodular matrix. Thus we have that $\chi=2-2 g\left(\Delta_{i}\right)$ which says that the genus of $C\left(P_{i}\right)$ is $g\left(\Delta_{i}\right)$. The rationality of $C\left(T_{k}^{l}\right)$ is derived by a similar argument or Lemma (4.8). Now the assertion (ii) is immediate from the additivity of the Euler characteristic and Corollary (5.4).

Now we study the self-intersection numbers of $C\left(T_{k}^{l}\right)$. Let T_{k}^{l} ($l=1, \cdots, \nu_{k}$) be as in Figure (8.1). By Lemma (3.8), we can write

$$
\begin{equation*}
T_{k}^{l}=\left(P_{j}+\bar{c}_{k, l} T_{k}^{l-1}+\bar{d}_{k, l} P\right) / \bar{c}_{k, l-1} \tag{8.6}
\end{equation*}
$$

for $l=1, \cdots, \nu_{k}$ where $\bar{c}_{k, 0}=c_{k}$ and $\bar{c}_{k, \nu_{k}}=1$. Here $\bar{c}_{k, l}>0$ but $\bar{d}_{k, l}$ might be a negative integer in general. We consider the meromorphic function $\varphi=\pi^{*}\left(z_{b}^{p_{a}} / z_{a}^{p_{b}}\right)$ on $E(P)$. Let $\sigma_{l}=\left(P, T_{k}^{l-1}, T_{k}^{l}, R_{l}\right)$ be a 3-simplex of Σ^{*}. Then it is easy to see that

$$
\varphi\left(y_{\sigma_{l}}\right)=\prod_{i=1}^{3} y_{\sigma_{l, i}}^{d_{i}}
$$

where

$$
d_{1}=\left|P, T_{k}^{l-1}\right|_{a, b}, \quad d_{2}=\left|P, T_{k}^{l}\right|_{a, b} \quad \text { and } \quad d_{3}=\left|P, R_{l}\right|_{a, b}
$$

which implies that

$$
(\varphi)=\sum_{l=0}^{\nu_{k}+1}\left|P, T_{k}^{l}\right|_{a, b} C\left(T_{k}^{l}\right)+D
$$

where D is a linear sum of $C(Q)$ for which $C(Q) \cap C\left(T_{k}^{m}\right)$ is empty for $m=1, \cdots, \nu_{k} . \quad\left(T_{k}^{0}=P_{i}, T_{k}^{\nu k+1}=P_{j}.\right) \quad$ As $(\varphi) \cdot C\left(T_{k}^{m}\right)=0$ (Theorem (2.6) of [10]), we have

$$
\begin{align*}
& \left|P, T_{k}^{m-1}\right|_{a, b} C\left(T_{k}^{m-1}\right) \cdot C\left(T_{k}^{m}\right)+\left|P, T_{k}^{m}\right|_{a, b} C\left(T_{k}^{m}\right)^{2} \tag{8.7}\\
& \quad+\left|P, T_{k}^{m+1}\right|_{a, b} C\left(T_{k}^{m+1}\right) \cdot C\left(T_{k}^{m}\right)=0
\end{align*}
$$

for $m=1, \cdots, \nu_{k}$. As $C\left(T_{k}^{m}\right)$ has $\left(r\left(\boldsymbol{\Xi}_{k}\right)+1\right)$ components, (8.7) implies

$$
\begin{equation*}
n_{m}=\left(\left|P, T_{k}^{m-1}\right|_{a, b}+\left|P, T_{k}^{m+1}\right|_{a, b}\right) /\left|P, T_{k}^{m}\right|_{a, b} \tag{8.8}
\end{equation*}
$$

On the other hand, (8.6) implies that

$$
\begin{equation*}
\bar{c}_{k, m-1}\left|P, T_{k}^{m}\right|_{a, b}=\bar{c}_{k, m}\left|P, T_{k}^{m-1}\right|_{a, b}+\left|P, P_{j}\right|_{a, b} \tag{8.9}
\end{equation*}
$$

We prove the assertion (iii) by the induction on ν_{k}.
(a) Assume that $\nu_{k}=1$. Then the assertion is immediate from (8.8) and (8.9).
(b) Assume that $\nu_{k}>1$ and

$$
\frac{\bar{c}_{k, 1}}{\bar{c}_{k, 2}}=n_{2}-\frac{1}{n_{3}-} .
$$

Then we have

$$
\begin{gathered}
n_{1}-\frac{1}{n_{2}-} \cdot \frac{n_{1} \bar{c}_{k, 1}-\bar{c}_{k, 2}}{\bar{c}_{k, 1}} . \\
\\
\\
\\
\\
\\
\end{gathered}
$$

From (8.9), we can obtain the equality

$$
\begin{equation*}
\left(\bar{c}_{k, m-1}+\bar{c}_{k, m+1}\right)\left|P, T_{k}^{m}\right|_{a, b}=\bar{c}_{k, m}\left(P,\left.T_{k}^{m-1}\right|_{a, b}+\left|P, T_{k}^{m+1}\right|_{a, b}\right) \tag{8.10}
\end{equation*}
$$

which implies that

$$
n_{m}=\left(\bar{c}_{k, m-1}+\bar{c}_{k, m+1}\right) / \bar{c}_{k, m} .
$$

Thus $n_{m} \geqq 1$ and

$$
\left(n_{1} \bar{c}_{k, 1}-\bar{c}_{k, 2}\right) / \bar{c}_{k, 1}=c_{k} \bar{c}_{k, 1}
$$

which proves the assertion.
Now we prove the assertion (iv). Assume that $\bar{c}_{k, m}=c_{k, m}$ and

$$
c_{k}=c_{k, 0}>c_{k, 1}>\cdots>c_{k, \nu_{k}}=1 .
$$

Then by (8.8) and (8.10), we have

$$
n_{m}=\left(c_{k, m-1}+c_{k, m+1}\right) / c_{k, m}>1
$$

which implies $n_{m} \geqq 2$, proving the assertion. The assertion (v) is also easily obtained by the equality $(\varphi) \cdot C\left(P_{i}\right)=0$.

§ 9. Canonical divisors

Let $\pi: \tilde{V} \rightarrow V$ be the resolution of V associated with Σ^{*}. In this section, we study the canonical divisors \tilde{K} of \tilde{V} and K_{p} of $E(P)$ respectively.
(I) The canonical divisor \tilde{K} of \tilde{V}.

Let $\hat{\pi}: X \rightarrow C^{n+1}$ be the projection map constructed in Section 4. Recall that \tilde{V} is a complex submanifold of codimension one of X. Let ω^{\prime} be a meromorphic n-form on a neighbourhood of the origin of C^{n+1} such that

$$
\omega^{\prime} \wedge d f=d z_{0} \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

It is easy to see that the restriction ω of ω^{\prime} to V is a meromorphic n-form which does not depend on the choice of ω^{\prime}. We denote ω by $d z_{0} \wedge \cdots \wedge$ $d z_{n} / d f$. We want to know the local expression of the meromorphic n-form
$\pi^{*}(\omega)$ on \tilde{V}. Let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be an n-simplex of Σ^{*} and let $P_{i}=$ ${ }^{t}\left(p_{0 i}, \cdots, p_{n i}\right)$. Then we have

$$
\hat{\pi}^{*}\left(d z_{0} \wedge \cdots \wedge d z_{n}\right)=\operatorname{det}\left(p_{i j}\right) \prod_{i=1}^{n} y_{\sigma, i}^{\beta_{i}} d y_{\sigma, 0} \wedge \cdots \wedge d y_{\sigma, n}
$$

where $\beta_{i}=\left|P_{i}\right|-1$ and $\left|P_{i}\right|=\sum_{j=0}^{n} p_{j i} . \quad$ Similarly we have

$$
\begin{aligned}
\hat{\pi}^{*}(d f) & =d\left(\hat{\pi}^{*} f\right) \\
& =d\left[\prod_{i=0}^{n} y_{\sigma, i}^{d\left(P_{i}\right)} f_{\sigma}\left(y_{\sigma}\right)\right] \\
& =d\left[\prod y_{\sigma, i}^{d\left(P_{i}\right)}\right] f_{\sigma}\left(y_{\sigma}\right)+\prod y_{\sigma, i}^{d\left(P_{i}\right)} d f_{\sigma}
\end{aligned}
$$

Here $f_{\sigma}=0$ is the defining equation of \tilde{V} in C_{σ}^{n+1}. We get a meromorphic n-form $\tilde{\omega}_{\sigma}$ on C_{σ}^{n+1} by taking the "residue":

$$
\begin{aligned}
\tilde{\omega}_{\sigma} & =\hat{\pi}_{\sigma}^{*}\left(d z_{0} \wedge \cdots \wedge d z_{n}\right) / \hat{\pi}_{\sigma}^{*} d f \\
& =\prod y_{\sigma, i}^{\alpha\left(P_{i}\right)}\left(d y_{\sigma, 0} \wedge \cdots \wedge d y_{\sigma, n} / d f_{\sigma}\right)
\end{aligned}
$$

where $\alpha\left(P_{i}\right)=\left|P_{i}\right|-d\left(P_{i}\right)-1$. As we have the equality:

$$
\tilde{\omega}_{\sigma} \wedge \hat{\pi}_{\sigma}^{*} d f=\hat{\pi}_{\sigma}^{*}\left(d z_{0} \wedge \cdots \wedge d z_{n}\right)
$$

we can easily see that the restriction of $\tilde{\omega}_{\sigma}$ to \tilde{V} is equal to $\pi_{\sigma}^{*}(\omega)$ by the above property. Note that $d y_{\sigma, 0} \wedge \cdots \wedge d y_{\sigma, n} / d f_{\sigma}$ is a nowhere vanishing n-form on $\tilde{V} \cap C_{\sigma}^{n+1}$. Thus we obtain

Theorem (9.1). $\quad \widetilde{K}=(\tilde{\omega})=\sum_{P} \alpha(P) E(P)$ where $\alpha(P)=|P|-d(P)-1$ and the sum is taken for the vertex $P \in \Sigma^{*}$ such that $\operatorname{dim} \Delta(P)>0$.

Corollary (9.2). The coefficient $\alpha(P)$ of \tilde{K} does not depend on the choice of Σ^{*} which contains P as a vertex.

By applying Theorem (9.1) to Theorem (1.5) of [5], we can calculate the signature of the Milnor fibre F of f in the case of $n=2$ from the Newton boundary $\Gamma(f)$.

It is well-known that the canonical divisor \widetilde{K} of the minimal resolution $\pi: \tilde{V} \rightarrow V$ of the isolated surface singularity satisfies that $-\widetilde{K} \geqq 0$ where the equality holds only for rational double points. For a hypersurface singularity of dimension 2 with a non-degenerate Newton boundary, this can be proved by the following corollary.

Assume that $n=2$ and let $p={ }^{t}\left(p_{1}, p_{2}, p_{3}\right)$ be a strictly positive vertex of Σ^{*} such that $\operatorname{dim} \Delta(P)=2$. Then

Corollary (9.3). Let P be as above. Then $\alpha(P) \geqq 0$ if and only if $\Delta(P) \supset S(h)$ where h is one of the following weighted homogeneous polynomials and $S(h)$ is the support of h, up to a permutation of the coordinates.
$\left(A_{k}\right)$
(i) $x^{2}+y^{2}+z^{k+1}$
(ii) $x^{2}+y^{2}+2 y z^{a} \quad(k=2 a-1)$
(iii) $x^{a}+x y+z^{k+1}$
(iv) $x^{a}+x y+y z^{b} \quad(k=a b-1)$
(v) $x y+x^{a+1} z^{b}+z^{c} \quad(b<c, k=c-1)$
(vi) $x y+x^{a} z^{c}+y z^{d} \quad(a>0, k=a d+c-1)$
(vii) $x y+x^{a} z^{b}+x^{c} z^{d} \quad(0<c<a, 0 \leqq b<d)$
$\left(D_{k}\right)$
(i) $x^{2}+y z^{2}+y^{k-1} \quad(k>3)$
(ii) $x^{2}+y^{3}+z^{3} \quad\left(D_{4}\right)$
(iii) $x^{2}+y z\left(z+2 y^{d}\right) \quad(k=2 d+1)$
(iv) $x^{2}+2 x y^{a}+y z^{2} \quad(k=2 a+1)$
$\left(E_{6}\right)$
(i) $x^{2}+y^{3}+z^{4}$
(ii) $x^{2}+y^{3}+2 x z^{2}$

$$
\begin{equation*}
x^{2}+y^{3}+y z^{3} \tag{7}
\end{equation*}
$$

$\left(E_{8}\right) \quad x^{2}+y^{3}+z^{5}$
(i) $x^{2}+y^{b}\left(y^{d}+z\right), \quad b<d+2$
(ii) $x^{2}+3 x y^{a}+y^{b} z, \quad b<a+1$
(N) $x y^{a}+y^{b} z^{c}\left(y^{d}+z^{e}\right), \quad d>(a-1) e$.

Proof. Assume that $\alpha(P) \geqq 0$. By Theorem (9.1), $\alpha(P) \geqq 0$ if and only if $|P|>d(P)$. Note that $|P|$ is the degree of the monomial $x y z$ by the weight P. Thus $\Delta(P)$ contains no vertices (i, j, k) such that $i, j, k>0$. We assume that $p_{1} \geqq p_{2}, p_{3}$.
(I) Assume that $(1,1,0)$ (or $(1,0,1)$) is on $\Delta(P)$. It is easy to see that any 2 -simplex, which contains $(1,1,0)$ and has a strictly positive weight, is one of (i) $\sim\left(\right.$ vii) of $\left(A_{k}\right)$. Note that (ii) $\sim($ vi) reduces to (i) by suitable changes of coordinates. For example,
(iv): $x^{a}+x y+y z^{b}=x^{a}+y\left(x+z^{b}\right)=\left(X-Z^{b}\right)^{a}+X Y=X(Y+\cdots)+$ $(-1)^{a} Z^{a b}$.
(vi): $\quad x y+x^{a} z^{c}+y z^{d}=y\left(x+z^{d}\right)+x^{a} z^{c}=X Y+\left(X-Z^{d}\right)^{a} Z^{c}=X(Y+$ $\cdots)+(-1)^{a} Z^{a b+c}$.
(vii) is reduced to A_{1} of two variables by

$$
x y+x^{a} z^{b}+x^{c} z^{d}=x\left(y+x^{a-1} z^{b}+x^{c-1} z^{d}\right)
$$

Thus we assume that neither $(1,1,0)$ nor $(1,0,1)$ are on $\Delta(P)$ from now on.
(II) Assume that $(m, 0,0) \in \Delta(P)$. Then $d(P)=m p_{1}<|P|$ implies that $m=2$ or $1 . m=1$ is omitted as $V=f^{-1}(0)$ is non-singular in this case. Thus $m=2$.
(1) Assume that $\Delta(P)$ contains two integral points $(0, b+d, c)$ and $(0, b, c+e)$ for $b, c \geqq 0, d, e>0$. This corresponds to $y^{b} z^{c}\left(y^{d}+z^{e}\right)$. Note that $(2,0,0),(1,1,1)$ and $(0,2,2)$ are colinear. We may assume that $b \geqq c$. By the assumption that $\alpha(P) \geqq 0$, we have

$$
c<2 \quad \text { and } \quad d(2-c)>e(b+d-2)
$$

The following cases are possible.
(i) $c=1, b=1, e=1$
(ii) $c=1, b=1, d=1$,
(iii) $c=0, e=1, b<d+2$,
(iv) $\mathrm{c}=0, e=2, b=1$
(v) $c=0, b=0, d=3, e=3,4,5$ (or $e=3, d=3,4,5$).
(i) corresponds to (iii) of $\left(D_{k}\right): x^{2}+y z\left(2 y^{d}+z\right)=x^{2}+y\left(z+y^{d}\right)^{2}-y^{2 d+1}$. (ii) is reduced to (i) by changing y and z. (iii) corresponds to (i) of (M). (iv) corresponds to (i) of $\left(D_{k}\right)$. (v) corresponds to $x^{2}+y^{3}+z^{e}(e=3,4,5)$ which are (ii) of (D_{k}), (i) of $\left(E_{6}\right)$ and $\left(E_{8}\right)$.
(2) Assume that $\Delta(P)$ contains only one point on the (y, z)-plane. As $\operatorname{dim} \Delta(P)=2$, we may assume that $(1, a, 0)$ and $(0, b, e)$ are on $\Delta(P)$ and $e>0$. As $(0,2 a, 0)$ is on the plane which is spanned by $\Delta(P)$, we can use the discussion of (1) $(c=0, d=2 a-b)$ to see that $\alpha(P) \geqq 0$ if and only if (iii)' $e=1, b<a+1$, or (iv) ${ }^{\prime} e=2, b=0$, or (v) $)^{\prime} e=2, b=1$, or (vi)' $c=0$, $b=0, \mathrm{a}=2, e=3$. (iii)' corresponds to (ii) of (M) and note that $x^{2}+2 x y^{a}$ $+y^{b} z=\left(x+y^{a}\right)^{2}-y^{2 a}+y^{b} z$. (vi)' corresponds to (ii) of $\left(A_{k}\right)$. (v)' corresponds to (v) of (D_{k}), (vi)' corresponds to (ii) of $\left(E_{6}\right)$.
(3) Assume that $\Delta(P)$ contains no point on the (y, z)-plane. Then $\Delta(P)$ contains $(1, \mathrm{a}, 0)$ and $(1,0, \mathrm{~m})$ for some $a, m>1$. Thus the plane generated by $\Delta(P)$ contains $(0,2 a, 0)$ and $(0,0,2 m)$. Thus we can use (1) to conclude that there is no such $\Delta(P)$.
(III) Assume that $\Delta(P)$ does not intersect with the x-axis. As $p_{1} \geqq$ p_{2}, p_{3} and $d(P)<\alpha(P)$, we may assume that $(1, a, 0)$ is on $\Delta(P)$ with $a>1$. Then it is easy to see that there is no point $(1,0, m)$ on $\Delta(P)$. Thus there are two integral points $(0, b+d, c)$ and $(0, b, c-r e)$ on $\Delta(P)$ such that
$b, c \geqq 0$ and $d, e>0$. We need the condition:

$$
p_{1}+a p_{2}=(b+d) p_{2}+c p_{3}, \quad d p_{2}=e p_{3}
$$

and $p_{1}+a p_{2}<p_{1}+p_{2}+p_{3}$. This is equivalent to $d>(a-1) e$ which corresponds to (N), completing the proof of Corollary (9.3).

(II) The canonical divisor K_{p} of $\boldsymbol{E}(\boldsymbol{P})$

Now we consider the canonical divisor K_{p} of the exceptional divisor $E(P)$ for a fixed P. Let $\sigma=\left(P_{0}, \cdots, P_{n}\right)$ be a fixed n-simplex of Σ^{*} where $P_{0}=P$. Let $C_{\sigma}^{n}=\left\{y_{\sigma} \in C_{\sigma}^{n+1} ; y_{\sigma, 0}=0\right\} . E(P)$ is defined by $g_{\sigma}\left(y_{\sigma, 1}, \cdots, y_{\sigma, n}\right)$ $=0$ where

$$
\begin{equation*}
g_{\sigma}\left(y_{\sigma, 1} \cdots, y_{\sigma, n}\right) \prod_{i=0}^{n} y_{\sigma, i}^{d\left(P_{i}\right)}=f_{\Delta(P)}\left(\pi_{\sigma}\left(y_{\sigma}\right)\right) \tag{9.4}
\end{equation*}
$$

We consider a holomorphic n-form ω_{σ} on $E(P) \cap C_{\sigma}^{n}$ which is the restriction of an n-form $\hat{\omega}_{\sigma}$ on C_{σ}^{n} which satisfies

$$
\begin{equation*}
\hat{\omega}_{\sigma} \wedge d g_{\sigma}=d y_{\sigma, 1} \wedge \cdots \wedge d y_{\sigma, n} \tag{9.5}
\end{equation*}
$$

It is easy to see that ω_{σ} is nowhere vanishing and ω_{σ} does not depend on the choice of $\hat{\omega}_{\sigma}$. For brevity's sake, we write

$$
\omega_{\sigma}=d y_{\sigma, 1} \wedge \cdots \wedge d y_{\sigma, n} / d g_{\sigma} .
$$

Let $\tau=\left(Q_{0}, \cdots, Q_{n}\right)$ be another n-simplex such that $Q_{0}=P$. Let $Q_{i}=\sum_{j=0}^{n} \lambda_{j i} P_{j}$ for $i=1, \cdots, n$ and let $\Lambda=\left(\lambda_{j i}\right)(1 \leqq i, j \leqq n)$. Then we have

$$
\begin{equation*}
y_{\sigma, i}=\prod_{j=0}^{n} y_{\tau, j}^{\lambda_{i j}} \quad(i=0, \cdots, n) \tag{9.6}
\end{equation*}
$$

$\lambda_{00}=1$ and $\lambda_{j 0}=0$ for $j>0$. By a similar calculation as in (I), we have

$$
\begin{gather*}
d y_{\sigma, 1} \wedge \cdots \wedge d y_{\sigma, n}=\operatorname{det}(\Lambda) \prod_{i=1}^{n} y_{\tau, i}^{\beta_{i}} d y_{\tau, 1} \wedge \cdots \wedge d y_{\tau, n} \tag{9.7}\\
g_{\sigma}\left(y_{\sigma}\right)=\prod_{i=1}^{n} y_{\tau, i}^{\gamma i} g_{\tau}\left(y_{\tau}\right) \tag{9.8}
\end{gather*}
$$

where $\beta_{i}=\sum_{j=1}^{n} \lambda_{j i}-1$ and $\gamma_{i}=d\left(Q_{i}\right)-\sum_{j=0}^{n} d\left(P_{j}\right) \lambda_{j i}$. Let $A_{\sigma}=\bigcap_{j=0}^{n} \Delta\left(P_{j}\right)$. Then A_{σ} is a vertex of $\Gamma(f)$ and we have

$$
\sum_{j=0}^{n} d\left(P_{j}\right) \lambda_{j i}=\sum_{j=0}^{n} \lambda_{j i} P_{j}\left(A_{\sigma}\right)=Q_{i}\left(A_{\sigma}\right) .
$$

Thus we get $\gamma_{i}=d\left(Q_{i}\right)-Q_{i}\left(A_{\sigma}\right)$. Let $\alpha_{i}=Q_{i}\left(A_{\sigma}\right)-d\left(Q_{i}\right)+\sum_{j=1}^{n} \lambda_{j i}-1$
and ω_{τ} be the restriction of $\hat{\omega}_{\tau}$ to $E(P) \cap \boldsymbol{C}_{\tau}^{n}$ where

$$
\hat{\omega}_{\tau}=\sum_{i=1}^{n} y_{\tau, i}^{\alpha_{i}^{i}}\left(d y_{\tau, 1} \wedge \cdots \wedge d y_{\tau, n} / d g_{\tau}\right) .
$$

By (9.6), (9.7) and (9.8),

$$
\hat{\omega}_{\tau} \wedge d g_{\sigma}=d y_{\sigma, 1} \wedge \cdots \wedge d y_{\sigma, n}
$$

on $E(P) \cap C_{\tau}^{n} \cap C_{\tau}^{n}$. Thus we get $\omega_{\tau}=\omega_{\sigma}$ on $E(P) \cap C_{\tau}^{n} \cap C_{\sigma}^{n}$. Therefore the collection of $\left\{\omega_{\tau}\right\}$ defines meromorphic n-form ω. Note that $\lambda_{j i}$ depends only on σ and Q_{i}. Thus we obtain

Theorem (9.9). $K_{P}=(\omega)=\sum \alpha(Q) C(Q)$ where the sum is taken for every vertex Q of Σ^{*} which is adjacent to P and $\operatorname{dim} \Delta(Q)>1 . \quad C(Q)$ is defined by $E(P) \cap E(Q)$ and

$$
\alpha(Q)=Q\left(A_{\sigma}\right)-d(Q)+\sum_{j=1}^{n} \lambda_{j}(Q)-1
$$

where $Q=\sum_{j=0}^{n} \lambda_{j}(Q) P_{j}$.
Remark (9.10). Assume that $n=3 . C(Q)$ is a smooth curve of genus $g(\Delta(P) \cap \Delta(Q))$ if $\operatorname{dim}(\Delta(P) \cap(Q))=2$. If $\operatorname{dim}(\Delta(P) \cap(Q))=1, C(Q)$ has $r(\Delta(P) \cap \Delta(Q))+1$ connected components. Each component is a rational curve (Theorem (8.5)).

Example (9.11). Let $n=3$ and $f(z)$ be $\sum_{i=0}^{3}\left(z_{i}^{2} z_{i+1} z_{i+2}^{4}+z_{i}^{11}\right)$ as in Example (7.11). Let $P=^{t}(1,1,1,1)$. P corresponds to the homogeneous part of degree 7. There are 4 branches $\overline{P P}_{i}$ in $\Gamma^{*}(f)$ at P where $P_{0}=$ ${ }^{t}(1,2,3,1), P_{1}={ }^{t}(1,1,2,3), P_{2}={ }^{t}(311,2)$ and $P_{3}={ }^{t}(2,3,1,1)$. As $\operatorname{det}\left(P, P_{i}, P_{j}\right)=1$ for $i \neq j$, we need no vertices on $T\left(P, P_{i}, P_{j}\right)$. Let $\sigma=$ (P, P_{0}, P_{1}, R) where $R=\left(P_{2}+2 P_{0}+3 P_{1}+2 P\right) / 5={ }^{t}(2,2,3,3)$. Thus the affine equation of $E(P)$ in C_{σ}^{3} is

$$
y_{1}^{5} y_{3}^{2}+y_{2}^{5} y_{3}^{3}+y_{3}+1=0 .
$$

By Theorem (9.9), we have $K_{P}=-C\left(P_{2}\right)+2 C\left(P_{3}\right)$. By Theorem (8.5), we have that $C\left(P_{i}\right)^{2}=1$ for $i=0, \cdots, 3$ and $C\left(P_{2}\right) \cdot C\left(P_{3}\right)=1$. Thus $K_{P}^{2}=1$. On the other hand, $C\left(P_{i}\right)$ is a curve of genus 2 by Remark (9.10). Therefore the Euler characteristic $\chi(E(P))$ is

$$
\begin{aligned}
\chi(E(P)) & =\chi\left(E(P)^{*}\right)+\sum_{i=0}^{3} \chi\left(C\left(P_{i}\right)\right)-\sum_{i \neq j} \chi\left(C\left(P_{i}\right) \cap C\left(P_{j}\right)\right) \\
& =25-8-6=11 .
\end{aligned}
$$

By Noether's formula, we get $p_{g}=0$. Thus $E(P)$ is an algebraic surface with $q=p_{g}=0$ and $\pi_{1}(E(P)) \cong Z / 5 Z . \quad E(P)$ is called a Godeaux surface ([19], [13]).

References

[1] V. I. Arnold, Critical points of smooth functions and their normal forms, Uspekhi. Mat. Nauk, 30:5 MR no. 8701 (1975), 3-65.
[2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136.
[3] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitaten, Invent. Math., 2 (1966), 1-14.
[4] A. H. Durfee, Fourteen characterization of double points, L'Enseignement Math.
[5] -, The signature of smoothings of complex surface singularities, Math. Ann., 232 (1966), 85-98.
[6] P. Griffiths and J. Harris, Principles of Algebraic Geometry, A Wiley-Interscience Publication, 1978.
[7] F. Hirzebruch, The topology of normal singularities of an algebraic surface, Seminaire Bourbaki, 240 (1962-1963).
[8] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings, Lecture Note in Math., 339, Springer (1973).
[9] A. G. Kouchnirenko, Polyedres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-32.
[10] H. B. Laufer, Normal two-dimensional singularities, Ann. of Math. Studies, 71 (1971).
[11] - On μ for surface singularities, Proceeding of Symposia in Pure Math., 30 (1977), 45-49.
[12] J. Milnor, Singular points of complex hypersurface, Ann. Math. Studies, 61, Princeton Univ. Press (1968).
[13] Y. Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math., 34 (1976), 99-111.
[14] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. l'Inst. des Hautes Etudes Sci. Paris, 9 (1961).
[15] M. Oka, On the resolution of three dimensional Brieskorn singularities, in this Proceeding.
[16] - On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31 (1979), 435-450.
[17] - On the topology of the Newton boundary II, J. Math. Soc. Japan, 32 (1980), 65-92.
[18] P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C^{*}-action, Ann. of Math., 93 (1971), 205-228.
[19] M. Reid, Surface with $p_{g}=0, K^{2}=1$, J. Fac. Sci. Univ. of Tokyo, 25 no. 1 (1978), 75-92.
[20] A. N. Varchenko, Zeta-Function of Monodromy and Newton's Diagram, Invent. Math., 37 (1976), 253-262.
[21] T. Oda, Lectures on torus embeddings and its applications, Tata Institute of Fund. Res. Bombay, 1978.

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo 152
Japan

