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Leafwise Homotopy Equivalence and 
Rational Pontrjagin Classes 

Paul Baum and Alain Coones 

§ 1. Introduction 

Let V, V' be c~ manifoldsl ) and letf: V'~V be a homotopy equi­
valence. Denote the i-th rational Pontrjagin classes by Pt(V), Pt(V'). 

Pi(V) E H4i(V; Q) 

Pt(V') E H 4i(V'; Q) 

If f is homotopic to a homeomorphism, then the theorem of S. P. 
Novikov [16] applies to give 

i=I,2, ... 

where f*: H4i( V; Q)~ H4i( V'; Q) is the map of rational cohomology 
determined by f 

Thus whether or not f*: H*(V; Q)~H*(V'; Q) preserves the ra­
tional Pontrjagin classes may be viewed as the first obstruction to deform­
ingfto a homeomorphism. The first examples of homotopy equivalences. 
which do not preserve the rational Pontrjagin classes were given by 
I. Tamura [17] and also, independently, by Shimada and R. Thom. 
These examples are reviewed in SectionS below. 

In this note we shall outline a proof that a leafwise homotopy 
equivalence of compact foliated manifolds does preserve the rational 
Pontrjagin classes if one of the foliations has negatively curved leaves. 
The precise statement of our result is given in Section 2 below. Of 
course, this raises the question of whether a homotopy equivalence satis-
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fying our hypothesis is homotopic to a homeomorphism. 
The case of negatively curved leaves, which we study, contrasts quite 

sharply with the case of positively curved leaves. The examples of 
Tamura-Shimada-Thom [17] are 4-sphere bundles over the 4-sphere. 
These manifolds are foliated (in fact fibred over S4) with positively curved 
leaves and the homotopy equivalences considered are leafwise but do not 
preserve the rational Pontrjagin classes. 

The positively and negatively curved cases are unified by a conjecture 
which we call the Novikov conjecture for foliations. This conjecture is 
stated in Section 6 below. 

§ 2. Statement of Theorem 

A foliation is a pair (V, F) with Va Coo manifold and F a COO inte­
grable sub-vector-bundle of the tangent bundle TV. Given two points 
x, y of V set 

x~y (F) 

if x and yare on the same leaf of the foliation. Let (V', F') be a second 
foliated manifold. A continuous map f: V'-+ V is leafwise if whenever 
w ~ p (F') then fw ~ fp (F). Two leafwise maps /o,.t;: V' -+ V are leaf wise 
homotopic if there exists a homotopy ft> 0::;:: t < 1, such that for all p E V' 
and all t E [0, 1] 

The notation 

will indicate that /0 and.t; are leafwise homotopic. 
Denote the identity maps of V, V' by lv, Iv" A leafwise map f: V' 

-+ V is a leafwise homotopy equivalence if there exists a leafwise map 
g: V -+V' with 

and 

g of ~ lv' (F' , F ' ). 

Let < , ) be a Coo Euclidean structure fo'r F. Thus < , ) assigns a 
positive definite real-valued inner product to each fibre Fx. <,) restricts 
to give a Coo Riemannian metric for each leaf of the foliation (V, F). 
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(2.1) Definition. A foliation (V, F) has negatively curved leaves if 
there exists a C~ Euclidean structure for F such that each leaf has all 
sectional curvatures non-positive. 

(2.2) Definition. Let f: V' ~ V be a continuous map. Denote the 
i-th rational Pontrjagin classes of V, V' by Pi' P:. f preserves the rational 
Pontrjagin classes if for i = 1, 2, ... ,f*(Pi)=P: where f*: H4t(V; Q) ~ 
H4i(V'; Q) is the map of rational cohomology determined by f 

(2.3) Definition. A foliation (V, F) is orientable if V is an orientable 
manifold and F is an orientable R vector bundle on V. 

(2.4) Theorem. Let (V, F) and (V', F') be C~ orientable foliations 
with V and V' compact. Let f: V' ~ V be a leafwise homotopy equivalence. 
Assume that (V, F) has negatively curved leaves. Then f preserves the 
rational Pontrjagin classes. 

§ 3. Outline of Proof 

The proof of Theorem (2.4) uses ideas of G. Lusztig [13], G. G. 
Kasparov [11] [12] and A. S. Miscenko [14] [15]. In fact, the proof is 
done by suitably adapting their methods to the foliation context. There 
are two parts to the proof. The first part is analytic and uses the K 
theory of C* algebras. The second part is a translation from an essen­
tially analytic conclusion to topology. The negative curvature hypothesis 
is used only in the second part. 

To begin the proof, let 1C be the fundamental groupoid along the 
leaves of (V, F). A point of 1C is an equivalence class of continuous 
paths 

r: [0, I]~V 

such that for all t e [0, 1] 

r(o)-r(t) (F). 

Thus r stays within one leaf of the foliation. Two such paths ro, r l are 
identified if 

ro(o) = rl(O) 

ro(1) = r l(1) 

and there is a homotopy r t from ro to r l with each r t staying within the 
same leaf of F and with endpoints fixed. 
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r teO) = r 0(0) 

r t (1)=ro(l) 

t e [0, 1] 

t e [0, 1] 

te is then a C~ manifold which might not be Hausdorff. te comes equip­
ped with two maps to V. 

S 

te~V 
r 

s(r)=r(o) 

r(r)=r(l) 

te is a groupoid since two points r, t of te can be composed if r(r) = s(t). 

r(l) 

T(1) = r(o) 

T(O) 

The composition, denoted rt has s(rt) = reO) and r(rt)'= t(I). From te a 
C* algebra, denoted C~(V, F), is constructed by the same method used 
in [6] [7] to define C*(V, F). The only difference is that now the groupoid 
te is used instead of the holortomy groupoid. Except for this change the 
construction·is the same, and this construction is given in the appendix. 

A leafwise homotopy equivalence f: V' ~ V gives a Morita equi­
valence of the groupoids te', te. This establishes an isomorphism of the K 
theory of the C* algebras C;(V', F'), C~(V, F). This isomorphism will 
be denoted by 

(3.1) 

By hypothesis (V, F) and (V', F') are orientable. For p e V' let 2~(2fP) 
be the leaf containing p (fp). The compactness of Vand V' implies that 
f: 2~~2fP is proper. Choose the orientations of F and F'so that for 
each leaf !l'~, f: 2~~2 fp is orientation preserving. 

For simplicity, assume that the leaves of (V, F) and (V' F') are 
even dimensional. Choose C~ Euclidean structures for F, F' and let 
d+o, d' +0' be the Hirzebruch signature operators along the leaves. 
Restricted to a leaf 2;&, d+o is the Hirzebruch signature operator of 2;&. 
The index of d+o, denoted Index (d+o), is an element of KoC~(V,F). 
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(3.2) Index (d+o) E KoC~(V, F) 

The analytic part of the proof of Theorem· 2.4 is: 

(3.3) Proposition. Index (d+o) and Index (d' +0') correspond under the 
isomorphism J: KoC;:;(V'", F')~KoC~(V, F). 

(3.4) JIndex (d' + 0') = Index (d+o). 

Proposition (3.3) is proved by using the method of G. Lusztig [13], 
adapted to the context of Hilbert C* modules2). Proposition (3.3) is 
quite general and does not use the negative curvature hypothesis. Next, 
consider·the commutativediagraDl . . 

Ko~;:;(V', F,)LKoC~(V, F) 

(3.5) 
rl

' rl 

KO(F') ~ KO(F) 

lr' lr 
H*(V'; Q) t:" H*(V; Q). 

In this diagram t: KO(F)~KoC~(V, F) assigns to a symbol q, the index 
of the pseudo-differential operator !?)a along the leaves associated to q. 

(3.6) 

1:: KO(F)~H*(V; Q) is 

(3.7) 

where I is the dimension of the leaves of F, ch; KO(F)~H:(F; Q) is the 
Chern characterS), T: H*(V; Q)~H:(F; Q) is the Thom isomorphism, 
and Td (CQ9R F) is the Todd class of the complexification of F. 

(3.8) Td (CQ9R F) E H*(V; Q) 

For II: KO(F')~KO(F) in diagram (3.5) recall [2] that if Ml and M2 
are C'" manifolds and h: Ml~M2 is any continuous map, then there is a 
homomorphism 

0) J. Kaminker and J. Miller have also generalized Lusztig's method to Hilbert C* 
modules. . 
3)"KO(F) is the K theory of F with compact supports. H*(F; Q) is the rational 
cohomology of F with compact supports. Let BF, SF be the unit ball and unit 
sphere bundles of F. Since V is compact H:(F; Q)=H*(BF, SF; Q). 
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(3.9) 

Since f: V'_ V is leafwise the homomorphisms 

(3.10) 

fit together to give 

(3.11) 

Finally, f*: H*(V', Q)_H*(V; Q) is the Gysin "push-forward" map 
in rational cohomology. f* depends on the choice of orientation for V, 
V', and this choice is assumed made so that f is orientation preserving. 

This completes the description of the commutative diagram (3.5). 
The commutativity of the diagram requires proof, but we omit the details 
of this argument. 

Let u(d+5) and u(d' +5') be the symbols of d+5 and d' +5'. 

u(d+5) E KO(F) 

u(d' +5') E KO(F') 

From (3.4) one would like to conclude that in KO(F) there is the equality 

(3.12) j;u(d' +5')=u(d +5). 

(3.12) is clearly implied by (3.4), the commutativity of (3.5), and 

(3.13) Proposition. Let (V, F) be a Coo foliation with V compact 
and with negatively curved leaves. Then 

is injective. 

The proof of (3.13) is summarized in Section 4 below. 
Granted the validity of (3.12), return to diagram (3.5) and observe 

(as in [3]) that 

(3.14) 

(3.15) 

'(;u(d + 5) = L(F) 

'(;'u(d' + 5') = L(F'). 

Here L denotes the L polynomial in the Pontrjagin classes. (3.12), (3.14) 
and (3.15) imply: 

(3.16) 
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which immediately reformulates to 

(3.17) f* L(F)= L(F'). 

Let v, v' be the normal bundles of the foliations (V, F), (V', F'). 
For x e V, 

(3.18) 

At the level of topological microbundles, the pull-back via f of v is v'. 

(3.19) 

Hence by Novikov's theorem [16]: 

(3.20) 

(3.20) and (3.13) combine to yield 

(3.21) f*L(TV) = L(TV'). 

(3.21) implies thatfpreserves the rational Pontrjagin classes. 

§ 4. Proof of injectivity 

To prove Proposition (3.13) it is convenient (although not essential) 
to assume that (V, F) has even dimensional leaves and that F is a Spine 
vector bundle on V. The Thom isomorphism in K theory [1] then applies 
to give an isomorphism 

(4.1) 

C(V) denotes the C* algebra of all continuous complex-valued functions 
on V. There is the standard isomorphism 

(4.2) 

With the identifications (4.1) and (4.2), the homomorphism l: KO(F)--+ 
KoC:(V, F) of Proposition (3.13) becomes 

(4.3) 

By assumption F has a Spine structure. The Dirac operator D along the 
leaves of (V, F) gives an element [D] of KKo(C(V), C:(V, F» 

(4.4) [D] e KKo(C(V), C:(V, F». 
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Here KK is the bivariant K theory of G.G. Kasparov [1 n Quite generally, 
for two C* algebras A, B Kasparov's group KK(A, B) comes equipped 
with a map 

(4.5) 

So in our context we have 

(4.6) 0: KKo(C(V), C;(V,F ))~Homz(KoC(V), KoC;(V, F)). 

This map takes [D] E KKo(C(V), C;(V, F)) to t E Hom (Ko(C(V)), 
KoC;(V, F)) 

(4.7) O[D] = t. 

Hence to prove Proposition (3.13) it will suffice to construct an element .1 
in KKo(C;(V, F), C(V)) with 

(4.8) [D] Q9 .1= l c (v) 
C~(V,F) 

where Q9C*(V,F) denotes the Kasparov product: 

(4.9) KK(C(V), C;(V, F))@KK(C;(V, F), C(V))~KK(C(V), ceV)) 

The desired element .1 in KK(C;(V, F), C(V)) is obtained by the "Dual 
Dirac" construction of A. S. Miscenko [15]. This construction uses the 
negative curvature hypothesis. 

To construct the "Dual Dirac" element .1, as in Section 3 above let 
r, s be the two maps of 1': to V. 

r 
1':~V 

s 

s(T) = 7(0) 

r(7) = 7(1) 

On V there are the two i-Spin bundles associated to the Spine structure 
of F. Denote these by S +, S - . By hypothesis an Euclidean structure 
< , > has been chosen for F such that each leaf has all sectional curvatures 
non-positive. For x E V, let £'; =D(y-l(X), S';) be the Hilbert space of 
all D functions from r -lex) to S';. 

(4.10) 
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:Yf; is then ,a field of Hilbert spaces on V and so gives rise to a C(V) 
Hilbert C* mbdule., Moreover,C:CV; F) operates (on the left) on this 
Hilbert C* module by convolution. 'Similarly set:Yf; = LV -I(X), S;). 

Define an operator T.,: :Yf; ~:Yf; as follows. For x e V, let .2 x be 
the leaf containing x. Then s maps r 71(.~) onto .2",. 

(4.11) 

and thus y-I(X) is the universalcovei:ing space of .2",. The Riemannian 
metric of non-positive curvature on .2 x lifts to givf; a Riemannian metric 
of non-positive curvature on r -I(X). Hence r ":I(X) ,is acoPipll~te simply 
connected Riemannian manifold of non-negative curvature. ' In y-I(x) 
there is a distinguished point, namely the point 1", where 1", denotes the 
constant path at x. , Given any other point r'in y-I(X) thereis a unique 
geodesic in rl(x} fronir to 1.... Let ~(rr be the unit tangent vector to 
this geodesic at I.,. ~(i) may be viewed as an element of F ... , sinCe F:c is 
identified with the tangent space of rCoI(x) at 1..,. 

(4.12) 

Choose a small compact ball in y-I(X) centered at 1.... Let a: y-I(X) 
~[O, 1] be a COO function which is I outside the ball and is zero on a 
neighborhood of Ix. Then T:c: :Yf; ~:Yf; is defined by 

(4.13) (T",u)r= a(r)~(r)· u(r) x e V, r e y-I(X), u e :Yf; 

where . denotes the Clifford multiplication 

(4.14) 

The triple (:Yf;, £';, T",) determines an element L1 in the Kasparov group 
KKo(C:(V, F), C(V». The proof of Proposition (3.13) is now completed 
by showing that in KK(C(V), C(V» thereis the equality: 

(4.15) jDj ® L1= Ic(v) 
Cj;(V,F) 

§ 5. Examples of Tamura-Shimada-Thorn 

H denotes the quaternions. View S4 as HP', the quaternion pro:' 
jective line. Over HP' there is the canonical bundle E. As an H vector 
bundle E has fibre dimension one. As an R vector bundle E has fibre 
dimension 4 and 

(5.1) 
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In (5.1) P1(E) is the Pontrjagin class of the R vector bundle E. 
For each integer k let Ekbe the R vector bundle on S' which is the 

pull-back of E via a map S'~S' of degree k. Then: 

(5.2) 

1 denotes the trivial R vector bundle on S" of fibre dimension one. 

(5.3) 

Choose an Euclidean structure < , > for EkEtll and let Wk=S(EkEtlI) be 
the unit sphere bundle of EkEtl1. . 

Each Wk is a 4-sphere bundle over S'. Let p: Wk~S' be the pro­
jection. The evident section s: S'~Wk applie~ to the fundamental cycle 
of S' gives s*[S'] e H,(Wk; Z). Now H,(Wk ; Z),=ZEtlZwith the genera­
tors given by s*[S'] and [2] where [2] is the fundamental cycle of a fibre 
of the projection p: 'Wk~S', Then: 

(5.4) . 

(5.5) 

P1(TWk)s*[S'] = -2k 

P1(TWk )[2] =0 

According to a result of James and Whitehead [10] among the W k there 
are only thirteen different fibre homotopy types. From (5.4) and (5.~) it 
is clear that a fibrewise homotopy equivalence from Wk1 to Wk. (k1 =/=k2) 

cannot preserve the rational Pontrjagin classes. Hence by the result of 
James and Whitehead there are many fibrewise homotopy equivalences 
among the W k which do not preserve the rational Pontrjagin classes. 

With Ek as above let Vk=EkEtl1. Given a fibrewise homotopy 
equivalence between two W k , extend this radially to obtain a fibrewise 
homotopy equivalence between the corresponding Vk • These fibrewise 
homotopy equivalences among the Vk are proper and do not preserve the 
rational Pontrjagin classes. Note that since Vk is a vector bundle over S" Vk can be given a Riemannian metric such that each fibre has zero 
curvature. This shows that the compactness hypothesis in Theorem (2.4) 
is really needed, and cannot be replaced by the condition that the leafwise 
homotopy equivalence f: V ~ V'is proper. 

§ 6. Novikov conjecture for foliations 

As above, (V, F) is a C= foliation and l' is the fundamental groupoid 
along the leaves. B1' denotes the classifying space of the topological 
groupoid 1'. Since V is the units of l' there is a canonical map [9]: 

(6.1) A: V~B1' 
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re is itself a principal re-bundle over V and the map A of (6.1) is the 
classifying map of this principalre-bundle. 

(6.2) Conjecture. Let (V, F) and (V', F') be orientable Coo folia­
tions with V, V' compact. Let f: V' ~ V be a leafwise homotopyequiva­
lence. Choose orientations for V and V' so that f is orientation preserv­
ing. Then in H*(Bre; Q) there is the equality: 

(6.3) 

Remarks. In (6.3) [V], [V'] are the fundamental cycles of V, V'. L 
denotes the total L polynomial in the Ponti"jagin classes. 

f*: H*(V'; Q)~H*(V; Q) 

A*: H*(V;Q)~H*(Bre;Q) 

are the maps of rational homology determined by f and A. As usual n 
denotes the cap product so that L(TV) n [V] is the Poincare dual of 
L(TV). 

Conjecture (6.2) is the Novikov conjecture for foliations. It is 
interesting to see what (6.2) becomes at the two extremes. One extreme 
is when each leaf is a point. For this case f: V' ~ V is a homeomorphism 
and (6.2) becomes Novikov's theorem [16]. The opposite extreme occurs 
when there is only one leaf, i.e. F = TV, F' = TV'. In this case Bre is 
homotopy equivalent to BreI where reI =rel(V) is the fundamental group of 
V. Hence at this extreme (6.2) becomes the Novikov conjecture on the 
homotopy invariance of higher signatures [5]. In general, (6.2) can be 
viewed as a statement which interpolates between the Novikov theorem 
and the Novikov conjecture. 

Let .Ie be a leaf of the foliation (V, F). re,;(.Ie) denotes the i-th 
homotopy group of .Ie. If for every leaf.Ie, re,;{.Ie)=O for all i>2, then 
Bre= V. If Vis compact and (V, F) has negatively curved leaves this is 
the case, so Theorem (2.4) is a special case of Conjecture (6.2). 

Let n=dim V, l=dimR(Fx ), q=n-l. Let rq be the Haefliger 
groupoid [8] of all germs of homeomorphisms of Rq. The Haefliger 
classifying map [8]: 

(6.4) V~Brq 

for the foliation (V, F) factors through Bre. 

(6.5) 
). 

V~Bre~Brq 

Given the hypothesis of (6.2) there is then a commutative diagram 
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V'~Bir'~Brq' 
(6.6) 11 1 r 

V~B1C~Brq 

in wliich the right vertical arrow is the identity map of Br q' 
If (6.2) is valid, then the'following conjecture is also valid. The 

hypothesis is the same a$ in (6.2). , 

h:.V~Brq 

h': V'~Brq 

are the Haefliger classifying maps. 

(6.7) Conjecture. Let (V, F), (V', F') and/: V~V' be as in (6.2). 
Let a b~ any element of H*(Br q ; C)" Then 

(6.8) (h*a U L(TV»[V] == (h'*a U L(TV'»[V']. 

Remarks.' Due to Proposition (3.3), Conjecture (6.2) is implied by 
the isomorphism conjecture of [4]. Let (V, F) be any COO foliation. In 
[4] a geometric K theory group K:(V, F) is introduced, together with a 
natural map 

which is conjectured to be an isomorphism. Conjecture (6.2) is implied 
by Proposition (3.3) and the rational injectivity of "'. 

If (V, F) has negatively curved leaves, then K:(V, F) is isomorphic 
to K*(F) and p. becomes e: K*(F)~K*C:(V, F). So in the negatively 
curved case Proposition (3.13) verifies the injectivity of ",. 

Appendix: C:(V, F) 

Let W be a finite dimensional vector space over R. f3( W) is the set 
of all ordered bases of W. 

(AI) Definition. A i-density on W is a function eft: f3(W)~C 
such that for f3t> f32 e f3(W) 

(A2) 

where det (f32' f31) is the determinant of the matrix which expresses f32 in 
terms of f31' 

QI/2(W) denotes the C vector space of all i-densities on W. 
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(A3) 

For any Coo manifold X, QI/2(X) denotes the Coo line bundle on X 
whose fibre at P E X is QI/2(TpX): 

(A4) 

D(X) is the Hilbert space of all square-summable sections of QI /2(X). 
(Note that it is not necessary to choose a measure or a Riemannian 
metric on X.) 

Given a Coo foliation (V, F) let tr be the fundamental groupoid 
along the leaves. As in Section 3 above, tr maps to V by sand r. 

s 
(A5) tr==tV 

r 

On tr, let Q(tr) be the Coo line bundle whose fibre)t T E tr is: 

(A6) 

C;;(£J(rr» is the space of all Coo sections of Q(rr) with compact support4). 

C;;(Q(rr» is an algebra with involution: 

(A7) 

(AS) 

(A9) 

7Jf1, 'lff2 E C;;(Q(rr» 

('lff1*'lff2)(r) = Lr2~r ('lff ITI )('lff2T2) 

'Iff*(r) = 'Iff(T- I ) 

For x E V, y-1(x)={T E 7C I rT=x}. Define a representation px of C;;(Q(7C» 
as bounded operators on the Hilbert space D(y-Ix) by: 

(AIO) «Px'lff)if!)T = tlr2~r 7Jf(TI)if!(T2) 

7Jf E C;;(Q(tr» 

if! E D(y-Ix) 

If x and yare on the same leaf of the foliation, then px is unitarily 
equivalent to py. C;(V, F) is, by definition, the completion of C;;(Q(7C» 
with respect to the norm 

(All) liWll= Sup IIPx7Jf 11 
xEV 

4) rr might not be Hausdorff. For a careful explanation of details needed when rr 
is not Hausdorff see [7]. 
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where II p}P" II is the operator norm of the bounded operator px7Jl. 
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