Advanced Studies in Pure Mathematics 8, 1986
Complex Analytic Singularities
pp. 405-436

On the Resolution of the Hypersurface Singularities

Mutsuo Oka

Dedicated to Professor M. Nakaoka on his 60th birthday

§ 1. Introduction

Let f(z,, - - -, 2,) be a germ of an analytic function at the origin such
that £(0)=0 and f has an isolated critical point at the origin. We assume
that the Newton boundary of fis non-degenerate. Let V be the germ of
the hypersurface f~1(0) at the origin. Let I'*(f) be the dual Newton dia-
gram and let 2* be a simplicial subdivision. It is well-known that there
is a canonical resolution z: ¥— ¥ which is associated with Z* ([8]). How-
ever the process to get X* from I"*(f) is not unique and a “bad” X* pro-
duces unnecessary exceptional divisors. The purpose of this paper is to
study this resolution through a canonical simplicial subdivision.

In Section 3, we will show that there is a canonical way to get a
simplicial subdivision from ['*(f). (Lemma (3.3) and Lemma (3.8))

In Section 4, we will recall the construction of the resolution z: V— ¥
which is associated with a given simplicial subdivision X*.

In Section 5, we will study the topology of the exceptional divisors
using the canonical stratifications.

In Section 6, we will show the following: Assume that n=2. Then
the resolution graph I” of the resolution of V' is obtained by a canonical
surgery from S,I"*(f) (=the two-skeleton of I"*(f) which is considered as
a graph by a plane section). Let P be a vertex of X* such that 4(P) is a
two-dimensional face of I'(f). Then the genus of the exceptional divisor
E(P) is equal to the number of the integral points in the interior of A(P).
The other exceptional divisors are rational. (See Theorem (6.1) of §6.)

In Section 7, we will study the fundamental group of the exceptional
divisor E(P). Assume that n>>2 and 4(P) is an n-simplex. Then we will
show that z,(E(P)) is a finite cyclic group and its order is determined by
I'*(f) (Theorem (7.3)). '

In Section 8, we will study the divisors of the exceptional divisor E(P)
in the case of n=3.
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In Section 9, we will study the canonical divisors of the resolution
space ¥ and of the exceptional divisors E(P). (Theorem (9.1) and Theorem
0.2))

This paper consists of the following sections:

§2. Newton boundary and the dual Newton diagram.

§3. Canonical simplicial subdivison.

§4. Resolution of V.

§5. Topology of the exceptional divisors.

§6. Surface singularities.

§7. Fundamental group of E(P).

§8. Exceptional divisors of the three dimensional singularities.
§9. Canonical divisors.

§2. Newton boundary and the dual Newton diagram /

Let f(z,, - - -, z,)=2_, a,z* be the the Taylor expansion of f where z*=
zyp- - -zo» as usual. Recall that the Newton boundary I'(f) is the union of
the compact faces of I",(f) where I",(f) is the convex hull of the union
of the subsets v--(R*)**! of R*** for v such that a,5=0. For any (closed)
face 4 of I'(f), we associate a polynomial f(z)=>,.,a,2>. We say that
[ is non-degenerate on 4 if

ofi_ . _ofi g

0z, 0z,

has no solution in (C*)"*'. We say that f is non-degenerate if f is non-
degenerate on any face 4 of I'(f) ([9], [16]).

Let N* be the space of positive vectors of the dual space R*+'= R"**,
We denote the vectors in N* by column vectors. For any vector 4=
“(ay - - -, a,) of N*, we associate the linear function 4 on I",(f) which is
defined by A(x)=7> 7 ,a;x,. Let d(A) be the minimal value of 4 on I",(f)
and let d(A)={xe ' (f); A(x)=d(4)}. We introduce an equivalence
relation ~ in N* by A~ B if and only if 4(4)=4(B). For any face 4 of
dimension k of I ,(f), there is an equivalence class 4* which is defined by
A*={A e N*; A(4)=4}. Note that dim 4*=n—k. (The cone of 4* has
the dimension n—k--1). The collection of 4* gives a polyhedral decom-
position I'*(f) of N* which we call the dual Newton diagram of f. As each
cell of I'*(f) is a cone, we identify I"*(f) with its projection on the hyper-
plane L={x,+ - - - +x,=1}. We may assume that a vertex P="'(p,,- - -, p,,)
of I'*(f) is a primitive integral vector. If P is strictly positive, i.e. p,>0
for each i, 4(P) is a compact face of I'(f).
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Example (2.1). Let f(x, y, z)=x*+y*+z*--xyz. Then I'(f) has three
two-dimensional faces and 7'*(f) is the following.

v P=¢(2,1,1)
0='1,21)

R='(1,1,2)

- $='(1,0,0)

T=*%0,1,0)

U=%0,0,1)

S T

We say that a polyhedral decomposition 3* of I'*(f) is a simplicial
subdivision if the following conditions are satisfied ([8], [20]).
(i) 2* is a subdivision of I'™*(f) by the cones over the simplexes g=
P, ---, Py) where P,, - - -, P, are primitive integral vectors which can be
extended to a basis of Z"*'. The intersection of two simplexes is a
simplex. Each boundary of a simplex is a simplex.
(i) Assume that I'(f)? is non-empty where

I'(fy'={xel'(f); x;#0 only if i e I}

and [ is a subset of {0, - - -, n}. Then o;={P e N*; p,=0if i is not in [}
is a simplex.

Remark (2.2). We can assume that I'(f)'¥ is non-empty by adding
monomials z¥ of sufficiently high degree, if necessary. In this case, the

vertices which are not strictly positive are E;,=*(0, - . -, T, ..., 0) (i=0,
e, m).

§ 3. Canonical simplicial subdivision

Let P,="(pys, P1ss +* +» Pus) (i=1, - - -, k) be given integral vectors of
N*. We define a non-negative integer det (P, ---, P,) by the greatest
common divisor of all &£ Xk minors of the matrix (p,;) and we call det (P,
.« «, P,) the determinant of P,, - - -, P,.

Lemma (3.1). Let A=(a;;) be a unimodular matrix. Then det (P,
<o, P)=det(4AP,, - --, AP). "
The proof is an easy exercise of linear algebra.
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Lemma (3.2). Let P, --., P, be given integral vectors such that
det (P, - - -, P,)=1. Then there exist integral vectors P,,,, - -+, P, ., such
that det (P, - -+, P,,.)=1.

Proof. Let M be the subgroup of Z"*! generated by Py, - - -, P,.
Then by the structure theorem of a finitely generated abelian group, there
is a subgroup M’ of rank k such that MC M’ and M’ is a direct summand
of Z"*', Then the assumption det (P, -~ -, P,)=1 clearly implies that
M=M.

(1) Division of S,I"*(f).

Let P='(py, - - -, p,) and Q="(q,, - - -, q,) be given integral vectors
of N*.

Lemma (3.3). Let c=det (P, Q) and assume that ¢>1.
(i) Any integral vector P, on the line segment PQ such that det (P, P)=1
can be written as P,=(Q+c,P)/c for some integer ¢,>0. c, is unique
modulo c.
(ii) There exists a unique c, such that 0<c,<c.

Proof. By Lemma (3.1) and Lemma (3.2), we may assume that Q=
‘1,0, - --,0). Then c is nothing but g.c.d. (p;, ---,p,). Let P,=AP+
20 for 220, p=0 and assume that P, is an integral vector satisfying
det(P, P)=1. Asdet(P, P)=pdet (P, Q)=pc=1, we have p=1/c. As
P, is an integral vector, Ap, € Z fori=1, - - -, n. This implies that A can be
written as 1=c,/c where ¢, is an integer such that ¢,p,+1=0 modulo c.
The last equation has a unique solution in 0<¢,<c¢ as g.c.d. (c, p)=

ng (poa .t '9pn)= 1.

Remark (3.4). By the abuse of language, we say that P, is on the line
segment PQ if P,= AP+ uQ for some non-negative numbers 1 and p.

Definition (3.5). Let PQ be a line segment of S,I'*(f) (=the two-
skeleton of I'*(f)). We say that the sequence of primitive integral vectors
P,, ..., P,is the canonical primitive sequence of PQ if the following con-
ditions are satisfied.

(i) If c=det(P, Q)>>1, there are non-negative integers c; (i=0, - - -, k+1)
such that

c=c >0 > >e=1>04,,=0

and

Pi+1=(Q+ci+1Pi)/Ci (i=0, :--, k) (P,=P, P,,,=0).
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(i) If c=1,n=2and P and Q are strictly positive, k=1 and P,=P+ Q.
(This condition is to have a good resolution.) Otherwise k=0.

The existence of the canonical primitive sequence is obvious by
Lemma (3.3).

Lemma (3.6). Assume that c=det (P, Q)>1 and let P,, --., P, be
the canonical primitive sequence of PQ. Let c, be as above and let m,=
(cicitei)e; i=1, -, k). Then each m, is an integer such that m,=2
and '

Let P.="(py;, - -+, Pni). Then

mi:(pji-1+pj1+1)/pjif0r anyj:(), cee, N

Proof. We prove the assertion by the induction on k. Assume that
k=1. Then P,=(P+Q)/c. Thus m;=(c+0)/c;=c and c=(p;+q,)/P;:
Assume that k>1. As P,=(Q+c,P)/c and P,=(Q - ¢,P))/c,, we have that

det(P, Py)=det(P, Q+c,P))/c;=det (P, Q)1 +cy/c)/c,=m,.
Thus m, is an integer and m,>2. As P,, - - -, P, is the canonical primitive

sequence of P,Q, by the induction’s hypothesis m; (i=2, - - -, k) are inte-
gers greater than or equal to 2 and we have

my— b _ete 1 ¢
my— & ¢y L4
Cy
1
m,

completing the proof of the first assertion. The second assertion is im-
mediate from the equality;

(ciit e )Pi=ci (P +Piyy).

Remark (3.7). By the same argument, the assertion of Lemma (3.6)
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is true for every primitive sequence P;, ---, P, on PQ such that
det (P;, P,.)=1 except that we have m;>1 instead of m,>2. They are
canonical if and only if m;>2 for i=1, - - ., k by the first expression of m,.
In particular, P, - - -, P, is the canonical primitive sequence of QP if and
only if P,, - - -, P, is the canonical primitive sequence of PQ.

(I) Division of S, I™*(f) (k=3).

Lemma (3.8). Let 4 be a k-simplex with primitive integral vertices P,
(=0, ..., k). Assume that c=det (P,, ---, P)>1 and det (P,, - - -, P;._)
=1.

(i) Let R be an integral vector in the triangle 4 such that det (P, - - -,
P, ., R)y=1. Then we can write

R=(cyPy+ - - -+ ¢, 1Py_s+Pp)fc

for some non-negative integers c,, - - -, ¢,_;- They are unique modulo c.
(i) There exists a unique R such that 0= c,<c for eachi=1, -- -, k—1.

Proof. We assume that R=3 % d,P, for non-negative rational
numbers d,, ---, d,. As det (P, ---, P,_,, R)=1=cd,, we have that
d,=1. Asdet(P, ---, R, ---,P,)is an integer and it is equal to d,c, we
can write d; = c,/c for some non-negative integer and c, is unique modulo c.

To prove the existence, we may assume, by Lemma (3.1) and Lemma (3.2),
k

that P,="*(1, 0, -++,0), - -+, Po_,="(0, -+, 1, - -+, 0) and Py="(py, - - -,
210, - -+, 0). Then cis nothing but p,. The integrability of R implies

c;+p,=0 modulo ¢ for =0, -.., k—1.

Thus there exists a unique ¢, such that 0<c¢,<{c, completing the proof of
Lemma (3.8).

Remark (3.9). (i) Note that R divides 4 into k41 k-simplexes
(Py --+, R, - .-, P,) with the respective determinant c,, - - -, ¢;_; and 1.
(i) If det(Py, --+,Pi_s, Pryyy -+ -, P)<c, then ¢;,>0. In particular, R
is not on the (k—1)-simplex spanned by P,, - -+, P;_{, P;,{, ++ -, P,.

Proof. Assume that ¢,=0 for brevity’s sake. Then det (P, - -,
P,_,, Ry=det (P, - - -, P,)/c which implies that det (P,, - - -, P,) is divisible
by ¢. Thus det (P, ---, P,)=c. In this case, the subdivision of 4 is the
cone of the subdivision of (k— 1)-simplex (2, - - -, Py).

(iii) Assume that ¢,>1. Asdet(Py, ---, Py_y, R)=1, det (Py, - - -, Py_y,
Py oo, Py, R)=1. Thus we can apply Lemma (3.8) to the simplex
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(Py, -+, R, - -+, P,) to divide it into smaller simplexes. Therefore by the
induction on ¢ we can subdivide 4 into k-simplexes with determinant 1.
We call such a subdivision a canonical subdivision of 4. By (ii), a ca-
nonical subdivision is canonical on its faces.

Now we consider the simplicial subdivision of I"™*(f). We first sub-
divide S,I'*(f) by the canonical primitive sequences. Assume that
Sy *(f) is subdivided into simplexes with the respective determinant 1.
Let & be a (k— 1)-dimensional cell of S,.I"*(f). We first subdivide & into
(k—1)-simplexes &, - - -, & without adding any other vertices. We may
assume that this subdivision is compatible with the subdivision of
Sy I*(f). Assume that &, - - -, £, _, are subdivided into simplexes with
the determinant 1 so that they are compatible each other and compatible
with the subdivision of S,_,["*(f). Take &,. If a (k—2)-dimensional face
of 4 has determinant 1, we apply Lemma (3.8) to subdivide &, into sim-
plexes with determinant 1. In this process, no vertices are added on &,, N
S [*(f) by Remark (3.9). We may also assume by Remark (3.9) that
this subdivision is compatible with the subdivisions of &, ---,&,_,. If
the determinant of every face of &, is greater than 1, we first take a can-
onical subdivision of a (k—2)-face and take the cone subdivision of &,, and
apply Lemma (3.8) to subdivide each of the simplexes. By the induction
on m, we can subdivide & into simplexes with the determinant 1. Thus
applying this argument to every (k— 1)-cell of S .I"*(f), we can subdivide
SeI*(f) into simplicial complexes which are compatible with the sub-
division of S, _.I"*(f).

Remark (3.10). There does not exist a unique way to subdivide a
k-cell into k-simplexes. See [8], [15] and [21] for further information.

§ 4. Resolution of V'

Let f be an analytic function with an isolated critical point at the
origin. We assume that f has a non-degenerate Newton boundary. Let
2* be a given simplicial subdivision of I'*(f). For each n-simplex o=
(P, «+ -, P,) where P,="(p,, - - -, p,,), We associate the (n-+1)-dimensional
Euclidean space C**! with the coordinate y,=(¥,q > Y,.) and the
birational mapping #,: C**'—C"*! which defined by #,(y,)=(z, - - -, 2,)
and z,=p?s...y?» By the abuse of the notation, we write z=(y,)".
Let X be the union of C**! for ¢ which are glued along the images of =,.
Let #: X—>C™*" be the projection map and let ¥ be the proper transform
of V. 1t is well known that z: ¥—¥ is a resolution of ¥ where = is the
restriction of # to ¥ ([8]).

Let d;=d(P;) and 4,=4(P,). By the definition of the simplicial sub-
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division, we have

@1 (4=1{0)

for some vertex Q of I'(f). We define
80 =Ta I T34

By the definition, g,,(y,) is a function of n variables y, ; (ji). If P, is
strictly positive, g,, is a polynomial with a non-zero constant. We can
write

210 =[] v 100,
By the definition of ¥, ¥ N C7+! is defined by f,=0 and
(7o e €O fo(oyr = +5 Yo,)=20,:=0}
={y, € Cv""; y,,,=8,(,)=0}.
Thus if P; is strictly positive, we have
4.2) 70 {y.,=0}¢
if and only if dim 4,>0.

Remark (4.3). Recall that S, 7*(f) is the union of the cells of I'*(f)
whose dimension is less than or equal to k. (The dimension of a cell de-
creases by 1 if we consider the projection into a hyperplane.) Note that
Pis in S,I"*(f) if and only if dim A(P)>1.

Corollary (4.4). Assume that o NS, [*(f)=¢. Then VN C*'C
(C;k)n+l.

Let P be a vertex of 2* such that dim 4(P)=1 and leto=(P,, - - -, P,)
be an n-simplex such that P,=P. We define

E(P, 0')={ya; ya,n=07 gA(P)(yo',O’ °c 'aya.n—l)z()}'

E(P; 0) is a smooth divisor of ¥ C?*! in the neighbourhood of z;(0) by
the non-degeneracy assumption of the Newton boundary I'(f). By the
definition of z,, we have

4.5 7,(E(P;0))={0} if and only if P is strictly positive.

Now we will study the gluing map between C?*! and C**' where
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t=(Qy - - -» Q). We can write
n
0:,=2,2;;P; for i=0,..--,n.
=0

Then y,=#,;'-#(y)=~#,-..(») where o'z is the matrix A=(2;;). Namely
we have

(4'6) yo,i=y£,t8' ° ’yifﬁ (i=0, ct I’l).

In particular, if Q,=P,=P, we have 1,,=0 except for i=n. Let A=
(Zi)ozt,3<n and let /=Y, -+ +, Veru-d) and ¥, =(¥,,0» - - =5 Vs,n-1). Then
Vo=)*and y, ,=yig- - -y and 2,,=1. Thus E(P;r) is birationally
glued with E(P; ¢). Thus the union of E(P; ¢) for n-simplexes ¢ such that
¢ contains P as its vertices is a divisor of ¥ and we denote this by E(P).
If P is a strictly positive vertex, E(P) is a compact divisor such that z(E(P))
={0}. The topology of E(P) will be studied in the following sections.

We say that vertices P, - - -, P,_, of X* are adjacent if there is an
n-simplex which contains P, - - -, P, _, as its vertices.

Lemma (4.7). Let P, (i=0, - - -, k—1) be mutually distinct vertices of
2* with dim A(P,)=1 for i=0, - .., k—1. We assume that P, is a strictly
positive vertex. Then the intersection E(P)) N - - - N E(Py,_,) is non-empty if
and only if {P} (i=0, --.,k—1) are adjacent and dim N, 4(P)=1.
N E(P,) is a compact manifold of dimension n—k.

Proof. Note that E(P;) N C"*! is non-empty only if P, is a vertex of
o. Thus if 4= N,4(P,) is non-empty, there exists an n-simplex o=
(P, -+, P,). Wehave

MEP) N €
={y¢7 € C:H]; yv,i=0 (i=0: tt k——l) gA(ya,k' * 'yo,n)=0}'

Thus this is non-empty if and only if dim 4>1. N, E(P,) is compact as
it is a closed subspace of the compact divisor E(P;). The smoothness is
immediate from the non-degeneracy assumption of I'(f).

It is easy to see that the divisor E(P) is connected if dim 4(P)>1.

However

Lemma (4.8). Assume that P is a strictly positive and dim A(P)=1.
Then E(P) has (r(4(P)) +1) connected components where r(4A(P)) is the
number of the integral points of the relatively interior of A(P). Each com-
ponent is rational.



414 M. Oka

Proof. We can find a simplex ¢=(P,, - - -, P,) such that P=P, and
A(P)DAP) for i=0, - .., n—2 and A(P,_,) is one of the boundary of
A(P). Let fyp(2)=> 1%ra,zt where v, (i=0, - - -, r+1) are the integral
points on A(P) in this order and g, and a,,, are non-zero. Then E(P; o)
is defined by v, ,=0 and g,\(¥, ._1)=0. As the number of the integral
points on 4(P) and on the support of g, (¥, .-, is equal, we may assume
that

r+1

gA(P)(yv,n—l)ZiZ_; Yo

Thus the non-degeneracy assumption on A(P) implies that E(P; o) is the
disjoint union of r+1 (n— 1)-dimensional planes

L(o.)i:{yu,n—lzgi and ya,nzo}

where &, (i=0, - - -, r4-1) are non-zero and mutually distinct. - As E(P)
is a non-singular algebraic variety, this implies the assertion. We can
directly see this as follows. Let r=(Q,, - -+, Q,) be an n-simplex such that
AHQ)D A(P) for j< s and Q,=P and 4(Q,) is a single point for k>s for
some s. We can find a simplex §=(R,, - - -, R,) such that R;=Q, for j<s,
R,=Pand A(R,)D A(P) for k<n—1. Watching the gluing map carefully,
we can see that E(P; )T E(P; 8). Thus E(P) is covered by E(P; g) where
o is of the above type. Assume that ¢ and @ are as above. Then the
gluing matrix A==(1,;) of C**' and C2*! satisfies 4,,=0fori<nand 1,,=1.
As{Py, ---, P, 5, P,} and {R,, - - -, R,_;, R} generate the same Z module,
we have that 2, _;,=0 for i<<n—1 and 2, _jy(n_=¢ Whereeis 1 or —1
according to whether R, _; is on the same side of P,_, or not with respect
to 4(P)*. Thus the component y, ,_,;=§, corresponds to the component
V5.n_1=E&;. Thus the union of E(P;¢) for ¢ is a disjoint union of r+1
rational varieties as desired.

§5. Topology of the exceptional divisors

Let g(u,, - - -, u,) be a polynomial with support S(g). We say that
g is globally non-degenerate (=0- non-degenerate in [20]) if the equation

gi=2800) 980 _
o, ou,
has no solution in (C*)" for any face 4 of S(g). In[17], we have proved

Theorem (5.1). Let g be a globally non-degenerate polynomial. Then
) 2(C*)"—g ' (0)=(—1)"n! n-dim. volume S(g).
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(i)  If the dimension of S(g) is greater than or equal to 3, 7, ((C*)"—
g %0)) is a free abelian group of rank n+1.

By the additivity of the Euler characteristics and (i) of Theorem (5.1),
we have

Corollary (5.2) ([20]). Let g be as above and let V*=g='(0) N (C*)".
Then 2(V*)=(—1)"*'n! n-dim. volume S(g). (Here n-dim. volume implies
the n-dimensional volume.)

In this section, we study the topology of exceptional divisors of the
resolution z: ¥— ¥ constructed in Section 4. Let g=(P,, ---, P,_,) be a
(k—1)-simplex of 2*. We define E(g)=E(P,, - - -, P,_,) by N L E(P,)
and E(a)*=E(P,, - - -, P,_))* by E(0)— N g.p,E(Q). We define d(c)=
AP, -, P, )= NEFA(P,). We fix a strictly positive vertex P such that
dim 4(P)=1. The collection of E(c¢)* for ¢ which contains P as a vertex
gives a canonical stiatification of E(P).

Theorem (5.3). (i) Assume that t=(Py, P, - -+, P;_,) be a (k—1)-
simplex of X*. Let ¢=(P, P, - -+, P,) be an n-simplex such that rCo.
Then

WE@)*)=(—D""*(n—k)! (n—k)- dim. volums S(g,(¥.))-

In particular, the Euler characteristic X(E(c)*) is non-zero if and only if
dim 4(z)=n—k.

(ii) The birational class of E(zr) depends only on the coefficients of f
on A(z). It does not depend on the particular choice of X* either.

(ili) X(E(P))= > X(E(x)*) where the sum is taken for simplexes ©
which contain P.

Corollary (5.4). (1) XUEPY)=(—D"*'(n+1)! (n+41)-dim. volume
C(0, A(P))/d(P) where C(0, A(P)) is the cone of A(P) with the origin.

(ii) The birational class of E(P) depends only on the coefficients of
fon A(P). If dim A(P)=r is smaller than n, there exists a compact alge-
braic manifold M(P) of dimension r—1 such that E(P) is birationally equi-
valent to P"~" X M (P).

The proof of Theorem (5.3) and Corollary (5.4) occupies the rest of this
section. Let g=(P,, - - -, P,) be a simplex of 2* and let z=(P,,- - -, P,_,).
By the definition, E(z)* CC?*! and E(z)* is equal to

{(ya,k’ M) ya,n); gA(r)(yu)=0 and ya,jio for Jgk}'
The polynomial g,,(,) is defined by the equation
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f;i(r)(ﬂ'-a(ya)) = ong,(‘f)i) gd(t)(yo‘)‘

Thus it is easy to see that g,., is globally non-degenerate as f is non-
degenerate on 4(z). (Compare with Lemma (5.2) of [17]). Thus the
assertion of (i) of Theorem (5.3) is immediate from Corollary (5.2). The
assertion (iii) of Theorem (5.3) is also obvious by the additivity of the

Euler characteristics.
Assume that P= P, and dim 4(P)=n. Then E(P)* is defined by

Vo,o=8s)(Vori» -+ s Vo,w)=0 and y, ;0 for i=1,..-,n

where
J1my (@ (¥,))= i[[o yf,(f’i) s (Va)-

Thus we have the equality

(n+1)! volume C(0, 4(P))=(n+1)! volume C(0, S(z*f,ry))
=(n+1)! volume S(gy)d(P)/(n+1)
=n! volume S(g,(z)d(P).
This proves the assertion (i) of Corollary (5.4).

Now we prove (ii) of Theorem (5.3). Let X*, be another simplicial
subdivision of I'*(f) and let z’: 7’— ¥ be the associated resolution. We
denote the exceptional divisors in this resolution by E’(P), E’(r) etc. Let
o=(P,, - - -,P,)beasimple x of 3* and let ¢’=(Q,, - - -, Q) be a simplex of
2*. We assume that there is an integer k, 0<<k<n, such that 4(z)=4(<")
and dim 4(z)=n+1—k where z=(P,, - - -, P,_)) and z’=(Q,, - - -, Q_,).
E(7) is defined in C?*! by

ya,0= ctt =ya,k~1=O and gd(:)(ya,ka DR ya,n)‘:o'
E’(z") is defined in C%* by
ya',o= tee :ya’,k—lzo and gA(t’)(ya',k’ c Tty ya’,n)=0

where
gd(r’)(yo’) =f;1(r')(n';’(yv’))/ ong’(?ii)'

By the assumption, the Z-modules generated by {P,, ---, P;_,} and
{Qs, - -, Oy} respectively are equal and they are equal to the submodule
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of Z™ which is generated by the integral points of Closure (4(r)*). Therefore
the matrix A=0¢""¢ satisfies that 1,,=0 for j=>k and i<<k. Let 4, be the
unimodular matrix defined by 4,=(4;,); ;5. Write C?** as Ctx Cr**-*
and y,=(y;, y,) where yi=(Y,.0, = * *» Vo 5-0) and y,=(¥, 1> + - +, ¥,,,). Simi-
larly we write C7*' as C% X C%* "% and y,.=(34, 3). By the definition,
we have

L@ V) =F i (ToA00)-

As yi=(y,, y») and y,=(p;)", we have
gA(r)((.}.;)Az):gd(i')(.};) ‘Uk(ya’,i)”

for some integers «,, - - -, «,. The last equality implies that the birational
mapping ¢: C.*'"*—Cm*"F which is defined by y,=(y,)* induces the
birational mapping of E’(¢’) and E(s). This completes the proof of the
assertion (ii) of Theorem (5.3).

Now we will prove (ii) of Corollary (5.4). Let P be a strictly positive
vertex such that dim A(P)=r and 0<r<n. Let ¢=(P,, ---,P,) be a
simplex such that P=2P,_, and 4(P,)D A(P) for i=0, - - ., n—r—1. Then
E(P)* is defined by

yﬂ,n—r=0! ya,i:/'l—_o (Z#I’!—") and gA(P)(ya',‘n—T-H.’ i '>yrf,n):0

which is isomorphic to (C*)"~- "X E(P,, -+, P,_,)*. Thus we can take
E(P,. ---,P,_,) as M(P). This completes the proof of Theorem (5.3) and
Corollary (5.4).

§ 6. Surface singularities

In this section, we study the case n=2 in detail. Let z: ¥—¥ be the
resolution of ¥ constructed in Section 4. Let E, (i=1, ---, k) be the
irreducible components of the exceptional divisor z~(0). The resolution
graph I" is defined in the following way. For each E,, we associate a
vertex v, with weight m, which is the self-intersection number of E; in V.
When E; is not a rational curve, we also put the genus g(E,) to v,. If
E, N E; is non-empty, we join v; and v, by a line segment.

Recall that we identify S,I"*(f) with a graph which is the hyperplane
section of S,I"™*(f). Let 4 be a two dimensional face of I'(f). We define
an integer g(J4) as the number of the integral points on the interior of 4.
Let & be a one dimensional face of I'(f). Recall that r(&) is defined as
the number of the integral points on the interior of 5. Our main result
of this section is
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Theorem (6.1). Let n: V—V be the resolution of V which is associated
with X*. Then we have

(i) If P.is a strictly positive vertex of 3* such that dim 4(P)=2, the
genus of E(P) is g(4(P)).

(i) If P is a strictly positive vertex with dim A(P)=1, E(P) is a dis-
Joint union of (r(4(P))+ 1) copies of rational curves.

(i) Assume that 3* is canonical in the sense of (3.5). Then the re-
solution graph is obtained by the following surgery of S,I’*(f): Let PQ be
a line segment of S, I'*(f) and assume that P is strictly positive. Let ¢=
det(P, Q). If ¢>1, let ¢, be the unique integer such that P,=(Q-}+c¢,P)/c
is an integral vector and 0<c,<c. (Lemma (3.3)). Let

c 1
_:ml——_—.i,,;

c my,—

1

ny

where each m;=>2. We insert r(4(P)N A(Q))+1 copies of the following
chain of rational curves

—m, —m, —m,

between P and Q. If c=1 and Q is also strictly positive, the above chain is
-1
replaced by . If ¢=1 and Q is not strictly positive, we do
nothing. Those vertices which are not strictly positive are omitted after the
surgery.

(iv) Assume that dim A(P)=2. Let Q,, ---, Q, be the vertices of
2*NS,*(f) which are adjacent to P. Let P='(p,, p;, p,) and Q;=

“(Goi» G11s Go1)-  Then the self-intersection number of E(P) is

—~ 23 (P) N AQ@)+ Daye
Py

for any j=0, 1, 2.
Proof. To prove (i) of Theorem (6.1), we need the following Lemma.

Lemma (6.2). Let 4 be a compact convex polyhedron in R® with integral
vertices Py, - -+, P,. Then
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2 volume 4=2g(4)+ " (r(4) +1)—2
where 04= U¥_, 4,.

Proof. Step 1. Assume that k=3 and the integral points of 4 are
P, P, are P,. By a parallel translation if necessary, we may assume that
P,=%0,0). Then P, and P, are primitive integral vectors as P,P, (i)
contains no other integral points than P, and P; by the assumption.
Assume that c=det (P,, P))>>1. Then by Lemma (3.3), there is a positive
integer ¢, such that Q=(P,+c,Py)/c is an integral point and 0<c,<c.
Thus Q is an integral point of 4 and Q=£P, for i=1, 2,3. This is a con-
tradiction to the assumption. Thus det (P,, P,)=c=1. This implies 2
volume 4=1. Thus the assertion is true for this case.

Step 2. Assume that k=3 and that either r(d4,) or g(4) is greater
than 1. Then we can find an integral point P’ on 4 so that 4 is divided
into two or three triangles as in the following figures. ,

P,

Py

It is easy to see that the right side of the assertion in Lemma (6.2) is
additive under the above division. Thus the assertion is reduced to Step
1 by a finite subdivision.

Step 3. Assume that k>3. We prove the assertion by the induction
on k. We assume that the assertion is true for polyhedra with k£ — 1 vertices.
We divide 4 into two polyhedra by adding the line segment P,P,_, to 4.
As the right side of the equality in Lemma (6.2) is also additive under this
subdivision, the assertion is reduced to the induction’s hypothesis. This
completes the proof of Lemma (6.2).

Let P be a strictly positive vertex of S,I™(f) such that dim 4(P)=2.
Let 4, (i=1, - - -, s) be the boundaries of 4(P) and let Q, (i=1, - - -, )
be the vertices of 3* N S,I"*(f) which are adjacent to P and 4(P)N 4(Q,)
=4,. Let ¢=(P, P,, P,) be any 2-simplex of 2*. Then by Theorem (5.3),
we have

X(E(P)*)=—2 volume S(g))
= —28(S(gur)— 2 (4D + 1) +2
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Here we used the fact that g(4)=g(S(g,r))) and r(4)=r(S(g,) etc. By
Theorem (5.3), we have

EP) =UEP))+ Y, HEP, 0)

which is equal to —2g(4(P))+ 2, completing the proof of (i) of Theorem
(6.1). The assertion (ii) of Theorem (6.1) is immediate from Lemma (4.8).

We assume now that 2* is canonical. The assertion about the graph
is obvious by Section 4 except the assertion about the self-intersection

numbers. Let PQ be a line segment of S,/"*(f) such that P is strictly
positive. (Then dim 4(P)=2.) Let

c:Co>C1' A >ck=1>ck+1=O

be as in Definition (3.5). Then PQ has k vertices P, (i=1, - - -, k) which
are inductively defined by

Pz+1:(Q+Cz+1Pi)/C’¢

where Py)=P and P,,,=Q. Letg,=(P, P,,;, R, be a fixed two simplex
of 2* for each i=0, - - -, k. We know that E(P,) is the union of r(4(P)N
4(Q))+1 disjoint rational curves. We consider the holomorphic function
p,=n*z; on V for fixed j. Let P,="(py, Piss Poe) and R, ="(ry;, Fus, 1y2).
Then in the chart C?,

(Ve ) = V250 YOS Vil
Thus we get

k+1
(p)= i;PjiE(Pi)-i—D

where D is a divisor which does not intersect with E(P;). By Theorem
(2.6) or [10], we have

(6.3) (¢s)- E(P)=0
which implies
pji—lE(Pi—l)'E(Pi)+pjiE(Pi)2+pji+lE(P¢)'E(P,‘i+l)=0
fori=1, - - -, k. We can write E(P))= U7"_, E;, (r=r(4(P, Q))+1) so that

1 if s=t

Ei—ls'E‘it:{ .
0 if st
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As E(p,_)-E(P)=r(4(P, Q)+ 1, we obtain from (6.3) that

—E=(Psi-1+Ps: +1)/pji

which is equal to m,; where m, is as in Lemma (3.6). The case where c=1
and P and Q are strictly positive can be treated in the same way. This
proves (iii) of Theorem (6.1). The assertion (iv) of Theorem (6.1) can also
be proved by the same argument using the equality (p,)- E(P)=0.

In practice, the following is more convenient to compute g(E(P)).

Corollary (6.4). Let P be a strictly positive vertex of X* with
dim A(P)=2. Then

22 (E(P))= d“(lf) volume C(0, 4(P))+ :Zl(ru,zwr 0

where 04(P)=4,U - - - U 4,.
Now we give several examples of the resolution.

(I) Pham-Brieskorn variety

Let f(x, y, z)=x%-+y*+z% where a,>>2. Let d=g.c.d.(a, a;, @)
and let r,=g.c.d.(a;,_;, a;,1)/d where a; ;=a,. Then r(i=0, 1,2) are
mutually coprime and we can write

(6.5) ay=dr;_,ry..4; (i=0,1,2)
for some integers 4, (i=0, 1,2). S.I™(f) is as in Figure (6.6).
S
0 R

Figure (6.6)

Here P="(rd,dy, 14,4y, 1:dydy), Q="(1,0,0), R=40, 1,0) and S="(0, 0, 1).
Thus the resolution graph is star-shaped and all the vertices are rational
except possibly E(P). This is well known by [18]. By Theorem (6.1) and
Corollary (6.4), we have

Lemma (6.7). The genus of E(P) is



422 M. Oka

d{drorlrz”(ro+rl+rz)}/2+1-

In particular, E(P) is rational (assuming r,<r,<v,) if and only if
(i) d=ry=r,=1o0r
(i) d=2, ry=r,=r,=1. Note that (i) and (ii) are equivalent to
(i) a, is coprime with a, and a, or
Gy g.c.d. (a;, a;)=2 for i#j, (Compare with [3].)

Example (6.8). Let (ay, a5, a)=(2, 3,5). Then P=*(15, 10, 6). The
following are necessary data for the surgery.

(1) PQ:det(P, Q)=2 and (P+Q)2="(8, 5, 3).

(2) PR:det(P, R)=3 and (R+-2P)/3=%(10,7,4) and 3/2=2—1/2.

(3) PS: det(P, S)=>5 and (S+4P)/5="(12, 8, 5) and

3
4

=2 1

E(P) is rational by Lemma (6.7) and — E(P)* is (8+10+12)/15=2. Thus
the resolution graph is:

—2 -2 -2 —2 -2 -2 -2

-2
Example (6.9). Let (a,, a;, a;)=(2s, 35, 55). Then we have the same
dual Newton diagram. E(P) has genus (s— 1) (s—2)/2 and — E(P)*=2s.
Each branch of the resolution graph is replaced by s copies.

@ T,,,, singularities ([1])

Let f(x,y, 2)=xP4+y'+z"+xyz where l/p+1/q+1/r<1l. I'*(f)
has three strictly positive vertices P="(p,, p1, Do), @="(4s> 91> q.) and R==
Y(ry, 1y, Fy) Which correspond to y?+2"+ xyz, 2"+ x?+ xyz and x? -+ y?4 xyz
respectively. They satisfy

(6.10) Pg=pr=py+p:+D:
(6.11) GoP=qr =qy+ 91+ ¢
(6.12) rhp=rq=ro+ri+r.

The dual Newton diagram is as follows.
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where S=(1, 0, 0), T=(0, 1, 0) and U=%(0, 0, 1). It is easy to see that
the genera of 4(P), 4(Q) and A(R) are zero. As det (P, S)=g.c.d.(p,, p,)
=1 by (6.10). Similarly we have that det (Q, T)=1 and det (R, U)=1.
Note also that r(4(P, Q))=0, r(4(Q, R))=0 and r(4(R, P))=0. Thus by
Theorem (6.1), we have

Proposition (6.13).  The resolution graph of T, , . is a cyclic chain of
rational curves.

Example (6.14). Let (p, q,r)=(3,4,4). Then the resolution graph
is
—1

blow down

/, \—38 oo Tows
/ \ —4 -5
—2
_s 1

§ 7. Fundamental group of E(P)

Let P be a strictly positive vertex of a fixed simplicial subdivision 3*
and we assume that n>>2 and 4(P) is an n-simplex of I'(f), i.e. 4(P)is
spanned by (n+ 1)-vertices. In this section, we will show that the funda-
mental group of E(P) is a finite cyclic group whose order is independent
of the choice of 2*. First we show

Lemma (7.1). Assume n>2. Leto=(P, Q,, - - -, Q,) be an n-simplex
of 2*. Then the inclusion map j: E(P; 0)*—(C¥)" induces an isomorphism
of the fundamental groups where (C¥)"={y, e C***; y,,=0and y, ;0 for
i#0}.

Proof. When we move the coefficients of f on 4(P) keeping the non-
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degeneracy condition, then the corresponding exceptional divisor E(P)
moves diffeomorphically. Thus E(P)* also moves diffeomorphically.
Thus we may assume that

sy (Vo1 - - -,ya,n)=c+Z_,1aiy5i

where ¢ and a; (i=1, - - -, n) are non-zero. Here 0 and g, (i=1, -- -, n)
are the vertices which span S(g,»). We consider the weighted homogene-
ous polynomial A(y,)=>7_,a,y*. Then we have a canonical fibration

h: (C*)*—h}(0)—C*

and E(P)*=h"(—c). In Theorem (5.3) of [17], we have proved the map
b: (C*)"—h=(0)—(C*)" X C*, which is defined by b(y,)=(y,, K(y,)), in-
duces an isomorphism of the fundamental groups. Compared with the
exact sequence of the homotopy groups of the above fibration, the assertion
is now immediate from Theorem (5.3) of [17].

Let c=(P, Q,, - - -, Q,) be an n-simplex of X*. We say that ¢ is good
if dim 4(Q,)>0 for i=1, --.,n—1. Let é&=(P,R,, ---, R,) be any n-
simplex and assume that dim 4(R;) >0 if and only if i<k. It is easy to see
that there is a good p-simplex £=(P, R,, - - -, R,) such that R,=R, for
i=1, ..., k, By the definition of E(P; &), we have the inclusion E(P; &)C
E(P; £). Thus we need only good simplexes to calculate z,(E(P)) through
the Van Kampen theorem.

Letc=(P, Oy, - -+, Q,) be a good simplex of X* and let e, (i=1,
- .-, n) be the canonical generators of 7,(E(P; r)*)=r,((C*)")=Z". Note
that e, , (i=1, .-+, n—1) are trivial in m(E(P; 7)) because E(P;7)N
{».,:=0} is non-empty. Thus we get

(7.2) r(E(P; t)=Z

where Z is generated by e, ..

We fix a good simplex z=(P, Q,, - - -, Q,) from now on. For a vertex
Q of 2*, we define 4,(Q) by the determinant of the matrix (P, Q,, - - -,
Q._1, Q). The main theorem of this section is

Theorem (7.3). x,(E(P)) is a finite cyclic group of order d where d is
the greatest common divisior of {A.(Q)} where Q is adjacent to P in X* and
dim 4(Q)>0. d is independent of the choice of X*.

Proof. Let&é=(P, R,, - -+, R,) be a good simplex of 2* and let 4=
(2;) be the gluing matrix. Namely R,=>?_,2,,0, fori=1, - - -, n. Note
that 2, ,=A,(R;). Let e, ,(i=1, ---,n) be the canonical generators of
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m(E(P; £)*). Through the gluing map, e, , corresponds to > *_;2;e, ;.
As e, , is trivial in m,(E(P; ¢)) for i=1, - .-, n—1, we have

(7.4 r(E(P; ) UE(P; 0)=Z/d.Z

where d, is the greatest common divisor of A(R,) for i=1, -.-,n—1.
For any vertex of 2* which is adjacent to P and dim 4 (Q)>>0, there is a
good simplex ¢ such that Q is a vertex of ¢. Thus the first assertion of
the theorem is immediate from the above argument.

Now we prove that d is independent of the choice of *, LetP,, - - -,
P, .. be the vertices of I™*(f) which correspond to n-dimensional faces of
I’'(f) which are adjacent to A(P) i.e., 34(P)= Ui (4(P)YN AP)). Let
£ ; be the n-dimensional cell of /™*( f) which contains P and P, for k such
that k=17, j. Note that A(R)=4(P) N{N y..;,;4(P,)} for any vertex R of
Interior (5;,) and dim 4(R)=1. We can take a good simplex c=(P, Q,,
.-+, 0,) such that Q,, - - -, Q,_, € Closure (&,_, ;) and

(7.5) lei a;;P;+b,P, i=1,---,n—1
=1

where a;; and b, (i=1, - - -, n and j<i) are non-negative rational numbers.
As det (P, Q,, ---, Q;)=1 for 1<i<n, we can easily see by the induction
on i that

(7.6) a,=det(P, P,, ---, P,_)/det(P, P, - --, P,).

By (7.6), a;, (i=1, - - -, n) are independent of the subdivision 2*. Let Q
be a primitive integral vector of 2* with dim 4(Q)> 1.
By (7.5) and (7.6), we have

(77) A,(Q)::det (Pa le Y Qn-l: Q)
=det(P, P, ---, P,_;, Q)/det (P, P, - -+, P,_)).

The last equality says that A(Q) depends only on Q. Let&,;,=(P, R,,

-+, R,) be a good n-simplex such that R, e Closure (5,;) for k=1, - .-,
n—1. Then any integral vector Q on &,;, which is not necessarily a
vertex of X2'*, is contained in a Z-submodule generated by P, R,, - - -, R, _,.
Thus the ideals in Z generated by {A(R)), - - -, A(R,_,)} and by {4.(Q)
for all integral vectors Q € 5;;} respectively are equal. Thus the second
assertion of the theorem is immediate from (7.7). This completes the proof
of Theorem (7.3).

Corollary (7.8). Assume that A(P) is an n-simplex. Then the first
Betti number of E(P) is zero . In particular, the irregularity of E(P) is also
zero. .
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Example (7.9). Let f(z)=2z%+ .- +z%. Let P=%p,, - - -, p;) be the
weight vector of £. I'*(f) has four other vertices P,=%(1,0,0,0), - - -, P,
=%0,0,0, 1). Let 2* be a simplicial subdivision of I"*(f) and let ¢ be as
in the proof of Theorem (7.3). Let P} be the vertex of 3* which is on the
line segment PP, and P} is adjacent to P. Then P} can be written as

Pi=(P,+c;P)/det (P, P,)
=(P;+c.P)/gcd. {p;; j#i}

where ¢; is a non-negative integer (Lemma (3.3)). By (7.7), A(P)=
det (P, P,, P,, P})/det (P, P,, P,). Thus we have

A(P})=p,/g.c.d. (p., p,) g.c.d. (p,, s, P2)
A(P)=p,/g.c.d.(p, ps) g.c.d. (Do, Py, P2)-

As p,/g.cd.(p,. p,) and p,/g.cd.(p,, p;) are coprime, we have that d=1.
Namely

Proposition (7.10).  The central divisor E(P) of the Brieskorn variety is
simply connected.

The following example shows that z,(E(P)) is not trivial in general.

Example (7.11). Let f(z)=>3}_,(z2z;,2f,,+2") where z,,,=z, and
n=3. I'(f) has five compact 3-dimensional faces which are the support
of Z?::oz'%zi+12g+2 and Z%:lz?+izj+i+12;+z’+2+z_1i1+z_17‘1+3 (]=0’ ] 3) The
corresponding vertices in I'*(f) are P, P, -- -, P, where P="(1, 1, 1, 1),
P=1,2,3,1, P,='(1,1,2,3), P,='(3,1,1,2), P,=(2,3,1,1). For
example,

2, 4 | %, 4 | o2
212,23+ 232,25+ 232071+ 2+ 23

is a weighted homogeneous polynomial of degree 11 by the weight P,.
Geometrically, P is at the barycenter of P, --., P;. As det(P, P)=
det (P, P,, P;)=1 for any i=j, we do not need any other vertices on the
triangles T(P, P,, P;) to get a simplicial subdivision Y*. We take r=
(P, P,, P,, R) where R=(P,+2P,+3P,+2P)/5=%(2,2,3,3). As A(P)=
A(P)=35 and A(P,)=0 (i=0, 1), we have that d=5. Therefore r,(E(P))
=Z7|5Z.

§ 8. Exceptional divisors of the three dimensional singularities

In this section, we will study the topology of exceptional divisors
E(P) of the three dimensional singularities. Thus we assume that n=3.
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Let P be a strictly positive vertex of 3*(f) such that dim A4(P)=3. Let
4y, - -+, 4, be the two-dimensional faces of A(P) and let 5,, ---, 5, be
one-dimensional faces of 4(P). FEach &, is an intersection of two of 4.
Assume that £,=4,N4,. Then this implies that 4, 4*C5¥ where 5}
is the closure of ¥ ={0Q; 4(Q)=5,}. Let P, be the unique vertex of 4}
which is adjacent to P. Let T}, - - -, T:* be the vertices on 5¥ which are
adjacent to P and not on 4} and 4%. See Figure (8.1).

Figure (8.1)

Definition (8.2). Let c,=det (P, P,, P;). We say that Ty, ---, Tp*
are canonical at P if T} is inductively defined by

(8.3) Tlg'__(Pj—i"ck,LTIg—l'l_dk,lP)/ck,L—l
where
(8.9 0=cy,1» dp,, <Ci i (I=1,---,v)

and ¢, y=¢,, To=P,, ¢;,,=1. See Lemma (3.8). For a vertex Q of I*
with dim 4(Q) =1, we define a divisor C(Q) of E(P) by C(Q)=E(P)N E(Q).
This is non-empty if and only if Q is adjacent to P. Let {a, b} be a pair
of integers such that 0<a<b<3. Let P=%(p,, ---,p,) and Q="(g,, - - -,
q,). Wedefine [P, Q). , by (a, b)-minor (p,q,—P,q.) of 4 X2 matrix (P, 0).

Theorem (8.5). (1) C(TY) is a union of r((5,)+1) copies of rational
curves and the genus of C(P;) is g(4,).
(ii) The Euler characteristics X(E(P)) is equal to

24 volume C(0, A(P))/d(P)—23. g(d)+25+ k}qj v (r(ED+1).

(i) Let Tt (t=1, - - -, v,) be the vertices on 5} as above Let —n,
be the self-intersection number of a component of C(T%) and let
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Té=(Pj+Ek,1Pi+gk,1P)/ck
where ¢, =det (P, P;, P;). Then we have that n,=1 (m=1, - - -, v,) and

Cr 1

143

(iv) Assume that {T}} (¢t=1, - - -,v,) are canonical sequence in the
sense of Definition (8.2). Thus &, ,=c¢,;. Then n,=2. In particular, v,
and {n,} (I=1, - - -, v,) are determined by c, and c, , through the continuous
Jraction representation of ¢,/cy ;.

(v) The self-intersection number C(P,) is equal to

__ZQ:("(P’ Pia Q)+1)[P9 Qla,b/!PS Pi|a,b

where the sum is taken for Q such that (P, P,, Q) is a simplex of X* and
dim 4(P, P,, O)=1 and r(P, P;, Q)=r(A(P, P,, Q). (We assume that a, b
are so chosen that | P, P, ,=0).

Proof. Let g=(P, P, T}, R) be a 3-simplex of 3*. (Ify,=0, T}
should be replaced by P,.) Then we have seen in Section 4 that C(P,) is
defined by g,(¥,.5 ¥,.5)=0. Note that C(P,). C(T}) consists of r(5,)+1
points which are solutions of g,,(0, y,.5) =g:,(¥,;)=0. Thus we have

UCEN=UCPEI)+ 2] (r(EI+D.

D8k

The first term is equal to

—22(d)— 2, (r(FJ+D+2
A4; D8

by Lemma (6.2) and Theorem (5.3) (i) and the invariance of the number
of the integral points on a polyhedron by a unimodular matrix. Thus we
have that X=2-—2g(4,) which says that the genus of C(P;) is g(d4;). The
rationality of C(T}) is derived by a similar argument or Lemma (4.8). Now
the assertion (ii) is immediate from the additivity of the Euler characteristic
and Corollary (5.4).

Now we study the self-intersection numbers of C(T}). Let T}
(I=1, --.,v,) be as in Figure (8.1). By Lemma (3.8), we can write

(8~6) Tléz(Pj—l_Ek,lTé—1+(zk,lp)/5k,l—l



Hypersurface Singularities 429

for /=1, - -, v, where ¢, ;=c, and ¢, ,,=1. Here ¢, ;>0 but d,,, might
be a negative integer in general. We consider the meromorphic function
o=n*(zl*/z2) on E(P). Llet o,=(P, T}*, T}, R,) be a 3-simplex of 2*.
Then it is easy to see that

3

o(re)=I1 ¥ei.

where
d1:|P’ Tlé_lla,b’ d2=]P7 Tlé}a,b and d3:lP> Rl|a,b

which implies that

v +1

(@)= 3 |P, THe C(TD+D

where D is a linear sum of C(Q) for which C(Q)NC(T%) is empty for
m=1, --+,v,. (To=P, Ti*'=P,) As (p)-C(TPH)=0 (Theorem (2.6)
of [10]), we have

(87) IPa T?—lia,bC(Tiyen_l)' C(T?)—{—IP, T;cn]a,bC(T;cn)z
+1P> T;n+lla,bc(Tkm+l)' C(T;cn)'___o

form=1, ---,v,. As C(T'™) has (r(&,)+ 1) components, (8.7) implies
(88) nmz(lpa Tkm—lla,b"]—IP’ T;cn+1|a,b)/lpt Tkmla,b'
On the other hand, (8.6) implies that
(89) Ek,m-llpa Tkmla,bsz,mlPa T;crL—l a,b+IP’ Pj]a,b'
We prove the assertion (iii) by the induction on v,
(a) Assume that y,=1. Then the assertion is immediate from (8.8)

and (8.9).
(b) Assume that y,>1 and

c 1
—_ﬂ =ny—
Cr,2 n;—

Then we have
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n,— = =
ny— Cx,1

From (8.9), we can obtain the equality
(B10)  (Com-1FCopm e Py T =Com(P, T oot 1P, TE o)
which implies that
N, = (Ct,m -1+ Coym+1)/Citym:
Thus #,,>1 and
(M€ 1 —Cr,2)[Cr1=C4Cr 1
which proves the assertion.
Now we prove the assertion (iv). Assume that &, ,=c, ,, and
Cr==Chig > Cpy >+ =+ >0 =1
Then by (8.8) and (8.10), we have

nm:(ck,m—1+ck,m+l)/ck,m>1

which implies n,, 22, proving the assertion. The assertion (v) is also easily
obtained by the equality (¢)- C(P;)=0.

§ 9. Canonical divisors

Let 7: V—V be the resolution of~V associated with 2*. In this sec-
tion, we study the canonical divisors K of ¥ and K, of E(P) respectively.

(I) The canonical divisor K of 7.

Let #: X—C™"*!be the projection map constructed in Section 4. Recall
that ¥ is a complex submanifold of codimension one of X. Letw’ bea
meromorphic n-form on a neighbourhood of the origin of C**! such that

o' Ndf=dz,/\dz,/\ - - - \dz,.

It is easy to see that the restriction o of 0’ to V' is a meromorphic n-form
which does not depend on the choice of w’. We denote w by dz, A\ --- A
dz,/df. We want to know the local expression of the meromorphic n-form
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n*(w) on V. Let 6=(P, ---, P,) be an n-simplex of 3* and let P,—
“(Pos> * + +» Pri)- Then we have

#*(dzy/\ - - - Ndz,)=det (p“)f[lyffidy,,yo/\ A

where 8,=|P,|—1 and |P,|=377_,p;;. Similarly we have
*(df)=d(#*f)
—d| [0 £.0)]
=d[[] {71 () + [T yiT 0 df...

Here f,=0 is the defining equation of ¥ in C?*!. We get a meromorphic
n-form @, on C**! by taking the “residue”:

@, =2 (dzy\ - - - \Ndz,)[#Fdf
=[] y:2(dy,,o/\ - - - Ady, . /df,)

where a(P,)=|P;,|—d(P)—1. As we have the equality:
@, N\EFdf =¥ (dzy/\ - - - Ndz,,),

we can easily see that the restriction of @, to ¥ is equal to z*(w) by the
above property. Note that dy, ;A - - - Ady, ./df, is a nowhere vanishing
n-form on ¥ N C**'. Thus we obtain

Theorem (9.1). K=(@)= 5 a(P)E(P) where a(P)=|P|—d(P)—1
and the sum is taken for the vertex P e X* such that dim A4(P)>0.

Corollary (9.2). The coefficient (P) of K does not depend on the
choice of 2* which contains P as a vertex.

By applying Theorem (9.1) to Theorem (1.5) of [5], we can calculate
the signature of the Milnor fibre F of f in the case of n=2 from the
Newton boundary I'(f).

It is well-known that the canonical divisor K of the minimal resolu-
tion 7: V—V of the isolated surface singularity satisfies that —K>0
where the equality holds only for rational double points. For a hyper-
surface singularity of dimension 2 with a non-degenerate Newton bound-
ary, this can be proved by the following corollary.

Assume that n=2 and let p="(p,, p,, p,) be a strictly positive vertex
of 3* such that dim 4(P)=2. Then :
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Corollary (9.3). Let P be as above. Then a(P)=0 if and only if
A(P)D S(h) where h is one of the following weighted homogeneous poly-
nomials and S(h) is the support of h, up to a permutation of the coordinates.

(4
(i) X2 yi- e+t
(ii) Xx*+)*4+2yz¢ (k=2a—1)
(i)  x®4-xy4zF+?
i) x*+xy+yz* (k=ab—1)
(v) xy+xotiz4z¢ (b<c,k=c—1)
i) xy+xoz¢4+yz¢ (>0, k=ad4c—1)
(vil) xy+x°zl+xz¢ (0<c<a, 0<b<d)

(D)
(1) x*+yz°+yt (k>3)
(i) x*+y'+z° (D)
(i) x*+yz(z+2y%) (k=2d+1)
(iv) x*42xy°+yz* (k=2a+1)

(Eo)
(i) x"+y'+z
(il) x*+4y°+2xz°

(E2) Xyt yz’
(E) Xty
(M)

(1) X*+y(y*+2), b<d+2
(i) x*+3xp°+y’z, b<a+l

) xyt+y°zi(y*+z2°), d>(a—1e.

Proof. Assume that a(P)>=0. By Theorem (9.1), «(£)=0 if and
only if |[P|>d(P). Note that |P| is the degree of the monomial xyz by
the weight P. Thus 4(P) contains no vertices (7, j, k) such that 7, j, k>0.
We assume that p, > p,, p,.

(@) Assume that (1, 1, 0) (or (1, 0, 1)) is on 4(P). It is easy to see
that any 2-simplex, which contains (1, 1, 0) and has a strictly positive
weight, is one of (i) ~(vii) of (4;). Note that (ii) ~(vi) reduces to (i) by
suitable changes of coordinates. For example,

(iv): x*4xy4yz=x"4y(x+2")=X—-Z)+XY=X(Y+ - )+
(__ l)azab'

vi): xp4xz4yzt =p(x+z)+x 2 =XY+(X—Z)Z°=X(Y +
.o )+(_ 1)aZab+c.
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(vii) 1s reduced to 4, of two variables by
Xy x2° - xz4 =x(y+ x4z -+ x°"1z%).

Thus we assume that neither (1, 1, 0) nor (1, 0, 1) are on A(P) from
now on.

(II) Assume that (m, 0,0) e 4(P). Then d(P)=mp,<|P| implies
that m=2 or 1. m=1 is omitted as V'=/~%0) is non-singular in this case.
Thus m=2.

(1) Assume that 4(P) contains two integral points (0, b+d, ¢) and
(0, b, c+e) for b, c=0, d, e2>0. This corresponds to y°z¢(y*+z°). Note
that (2,0,0), (1, 1, 1) and (0,2, 2) are colinear. We may assume that
b=c. By the assumption that a(P)=0, we have

c<2 and dQ-—c)>e(b+d—?2).

The following cases are possible.

(i) c=1,b=1,e=1

(ii) e¢=1, b=1, d=1,

(i) ¢=0, e=1, b<<d+2,

(iv) ¢=0,e=2, b=1

(v) ¢=0, b=0, d=3, e=3,4,5 (or e=3,d=3,4,5).

(i) corresponds to (iii) of (Dy): x*4yz(Qy*+z)= x>+ y(z+y?)y —3*¢*%. (i)
is reduced to (i) by changing y and z. (iii) corresponds to (i) of (M). (iv)
corresponds to (i) of (D). (v) corresponds to x*+4)°+z¢(e=3, 4, 5) which
are (ii) of (D,), (i) of (Ey) and (E,).

(2) Assume that 4(P) contains only one point on the (, z)-plane.
As dim 4(P)=2, we may assume that (1, a, 0) and (0, b, ) are on A(P)
and e>0. As (0, 24, 0) is on the plane which is spanned by 4(P), we can
use the discussion of (1) (¢=0, d=2a—b) to see that «(P)=>0 if and only
if (i) e=1, b<<a+-1, or (ivy e=2, b=0, or (v) e=2, b=1, or (vi) ¢=0,
b=0, a=2, e=3. (iiiy corresponds to (ii) of (M) and note that x*+ 2xy*
+yiz=(x+y%)?—y**+y'z. (vi) corresponds to (ii) of (4,). (v) corre-
sponds to (v) of (D,), (vi) corresponds to (ii) of (E,).

(3) Assume that 4(P) contains no point on the (y, z)-plane. Then
A(P) contains (1, a, 0) and (1,0, m) for some a, m>1. Thus the plane
generated by 4(P) contains (0, 2a, 0) and (0, 0, 2m). Thus we can use (1)
to conclude that there is no such A(P).

(II1) Assume that A(P) does not intersect with the x-axis. As p,=>
P2 Ps and d(P)<a(P), we may assume that (1, @, 0) is on 4(P) with a>1.
Then it is easy to see that there is no point (1, 0, m) on 4(P). Thus there
are two integral points (0, b-+d, ¢) and (0, b, c-+-¢) on A(P) such that
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b, c=0and d, e>>0. We need the condition:
P+ ap,=(b+d) p,+ cp,, dp,=ep,

and p,+ap,<p,+p,+p,. This is equivalent to d>(a—1)e which corre-
sponds to (N), completing the proof of Corollary (9.3).

(II) The canonical divisor K, of E(P)

Now we consider the canonical divisor K, of the exceptional divisor
E(P) for a fixed P. Let 6=(P,, - - -, P,) be a fixed n-simplex of 2* where
Py=P. Let C;={y, € C7**; y,,=0}. E(P)is defined by g,(¥s,1, - * *>¥s,n)
=0 where

CX) &(Vot s Vorn) H VIO =f o7 (¥.))-

We consider a holomorphic s#-form w, on E(P)N C" Wthh is the restric-
tion of an »n-form &, on C? which satisfies

(95) C;)o'/\dga:dya,l/\ ct /\dya,n'

It is easy to see that w, is nowhere vanishing and w, does not depend on
the choice of &,. For brevity’s sake, we write

wo=dya,1/\ et /\dya,n/dgv'

Let z=(Q,, - - -, Q,) be another n-simplex such that Q,=P. Let
Q,=> " o4 P; for i=1,---,n and let A=(2;;) (1<4,j<n). Then we
have

(9.6) = ﬂ yis (i=0, ---,n)

Aw=1 and 2;,=0 for j>0. By a similar calculation as in (I), we have
(97) dyo,l/\ M /\dyu,n:det (A) Hlyf,ii dyr,l/\ M /\dyt,n

©0-8) &)= 113187

where g,=2 1., 4;— 1 and 7,=d(Q,)— 2 7.0d(PA;. Let A, = N7_,4(P)).
Then A, is a vertex of I'(f) and we have

é}od(Pj)lﬂZjZ‘,:)ZﬂPj(AG):Qi(Aa)'
Thus we get 7,=d(Q,)—Qu(4,). Let a;=0,A4,)—d(Q;)+> " Ai—



Hypersurface Singularities 435
and w, be the restriction of &, to E(P)N C* where
(Dt=Z:lyg,ii(dyr,l/\ s /\dyr,n/dgr)
=

By (9.6), (9.7) and (9.8),
d)r/\dgazdya,l/\ Tt /\dya,n

on E(P)NC*NCr. Thus we get w,=w, on E(P)NC*NC?. Therefore
the collection of {w,} defines meromorphic n-form w. Note that 1;, depends
only on ¢ and Q,. Thus we obtain

Theorem (9.9). K.=(0)=>, a(Q)C(Q) where the sum is taken for
every vertex Q of X* which is adjacent to P and dim A(Q)>1. C(Q) is
defined by E(P)N E(Q) and

Q) =0Q(4,)—d(Q)+ 3] 2,(Q)—1
where Q=7371_,2,(Q)P;.

Remark (9.10). Assume that n=3. C(Q) is a smooth curve of genus
g(A(PYN A(Q)) if dim (A(P)N(Q)=2. If dim(AP)N(Q)=1, C(Q) has
r(4(P) N 4(Q))+1 connected components. Each component is a rational
curve (Theorem (8.5)).

Example (9.11). Let n=3 and f(z) be > _,(2}z;,,2}..+2}") as in Ex-
ample (7.11). Let P='(1,1,1,1). P corresponds to the homogeneous
part of degree 7. There are 4 branches PP, in I'*(f) at P where P,=
‘1,2,3, 1, P,=(1,1,2,3), P,="3 1 1,2) and P,='(2,3,1,1). As
det (P, P;, P;)=1 for i+j, we need no vertices on T(P, P;, P,). Leto=
(P, P,, P,, R) where R=(P,+2P,+3P,+2P)/5="2,2,3,3). Thus the
affine equation of E(P) in C? is

B+ yi+y,+1=0.

By Theorem (9.9), we have K, = — C(P,)+2C(P,). By Theorem (8.5), we
have that C(P,)*=1 for i=0, ---, 3 and C(P,)-C(P;)=1. Thus K% =1.
On the other hand, C(P;) is a curve of genus 2 by Remark (9.10). There-
fore the Euler characteristic X(E(P)) is

XEP)=UEP)*)+ iZj,;X(C (Pi))_é 2(C(PYNC(Py)
=25—8—6=11.
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By Noether’s formula, we get p,=0. Thus E(P)is an algebraic surface
with ¢g=p,=0 and 7 (E(P))=Z/5Z. E(P) is called a Godeaux surface

(191, [13)).
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