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Then it follows that I, =F, o = o  and hence
(4.29) 1(g, p)=Fk~"tr (Z(g, P)) =k tr (D(p)+Z(9))").

This implies that I,=H,,_, ., and I, (1=<k<n) arc rational functions
Ofpla * s Pny €XP (q1)5 + e, €Xp (qn)'

Corollary 4.4. The Hamiltonian system

(D(An_.l,sm) X R", Z dq; \dp., Hp o)

is completely integrable. More precisely the above rational functions I,
-, I, are mutually involutive integrals of motion, which are generically
Sfunctionally independent.

Proof. Since F,, - - -, F, are G-invariant, it follows from Proposition
3.5 that they are in involution and hence from Corollary 3.6 that F?, - - -,
F¢ are in involution. On the other hand, we have shown that ¢ is a
symplectic diffeomorphism, so that I, - - -, J, are in involution. Since
L=H,, ..., they are integrals of motion. Now we shall show the
generically functional independence of I, - - -, I,. Put

It is clear that I, - - -, I, are functionally independent in £. So we have
only to show that £ is a non-empty open subset of DX R". Note that
whenever D(q) tends to infinity in o’ Na, it follows that Z(g) tends to
zero from (4.7) and hence I,(q, p) tends to F,(D(p)) from (4.29). But we
know that F, (1<k=n) are functionally independent on o’. This yields
that £ is non-empty and open.

Define B(q)=(B(g);;) for g € D by

-—«/-——l—c Sh_z(qjk) ((]’ k) € I+),

(4.30) B(q)sz{ v —Tech™(gu) ((, k) el)

and
B(q);;= —:éj B(q),; (1<£j<n).

Then it can be easily seen that B(g) ¢ f, where [, is the Lie algebra of X,.
Define U(q)=(U(q);,) for g € D by

(431 U9 =%(Ad (exp(—D(9))B(g)+o(Ad (exp (— D(9))) B(9)))-
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Then one can easily check that U(g);;=B(q);; { <j=<n) and U(g);,=
V(g);, (1=<j#k<n), where V(q) is already given by (4.25). We remark
that

4.32) Z(g)= % (Ad (exp(—D(9)))B(9) —o(Ad (exp (— D(¢))B(2)))

and hence
(4.33) Ad(exp(—D(g))B(q)=U(9)+Z(9).

Corollary 4.5. Let (q(t), p(t)=¢.q, p) be the trajectory of the
Hamiltonian flow starting from (q, p) € DX R". Define the curve k(t) in
K, by

.34 —jt—ka):k(t)B(q(t», KO0)=1,.

Then we have

exp (D(q)) exp(2tZ(q, p)) exp (D(P)n
=k(t) exp (2D(q(¢)))J mk(t}“ L

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation; '

(4.35)

(436 %Z(Q(t),p(t))HU(Q(t)), Z(q(2), p)]=0.

Remark. The left side of (4.35) is a hermitian matrix of signature
(m,n—m). So the relation (4.35) implies that the left side of (4.35) can
be diagonalized by the unitary matrix k(¢) € K, and its eigenvalues are
exp (g«(1)), - + -, €xp (29, (1)), —exp(2qn+1(2)), - - -, —€Xp(29,(2)) Where g(2)
=(q«2), - - -, q.(t)) € D is the trajectory of the motion. Hence the deter-
mination of the trajectory of our Hamiltonian flow is reduced to finding
the eigenvalues of the matrix in the left side of (4.35), which depends only
on the initial value (g, p).

Proof. We have already seen in (3.21) that the flow ¢ on M is
given by ¢f(x(x, X)) =n(xexp (tX), X). Since ¢/ onxy,=mn,0 ¢! (cf. The-
orem 3.3), we have

(4.37) ¢f(we o m(x, X))=m¢ o m(x exp (X), X).

But Theorem 4.3 implies ¢’ o p=gpo¢,. Since p=ngom P, we have
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¢t omgomod(g, p)=mncomo @(q(t), p(1)),
that is,
¢t (@ o nlexp(D(q))s Z(q, p))) = o w(exp (D(g (1)), Z(q(t), p(t))).
Using (4.37), we have

7o o z(exp(D(q)) exp (¢2(g, p)), Z(g, p)) = o n(exp (D(q(1))), Z(q(2), p(t))).
This means that there exist £(¢) € K, and A(¢) € H such that

(4.38) exp (D(q)) exp (tZ(g, p)) =k(t) exp (D(q(t)h(t)~*
and
(4.39) Z(q, p)=Ad(h(1))Z(q(2), p(1)).

Put for simplicity a(f)=exp(D(q(?))), a=a(0)=-exp(D(q)), Z(t)=
Z(q(t), p(t)) and Z=2Z(0)=Z(q, p). Then by (4.38) we have aexp (2tZ)a
=k(t)a(tYe(k()~"). Using the definition of ¢, we can write

(4.40) aexp (UZ) na=k()a(t) T k().

Therefore to prove (4.35) we have only to show that k(¢) satisfies (4.34).
It is clear from (4.38) that k(0)=1,. On the other hand since (t)=
(aexp (tZ)) "k(t)a(t), it follows from (4.39) that

(4.41) Adk())Ad(a()Z(t))=Ad(aexp (tZ))Z=Ad(a)Z.

Set W(t)=Ad@()Z() and W=W(0)=Ad(a)Z. Then we have by
(4.40)

(4.42) exp QtW)a*=k(t)a(t)’o(k(r)™?)
and by (4.41)
(4.43) Ad(O)YW()=W.

Put B(t) =k~ '(¢)k(t), where k(t)=(d/dt)k(t). Then B(t) e f,. Using the
fact ¢(¢)= p(¢), we have’

—jt-k(r)a(t)*a(k(n-l)

=Ad (k(1))2D(p(1))-+ B(t)— Ad (a(t))a(B))k(1)a(t Volk(t)™)
=Ad (k(1))2D(p(1))+ B(t) — Ad (a(2)")o(B(1))) exp (2t W)a’.
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On the other hand we have

-57 exp (21 W)a? =2W exp (2 W )a* = 2Ad(k(t)) W (t) exp 1 W )d’.
Hence we conclude
W(t)=D(p(1))+ % (B(t)—Ad(a(1)*)a(B(2))).
Remembering W (r)=Ad(a(1))Z(t), we obtain
Z(t)=D(p(t))+ —21— (Ad(a(?)~)B(t)—Ad(a(?))o(B(1))).
Since Z(1)=2Z(q(1), p(t)) =D(p(t))+ Z(q(1)), it follows that
Z(g()= —;— (Ad(a()")B(t) —o(Ad (a(t) ") B(1))).

Comparing the entries of the matrices in both sides and using the [fact
B(¢) e §,, we conclude that B(¢)=B(gq(t)) where B(q) is given by (4.30).
Hence k(¢)=k(t)B(q(z)). Since k(0)=1,, k(¢) satisfies (4.34) and conse-
quently we have (4.35). Differentiating both sides in (4.43), we have

4 w(ey+1B(1), W(t)]=0.
dt

Replacing W (¢) by Ad(a(?))Z(t), we obtain
2 Z(O)+ D)+ Ad a()) )B(), Z(@)]=0.
Using (4.8) and (4.33) we can deduce (4.36).
§5. The Hamiltonian systems attached to (C,, &,.), (D,, &n), (C,, &5,) and

(D, €)-

In this section we consider the Hamiltonian systems attached to
the root systems with signature (C,, ,), (D, &n), (Ca, &) and (D, €})
simultaneously. We recall that the configuration spaces of the above
systems are given respectively by

D,=Dpew=Dwmem=19 e R"; > - - >q0>0, gy, > - - >q,>0}

and
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D-1=D<on,s;n) ZD(nn,s;,,)
={geR";0.> - >qn qnir> "+ >y ms1+9, >0}

Throughout the section we write an element X e M,,(C) as a block form

Xll Xl2
X= where X, X5, Xy and X, € M,(C).
XZI X22

Let G be the closed subgroup of GL(2n, C) defined by
G={g € GL(2n, C); g0g* =0}

where Q is the matrix given by

Thus G is isomorphic to U(n, n). We define a nondegenerate invariant
symmetric bilinear form on the Lie algebra g of G by

(.1) (X, Y):-;— tr(XY) (X, Yeg)

Define the matrix J by

S O I, O
5.2) J= where J,=
0 oJ, 0 -1,

and § is either 1 or —1. We define the involutive automorphisms ¢ and
0 of G by

(.3) o(g)=J(g*)"J and 6O(g)=(g%)"

Put H=G, and K=G,. Then K is a maximal compact subgroup of G
and K=GN U(2n). Hence each k € K is a unitary matrix of the form

k — [k 11 k 12] .
klZ kl]
In the case at hand we have

X, X,
E)= ;Xikz_Jle']m, X;k=_X2
oL, Xod X

and
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X 1 X 2
q= s XF=J X J,, X¥=—X,\.
oI X J, —J, XJ,

Put a={D(g)=diag(qs -+, qn, —qs -+, —qa); 4=(gs * - *» 4,) € R"}.
Then a is a maximal abelian subspace in g p, which is maximal abelian

both in g and p. The root system R of g with respect to a is of type C,.
We remark that it contains the root system of type D, as a subroot system.
The involution ¢ is equal to the one corresponding either to the signature
&, if d=1 or to the signature &, if 6=—1. Put

a,={D(q) € a;q e Dy}.

Then it is a Weyl chamber cither for R, if d=1 or R,, if 6=—1.
Set

T={diag(us, * - *» Up, ty, + -+, U,); ;€ U(D) (17 <)}

Then it is a maximal torus of K, which is contained in H. The center Z,
of Kis {ul,,; ue UQ1)}.

Let ¢, ¢, be real constants such that ¢;#0. We remark that in the
following discussion the case ¢,=0 corresponds to (C,, ¢,) and (C,, &)
and the case ¢,=0 corresponds to (D, &,) and (D,, ¢,). Put

é=(e,e) e C*" where e='(1, ---, ) e C™

Define C e { by

(5 4) sz[CI(ee*—- 1") Cl(ee* - ln)+C21 n]

clee*—1,)+cl, clee*—1,)

Then C e f'=[f, I]. The proof of the following lemma is quite analogous
to Lemma 4.1. So we shall omit it.

Lemma 5.1. (i) For each k e K, there exists v e C™ such that ké
=Xv, v).
(ii) For each k € K, we have
Ad(k)sz[cl(Uv*_I") lwo®— 1“)“21"]

olov*—1)+al, cofov*—1,)
where v is given in (i).

(i) Set K;={k e K; Ad(k)C=C} and K,={k e K; ké=¢é}. Then
K,=Z K, and K, T=(1,,).
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Let M be the cotangent bundle over G/H and @ be the moment map
for the K-action given by (3.7). In the case at hand since §(X)= —JXJ

for X e g, if follows that

(5.5

D(x(x, X))=—;-(Ad ()X —Ad ((x*)-)TXJ).

To describe the structure of @-*(C) we need the following. For g € D,,

we define Z(q) € q by

Z(q) Z{q)
G0 O
where Z,(q9)=(Z\(q);.) and Z,(q)=(Z(q);) are given as follows;
0 (I=j=k=n),
5.7 Z(@)=1v—1e;sh (gy) ((, k) e L),
V—Tech (g (iR el)
and either
V=Te,sh7Qq) (1<j=k=n),
(5.8) Z{D =3V —T1e;sh™(G) (k) e L),
V—Tech (@) (iR el)
if =1 or
V—Te,ch™'(2q) (1<j=k<n),
(5.9) Z(@) =V —1eich™ (@) (iR e L),
V—Te;sh™'(@) (k) el)
if 6=—1. Furthermore we define Z(q, p) € q by
(5.10) Z(g,p=D(p)+Z(g)  ((4,p) € D;XR").

Proposition 5.2.
k € K, and (g, p) € D; X R™ such that

(i) For each n(x, X) e @ (C) there exist unique

kr(x, X)=n(exp (D(q)), Z(¢, P))-
(ii) @-C) ia a submanifold of M, which is diffeomorphic to K, X

D; X R™.

Proof. (i) Letz(x, X)e @-'(C).
x=k'ah (keK,aec d,, he H).

Since G=KA4,H, we can write
Hence kn(x, X)=n(a, Ad(A)X) and
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D(z(a, Ad(W)X))=Ad(k)C. Since a is a diagonal matrix, we can deduce
from (5.5) that the diagonal entries of @(x(a, Ad(#)X)) vanish and so do
the diagonal entries of Ad(k)C. Therefore it follows from Lemma 5.1
(i) that v, e U(1) (1= <n). Set t=diag(vy, - -+, U,y Uy, -+, U,). Then
teT and ¢tk e K,. Hence we have ¢t 'kn(x, X)=n(a, Z) where Z=
Ad(-'WX e q and @(n(a, Z))=C. But as in Proposition 4.2, the last
identity implies that a=exp(D(q)) e A, and Z is of the form Z(g, p).
As the centralizer of a in K is also equal to T in this case, so the proof of
the uniqueness of & e K, and (q, p) € D; X R" is quite similar to that of
Proposition 4.2.

(ii) The differential d®,, ,, where a=exp(D(g))e A, and Z=
Z(q, p) is given by the same formula as in (4.12). Thus the proof of the
assertion (ii) is quite analogous to that of Proposition 4.2. So we shall
omit it.

Theorem 5.3. (i) Let M(C) be the set of Kg-orbits in @~(C) and
let 7, be the canonical projection. Define a map ¢ of D; X R" into M(C)

by
(5.11) oq, p)=n. o z(exp(D(q)), Z(g, p))-

Then ¢ is bijective and hence M(C) has a smooth manifold structure under
which ¢ is a diffeomorphism and r is a submersion. Thus M(C) is a re-
duced phase space with the symplectic structure w.

(i1) It holds that p*w,=2 7, dq,/\dp, and hence ¢ is a symplectic
diffeomorphism.

(iii) Define a G-invariant Hamiltonian F on M by

Flx(x, X)):%(X, X>  (xlx, X) e M)

and denote reduced Hamiltonian on M(C) by F°¢. Then
FCop=Hg, ., If 6=1 and c,#0,
Fop=H,, ., If 6=1 and ¢,=0.
Flop=Hy,.., if 6=—1 and c,+0 and
Flop=Hg, ., if 6=—1 and c,=0.

Proof. (i) It is a direct consequence of Proposition 5.2 that ¢ is
bijective and hence M(C) has a C*-structure under which ¢ is a diffeomor-
phism. If we define a map ¢ of D;XR" into GXq by &g, p)=
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(exp(D(q)), Z(q, p)), then we can check that iperod=nc@ and myom o
=¢. Thus r, is a submersion.

(ii) We have only to show the same formula as in (4.22) for (g, p)
e D; X R* and (§, 1), (§, 7)) e R*X R™. But the proof is quite similar to
that of (ii) in Theorem 4.3. The only difference is the definition of V(g).
In the case at hand one may take ¥(g) ¢ § as

Viq) Vi) ]

(5.12) Vig) =[
where V(q)=(V(q),;,) and V(q)=(V.(q),,) are given respectively by

0 (1=j=k<n),
(5.13) V@) ;=4 —+ — Lci ch(gy,) Sh_z(qjk) ((J,k)el,),
—+ —1e¢ysh(g) ch™(gu) (U, k) e L)

and either

—+ —1¢,ch(2g,) sh™*Q2q) (1=j=k<n),
(5.14) V@)= —+ —leich(§y) sh™(@,) (k) e L),
—v—Tlesh(@u)ch™(@,) (k) el)

if =1 or

—v —1¢sh2g)ch~*Q2q) (1<j=k<n),
(5.15 V@)= —+~ —leish(§y) ch™(G,) (7, k) e L),
—+~ —1leich(§y) sh™(q) (7, k) el)

if §=—1.
(iii) As in Theorem 4.3 we can deduce

Fe(g, p))=2"Z(q, p), Z(q, p)y=4""tr(Z(q, P).
Since Z(q, p)=D(p)+ Z(q), we have
F(p(g, p))=4""tr (D(p))) +4- 11 (Z(q)") + 4~ tr (D(p)Z(q)+ Z(q)D(p))

But since the diagonal part of Z(g) is zero, the last term vanishes. It is
clear that 4-'tr (D(p)*)=2"'>,p%. Since Z(q) is given by (5.6), we have

47'tr (Z(9))=2""tr(Z(q)") — 027 tr (J ZAq))?)-

By direct matrix computations we obtain
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2-1tr(Zy(9)) =1 sh™(q) — 20 h (g 1))
and if =1

2711 (JnZo(q))) = —c1(X 0 Sh™(§ 1) — 2w ch™*(§)) — ¢3/2 ]Zz sh*(2¢,)
and if §=—1
2710 (T Z:(@))) = — XX ch™*(§ 1) — X Sh7(§ ) — €32 ;‘7;1 ch~*(2g).

These formulas clearly yeild (iii).

We define G-invariant smooth functions F,, - - -, F,, on M by
(5.16) F(x(x, X)) =F,(X)=(2k) 'tr (X*).

Since X € q, they are real valued and moreover F;=2F. The functions F,
(1<k<n) are homogeneous polynomials on q of degree 2k, which are
invariant under Ad(H). They are algebraically independent homogeneous
generators of S(q)#. Let a’ be the open subset of a such that

a’={D(p) e a;p,+p;+0 1=i<j<n), p,#0 1=<i<n)}.

Then the restrictions of F, (1=<k=<n) to o’ are known to be functionally
independent (cf. [7]). Let F¢ (1<k<n) be the reduced Hamiltonians on
M(C) corresponding to F,. Put

(5.17) I(a, p)=Fi(e(q,p))  ((g.p) € D;XR*, 1<k=<n).

Then we have
(5.18)  I(g, p)=(2k)'tr(Z(g, p)™) = (2k) ' tr (D(p) -+ Z(9))*).

This yields that 27, is the Hamiltonian of our system and I, (1<k<n)
are rational functions of p,, - - -, p,, exp(qy), - - -, exp(q,). The proof of
the following corollary is similar to that of Corollary 4.4. So we shall
leave it to the reader.

Corollary 5.4. The Hamiltonian systems attached to the root systems
with signature (C,, ), (D, x), (C.,, &) and (D, £,) are completely inte-
grable. The above rational functions I, ---, 1, are mutually involutive
integrals of motion, which are generically functionally independent.

For g e D; we set
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1 "0=[20) sie)

where By(q)=(Bi(q);x) and By (q)=(B,(q);.) are given in the following
manner; we put

—1/_“——161 Sh—z(qjk) (@A kyel,),

(5.20) B(9);x= { W —1c, ch~%(g;) ((j,k)el).

Moreover we put

—V=T1csh™(2q) (1<j=k<n),
(521 B(@)p=3—+—T1e;sh™*(G,) (k) el),
V=Teich™(4,0) ((,k)el)

if §=1 and put

vV =Te,ch™*2g) (1<j=k<n),
(5.22) Bfg);i=y ~=Teich™(d;) (U R)el),
—~—1eish™™(d;) (k) el)

if §=—1. Finally we define
(5.23) B(q);;= —-(HZJ B(@)i;+2.Bd9):)  (I=j=n).

Then one can see that B(q) e f, where {, is the Lie algebra of K,. Define
U(q) € Y for g € D, by

(24 U= % (Ad(exp (—D(9))B(q)+a(Ad (exp (—D(9))B(9)))-

Then we have U(),,=B(q),, (1= =2n) and U(q),u=V(q);x 1<)+
k<2n), where V(gq) is given by (5.12). We remark that the following
relations hold;

(24 Z)= —;— (Ad(exp(—D(9))B(q) —a(Ad(exp(—D(9)))B(9)))

and hence
(5.26) Ad(exp (—D(9))B(9)=U(q)+Z(q).

Corollary 5.5. Let (q(¢), p(1)=¢q, p) be the trajectory of the
Hamiltonian flow starting from (q, p) € D; X R*. Then we have
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(5.27)  exp(D(q)) exp (2tZ(g, p)) exp (D(q))J = k() exp 2D(q(e))Jk(2)~*

where k(t) is a curve in K, given by
d
(5.28) S KO=kOBEW),  KO=1,,.

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation;;

(5:29) -'—5[ Z(q(@®), p(t)+1U(q(1)), Z(q(2), p(1))]=0.

Proof. The proof is parallel to that of Corollary 4.5. So we shall
omit it.

§6. The Hamiltonian systems attached to (B,, ¢,,) and (BC,, &,,)

In this section we treat the Hamiltonian systems attached to the root
systems with signature (B, ¢,,) and (BC,, ¢,) simultaneously. We recall
that the configuration spaces D, ., and D g, .., are identical, which we
denote simply by D;

D:{q:(qb R} qn) S Rns Q1> c >qm>0! qm+1> T '>qn>0}'

Throughout the section we write an element X of M,,.,(C) as a block
form

Xoo Xon Xo
X= XIO Xu Xu
Xzo le Xzz

where Xy, € C, X;y, Xoy € M1,(C), Xy, Xy € M,i(C) and Xy, Xy, Xy, X €
M, (C). Let G be the closed subgroup of GL(2n-+1, C) given by

G={ge GL2n+1,C); g0g*=0}

where Q is given by

1 0 07
0=10 0 1,
0 1, O

Thus G is isomorphic to U(n+1, n). Define J by
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1 0 O : 0
J=10 J, 0|, where J,,= [0m ) ]
0o 0 J, e

We define a nondegenerate invariant symmetric bilinear form on the Lie
algebra g of G by

6.1 (X, Y>=—;- {r(XY).

We introduce involutive automorphisms ¢ and 8 of G by
c0(@)=J(g*)"J and 6(g)=(g*)"

Then the corresponding involutions on g are given by
o(X)=—JX*J and 6(X)=—X*.

We set H=G, and K=G,. Then we have

(X, —X§ —X3E

f= Xxo X Xlz ;A—fooz“‘Xoo, X{k1=_'X119 XE=“X12 s
_Xlo X Xy

0 X —X¥%

p= X X1 Xl Xi=X, X=—Xyys
| — X —X, —Xy

[ X, X%, —X5
h= X X X1
| — T, X JnXidn  JnXdn

1‘700'; -‘Xoo, Xlﬂi= _JmXIIJm> Xlﬂ;: —Xlz >

0 XEd — X
q= Xy X X, | Xi=1,XJ,, Xi=—Xy-
_Jleo _JmeJm _JlelJm

Put
a={D(q)=d1ag(0, Gy s s — 41 " > _qn)7 q=(‘11a D) qn) € Rn}
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Then a is a maximal abelian subalgebra of gMp, which is maximal
abelian both in g and p. The root system R of g with respect to a is of
type BC,, which contains the root system of type B, as a subroot system.
The involution ¢ is easily seen to be the same as the one corresponding to
the signature ¢,. Seta,={D(¢) € a;q € D}. Then itis a Weyl chamber
for R,,. Since K=GN UQ2n+1), each ke K is a unitary matrix of the
form

kOO kOI k01
(6.2) k=lko ky ksl
klo k12 kll

Puf T={diaguy, s, -+, Up, Uy, - - -, U,); u; € U (0L j<n)} and Z,=
{ul,,.;ue U(1)}. Then T is a maximal torus of K contained in H and
Z, is the center of K.

Let ¢, ¢, ¢, be real constants such that ¢, and ¢, are nonzero. In

the remainder of the section, we assume that these constants satisfy the
following relation;

6.3) (cofe ) =Q2c;—c)ecy.
Put e=(1, - - -, 1) e C™ and define & ¢ C***! by
é="c,/cy, e, e).
Furthermore we define C e M,,, (C) by
0 ce* c.e®

(6.4) C=+—1lce clee*—1,) clee*—1,)+c,1,

ce clee*—1,)+cl, clee*—1,)
Then we have C ¢ !=[f, {].

Lemma 6.1. Assume (6.3). Then we obtain that

(i) for every k e K, there exist v,e C and v e C™ such that ké=
“(vy, U, V).

(ii) For each k ¢ K, we have

el o —(eo/e)?) erwp® CUv*
Ad(K)C=+v —T1}cow ci(ov*—1,) c(lvv*—1,)+cl,
€100 o(ov*—1,)+cl, c(vvt—1,)

where vy and v are given in (i).
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(i) If we set Ko={k ¢ K; Ad(k)C=C} and K,=l{k e K; ké=¢},
then we have K,=Z K, and K, T=(1,,.,).

Proof. (i) Each k ¢ K can be written in the form (6.2). Hence if
we put

6.5 vo=(co/c)koy+2kpe and v= (eof edbero+ (heyy -+ ki)e

then we have ké="(v,, v,v).

(ii) Put Ad(k)C=+—1C’ and denote its block expression by
C'=(Cl)ozr sz First we shall show Cl=c,(|v,f—(c,/c)?). By direct
matrix computation, we have

Cho=ci2c7 c(kookore + ke ki) +dkpee*kd — 2¢ 7 (2, — e)kyki.
On the other hand by (6.5) we have
(v [P =2c1 "cylkookore + koe* ki) + dkyee™ ki - (co/cr)? [k .
Hence we can write
Clo= (Vo[ —(cofer)* | Koo' —2¢7 (201 — e)kks).
Since & is a unitary mattix and hence |k, [+ 2k, k=1, it follows that
Coo=c:( 0" — e 2y — ) —((cofer)’ — e} (2, — ¢)) | oo )

Using (6.3), we have C{y=c,(|v,[[—(c,/c))?). Similarly by direct calcula-
tion, we have C{,=Ch=(C})*=(Cj)* and

Clo=cokoo(kss + kip)e-+2ck ek 4 2¢,(ky + k) ee® — 1)k
+ eyl + )k
By (6.5) this can be written as
Cly= 00 —c5 'ctkpk o — (2e,— )k +kkE.
Since kykio+ (ku+k)kE =0, we have
Clo=c00—c:((co/c)— T Qe — ) kopk 1o

Again by using (6.3), we have Cjy=c,T,v. The cases for Ci;, C1,, C4, and
C}, are treated quite analogously. So we shall omit the proof.

(iii) From (i) it follows that k € K, if and only if a) |v,['=(c,/c.)’,
b) cUv=ce and ¢) vv*=ee*. From these we can easily deduce that
k € K, if and only if ké =ué for some u € U(1). This yields the assertion.
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Let M be the cotangent bundle over G/H and @ the moment map for
the K-action given by (3.7). We consider the reduced phase space M(C)
where C is given by (6.4). For g e D, we define Z(q) e q by

0 Z(q)*J,, —Zq)*
(6.6) Z=| Z(q) Z(q) Z(q)

where

67 Zdg)=v—Tcih (g, - -, sh™(@,), ch™"(Gnsr), - - -, ch™(g,)

and Z,(q) and Z,(q) are given respectively by the same formulas (5.7) and
(5.8). Moreover we define Z(q, p) € q by

(6.8) Z(q, p)=D(p)+Z(q).

Proposition 6.2. Under the assumption (6.3), we have

(i) for each n(x, X) e @~'(C) there exist unique k € K, and (q, p) €
D X R™ such that kr(x, X)=r(exp(D(q)), Z(q, p)).

(i) @-YC) is a submanifold of M diffeomorphic to K, X DX R™.

Proof. let z(x, X)e @-%(C). Since G=KA,H, we can write
x=k'ah (keK aeA,he H). Then kr(x,X)=nr(a, Ad(®)X) and
O(r(a, Ad(WX))=Ad(k)C. Since a is a diagonal matrix, we can easily
obtain that the diagonal part of @(z(a, Ad(A)X)) vanishes and so does the
diagonal part of Ad(k)C. Thus we conclude from Lemma 6.1 (ii) that
[ f=(cyfc)* and v, ¢ U(1) (1Zi<n). Put t=diag(cylev, vy -+ -, Uy Uy,
-+-,0,). ThenteTand? ke K, Sincet‘a=at-'and TCH, if we
put Z=Ad(¢ 'h)X, then ¢ kn(x, X)=n(a, Z) and P(x(a, Z))=C. Now
we put a=exp(D(q)) with D(g) € @,. Then the last identity implies that
D(g) e a, and Z is of the form Z(q, p). The uniqueness of k ¢ K, and
(¢, p) € DX R™ and the assertion (ii) are proved in the same manner as in
Proposition 4.2.

Theorem 6.3. Keeping the assumption (6.3), we denote by M(C) the
set of Kg-orbits in &(C) and by =, the canonical projection of ®~'(C)
onto M(C). Define a map ¢ of DX R" into M(C) by

(6.9 o(g, p) = o n(exp(D(q)), Z(g, p))-

Then ¢ is a bijection and hence M(C) has a smooth manifold structure under
which ¢ is a diffeomorphism and n is a submersion. Thus M(C) is a
reduced phase space with the symplectic structure v,.
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(ii) It holds that p*wy=> 7., dg,\dp; and hence ¢ is a symplectic
diffeomorphism.
(iii) Define a G-invariant Hamiltonian F on M by

Fa(x, X)) = (X, X

and denote the reduced Hamiltonian on M(C) by F°. Then we have

FC°QD:H(Bn,sm) if ¢,=0
and
FCoop=Hpopem If 70

Proof. (i) From Proposition 6.2, it is clear that ¢ is bijective, so
that we can define a C=-structure on M(C) under which ¢ is a diffeomor-
phism. If we define a smooth map @ of DX R" into GXq by ¢(q, p)=
(exp(D(q)), Z(g, p)), then it holds that p=ny om0 and izeomo@=mo .
Hence r is a submersion and M(C) is a reduced phase space.

(ii) We define V' (q) e §j by

0 =V = V@)
(6.10) Vig)=| Viq) Vi) Vi)
where Vi(@)="(V(@)s, - - -, V(9),) with

—«~ —1¢ch(g) sh™(g) (I1=j=<m),
—« —Tcysh(g)ch™(g) (m+1=j=n)

and Vi(g) (resp. Vy(g)) is the same as in (5.13) (resp. (5.14)). Then the
differential d¢ is again given by the same formula as (4.24). Hence the
proof of (ii) is parallel to that of Theorem 4.3.

(iii) In the same manner as in Theorem 4.3, we have

6.11) V)= {

Fe((q, p))=2"Z(q, p), Z(q, p)y=4""tr (Z(g, P)")

From (6.6) and the fact that the diagonal part of Z(g) is equal to zero, it
follows that 4-'tr(Z(q, p)*)=4""tr (D(p)")-+4-'tr(Z(q)). Since Z(q) is
given by (6.6), we obtain

4711 (Z(q)) =tr (Z( ) * T Z @) + 27t (Z(9)) — tr (JnZL(9))))-

The first term is equal to
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(35 sh4a)— 37 ehg)).
Jj=1 F=m+1
The second term is computed as in Theorem 5.3 (iii). The result is
A wh™(g, ) +-sh%(d;.)
— 2 @b (g, ) +ch™(§;.)) +c3/2 Zl sh=*(2g,).
=
From these we can deduce (iii).
We define G-invariant smooth functions F,, - - -, F, on M by
6.12) Fi(z(x, X))=F (X)=Qk) 'tr (X*).

Then they have the same properties described in Section 5. Moreover if
we define 7,(q, p)=F7(¢(q, P)) (9, p) € DX R*, 1<k=<n), then

(6.13) I(g, P)=Qk)"'tr(Z(q, pY*) (1=k=n).

They are clearly rational functions of p,, - - -, p., exp(q.), - - -, exp(q,)-
Hence the following corollary is valid.

Corollary 6.4. The Hamiltonian systems attached to the root systems
with signature (B,, ¢,) and (BC,, ¢,) are completely integrable under the
assumption (6.3). The above rational functions I, ---,I, are mutually
involutive integrals of motion, which are generically functionally independent.

For g e D we set

Buw(g) —Byg)* —Byg)*
(6.14) B(q)=|Byq) B(q) Byq)
B(q) BJq) Bl(q)
where
615 Bulg)=2/=Te(3sh"a)~ 37 eh(g))

and B,(q)="(B{q),:, - - -, B(q),) such that

—V—Tashg) (1=j=m),

(6.16) By(9); ={ V—=Tec,ch¥g) (m+1=<j<n)

and By(q);, (1=<j+#k=<n) are given by (5.20) and B,(q),,(1</, k<n) are
given by (5.21) and finally
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B(@)y=—2/=Ta 3 shg)— 35 ch(g))

j=1

- 1;7 Bl(Q)u~Zil By(q),;-

for 1<j<n. Then we can check B(q)ef, Furthermore we define
U(@) e Y (ge D) by

617 U@)= -;— (Ad(exp(—D(¢))B(q)+o(Ad(exp (— D(@))B(9)))-

Then it holds that U(q),;=B(q);; (0=j<2n) and U(g),;=V{(q);x
(0 j+£k<2n) where V(q) is given by (6.10). Moreover we have

6.18)  Z(g)= —;— (Ad (exp (—D(¢))B(q) —a(Ad (exp (— D(g))B(9)))

and hence

(6.19) Ad(exp(—D(g))B(q)=U(g)+Z(9)-

Corollary 6.5.  Under the assumption (6.3), let (q(t), p(1))=¢/q, p)
be the trajectory of the Hamiltonian flow starting from (q,p) € DXR".
Then we have

(6.20)  exp (D(q)) exp (2tZ(q, p)) exp (D(9))J =k(t) exp (2D(q(1))Jk(2) ™!

where k(t) is a curve in K, given by
©.21) (O = kOB, KO)= Ly

Moreover Z(q(t), p(t)) satisfies the following Lax’s isospectral deformation
equation;

(6.22) vddt—Z(q(t), p)+LUg(), Z(g(1), p(t))]=0.
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