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Then it follows that Ik =Fk O7r 0 cp and hence 

(4.29) Ik(q,p)=k- I tr (Z(q, p)k)=k-I tr «D(p)+ Z(qW). 

This implies that Iz=H(An_"sm) and Ik (l"S:.k::;;'n) are rational functions 
of PI> .. " Pm exp (ql), .. " exp (qn). 

Corollary 4.4. The Hamiltonian system 

is completely integrable. More precisely the above rational functions II> 
.. " In are mutually involutive integrals of motion, which are generically 

functionally independent. 

Proof Since Flo .. " Fn are G-invariant, it follows from Proposition 
3.5 that they are in involution and hence from Corollary 3.6 that Ff, .. " 
F~ are in involution. On the other hand, we have shown that cp is a 
symplectic diffeomorphism, so that II; .. " In are in involution. Since 
Iz=H(An_"sm)' they are integrals of motion. Now we shall show the 
generically functional independence of II> .. " In. Put 

It is clear that II> .. ·,1n are functionally independent in Q. So we have 
only to show that Q is a non-empty open subset of DXRn. Note that 
whenever D(q) tends to infinity in a' n a+ it follows that Z(q) tends to 
zero from (4.7) and hence Ik(q, p) tends to Fk(D(p» from (4.29). But we 
know that Fk (1 ::;;'k<n) are functionally independent on a'. This yields 
that Q is non-empty and open. 

Define B(q) = (B(q)jk) for qED by 

{-.v=t c sh-Z(qjk) «(j, k) E 1+), 
(4.30) B(q)jk=.v=t cch-Z(qjk) «(j, k) E L) 

and 

(1~j<n). 

Then it can be easily seen that B(q) E f. where f. is the Lie algebra of K.o 
Define U(q)=(U(q)jk) for qED by 

(4.31) U(q)=~(Ad(exp( -D(q»B(q) + o{Ad(exp ( -D(q»)B(q»). 
2 
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Then one can easily check that U(q)jj=B(q)Jj (1 <j<n) and U(q)j;'= 
V(q)jk (1 <j=l=k<n), where V(q) is already given by (4.25). We remark 
that 

(4.32) 1 Z(q)=-(Ad(exp( -D(q»)B(q)-a(Ad(exp( -D(q»)B(q») 
2 

and hence 

(4.33) Ad (exp ( -D(q»)B(q) = U(q)+Z(q). 

Corollary 4.5. Let (q(t), p(t»=ifJM, p) be the trajectory of the 
Hamiltonian flow starting from (q,p) E DXR". Define the curve k(t) in 
Ke by 

(4.34) 

Then we have 

(4.35) 

~ k(t) = k(t)B(q(t», 
dt 

exp (D(q» exp(2tZ(q,p» exp (D(q»Jm 

=k(t) exp (2D(q(t»)Jmk(t)-I. 

Moreover Z(q(t), pet»~ satisfies the following Lax's isospectral deformation 
e9uation; 

(4.36) "d '-, Z(q(t), p(t» + [U(q(t», Z(q(t), pet»~] =0. 
dt ' 

Remark. The left side of (4.35) is a hermitian matrix of signature 
(m, n-m). So the relation (4.35) implies that the left side of (4.35) can 
be diagonalized by the unitary matrix k(t) E Ke and its eigenvalues are 
exp(ql(t»," ·,exp(2qm(t», -exp(2qm+I(t»,"', -exp(2q,,(t»whereq(t) 
=(ql(t), .. " q,,(t» E D is the trajectory of the motion. Hence the deter. 
mination of the trajectory of our Hamiltonian flow is reduced to finding 
the eigenvalues of the matrix in the left side of (4.35), which depends only 
on the initial value (q, p). 

Proof. We have already seen in (3.21) that the flow ifJf on M is 
given by ifJf(n-(x, X»=n-(xexp (tX), X). Since ifJfo 0 7r:c = 7r:c 0 ifJf (cf. The­
orem 3.3), we have 

(4.37) ifJt(7r:c 0 7r:(x, X» = 7r:c 0 7r:(x exp (tX), X). 

But Theorem 4.3 implies ifJfo 0 f{J=f{J 0 ifJt. Since f{J=7r:c 0 7r: 0 cp, we have 
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,go 0 tre 0 7r 0 ip(q, P)= 7re 0 7r 0 ip(q(t), pet»~, 

that is, 

(gO(7re 0 7r(exp (D(q», Z(q, p») = tre 0 7r(exp(D(q(t»), Z(q(t), pet»~). 

Using (4.37), we have 

7re 0 7r(exp(D(q» exp (tZ(q,p», Z(q,p»=7re 0 7r(exp(D(q(t»), Z(q(t), p(t»), 

This means that there exist k(t) E Ke and h(t) E H such that 

(4.38) exp (D(q» exp (tZ(q, p» =k(t) exp (D(q(t»h(t)-l 

and 

(4.39) Z(q, p) =Ad(h(t»Z(q(t), pet»~. 

Put for simplicity aCt) = exp (D(q(t»), a = a(O) = exp (D(q», Z(t) = 
Z(q(t), pet»~ and Z=Z(O)=Z(q,p). Then by (4.38) we have aexp(2tZ)a 
=k(t)a(t)2q(k(t)-1). Using the definition of q, we can write 

(4.40) a exp (2tZ)J",a=k(t)a(t)2J",k(t)-1. 

Therefore to prove (4.35) we have only to show that k(t) satisfies (4.34). 
It is clear from (4.38) that k(O) = In. On the other hand since h(t)= 
(a exp (tZ»-lk(t)a(t), it follows from (4.39) that 

(4.41) Ad(k(t»(Ad(a(t»Z(t»=Ad(a exp (tZ»Z=Ad(a)Z. 

Set W(t)=Ad(a(t»Z(t) and W= W(O) = Ad (a)z' Then we have by 
(4.40) 

(4.42) 

and by (4.41) 

(4.43) Ad (k(t»W(t) = W. 

Put B(t)=k-1(t)k(t), where k(t)=(djdt)k(t). Then B(t) E fe • Using the 
fact q(t) = pet), we have 

~k(t)a(t)2q(k(t)-1) 
dt 

=Ad(k(t»(2D(p(t» + B(t)-Ad(a(t)2)q(B(t»)k(t)a(tyq(k(t) -1) 

=Ad (k(t»(2D(p(t» + B(t)-Ad(a(t)2)q(B(t») exp (2tW)a2• 
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On the other hand we have 

~ exp (2tW)a2 =2Wexp (2tW)a2 = 2Ad(k(t»W(t) exp(2tW)a2• 

dt 

Hence we conclude 

W(t)=D(p(t»+~(B(t)-Ad(a(tY)u(B(t»). 
2 

Remembering W(t)=Ad(a(t»Z(t), we obtain 

Z(t) =D(p(t» + ~ (Ad (a(t)-l)B(t) - Ad (a(t»u(B(t »). 
2 

Since Z(t)=Z(q(t), p(t»=D(p(t» + Z(q(t», it follows that 

Z(q(t» = ~ (Ad(a(t)-l)B(t) -u(Ad (a(t)-l)B(t»). 
2 

Comparing the entries of the matrices in both sides and using the (fact 
B(t) e fe, we conclude that B(t)=B(q(t» where B(q) is given by (4.30). 
Hence k(t)=k(t)B(q(t». Since k(O)=lno k(t) satisfies (4.34) and conse­
quently we have (4.35). Differentiating both sides in (4.43), we have 

~ W(t)+[B(t), W(t)]=O. 
dt 

Replacing Wet) by Ad(a(t»Z(t), we obtain 

~Z(t)+[D(p(t»+Ad(a(t)-l)B(t), Z(t)] =0. 
dt 

Using (4.8) and (4.33) we can deduce (4.36). 

§ 5. The Hamiltonian systems attached to (C", em), (Dm em), (CIi , e~) and 
(D", e~). 

In this section we consider the Hamiltonian systems attached to 
the root systems with signature (Cno Em), (D", Em), (C", E~) and (D", E~) 
simultaneously. We recall that the configuration spaces of the above 
systems are given respectively by 

D1=DCC",Sm)=D(Dn,Sm)={q e R"; ql>··· >qm>O, qm+l>··· >qn>O} 

and 
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D -I = D (On, -in) = D (D n , -in) 

={q ERn; ql>··· >qm, qm+I>··· >qn, qm+l+qn>O}. 

Throughout the section we write an element X E M 2n(C) as a block form 

Let G be the closed subgroup of GL(2n, C) defined by 

G={g E GL(2n, C); gQg*=Q} 

where Q is the matrix given by 

Thus G is isomorphic to U(n, n). We define a nondegenerate invariant 
symmetric bilinear form on the Lie algebra g of G by 

(5.1) <X, y)=l. tr (XY) 
2 

Define the matrix J by 

(5.2) 

(X, Y E g). 

and 0 is either 1 or -1. We define the involutive automorphisms a and 
8 ofG by 

(5.3) a(g)=J(g*)-IJ and 8(g)=(g*)-I. 

Put H = G 6 and K = G Q. Then K is a maximal compact subgroup of G 
and K = G n U(2n). Hence each k E K is a unitary matrix of the form 

In the case at hand we have 

and 
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Put a={D(q)=diag(ql> "',q", -ql> "', -q,,);q=(q), ···,qn)eR"}. 
Then a is a maximal abelian subspace in q n p, which is maximal abelian 
both in q and p. The root system R of g with respect to a is of type C", 
We remark that it contains the root system of type D" as a subroot system. 
The involution q is equal to the one corresponding either to the signature 
em if 0 = I or to the signature e~ if 0 = -1. Put 

Then it is a Weyl chamber either for R.m if 0= I or R.:,. if 0=-1. 
Set 

T={diag(uu "', Un, u)' . ", Un); Uj e U(I) (I <j<n)}. 

Then it is a maximal torus of K, which is contained in H. The center Z x 

of Kis {uI 2,.; U e U(l)}. 
Let Cl> C2 be real constants such that CJ7i::O. We remark that in the 

following discussion the case C2"ji::O corresponds to (Cn> em) and (C", e~) 
and the case c2 =O corresponds to (D", em) and (Dn' e~). Put 

where e=t(l, "', I) e en. 

Define C e t by 

(5.4) 
c)(ee* -I n)+C2 In]. 

c)(ee*-I n) 

Then C e f) = [t, n The proof of the following lemma is quite analogous 
to Lemma 4.1. So we shall omit it. 

Lemma 5.1. (i) For each k e K, there exists ve en such that ke 
=t(v, v). 

(ii) For each k e K, we have 

where v is given in (i). 

c)(vv* -I n)+C2 In] 

c)(vv*-In) 

(iii) Set Ko={k e K; Ad(k)C=C} and K,={k e K; ke=e}. Then 
Ko=ZxK, and K, n T=(12,,)' 
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Let M be the cotangent bundle over GIH and <f) be the moment map 
for the K-action given by (3.7). In the case at hand since 8(X)= -IXI 
for X E q, if follows that 

(5.5) <f)(tr(x, X»=l.(Ad(x)X -Ad «x*)-I)IXI). 
2 

To describe the structure of <f)-I(C) we need the following. For q E Da, 

we define Z(q) E q by 

(5.6) 

Z,(q)" ~ { .r=T "OSh - '(q,,) 

(1~j=k<n), 

(5.7) (U, k) E 1+), 

J=1 Cl ch-l(qjk) (U, k) E L) 

and either 

{ .r=T " sh - '(2q,) (l<j=k<n), 

(5.8) ZZ(q)Jk= J=T Cl sh-I(qjk) «(j, k) E 1+), 

J=T C1 ch-l(qjk) «(j, k) E L) 

if 0= 1 or 

{.r=T c,ch-'(2q,) (l<j=k<n), 

(5.9) ZZ(q)jk= J=1 clch-l(qjk) (U, k) E 1+), 

J=T Cl sh-I(qjk) «(j, k) E L) 

if 0=-10 Furthermore we define Z(q, p) E q by 

(5.10) Z(q,p)=D(p)+Z(q) 

Proposition 5.2. (i) For each tr(x, X) E <f)-I(C) there exist unique 
k E K, and (q, p) E Do X Rn such that 

ktr(x, X)=tr(exp (D(q», Z(q,p». 

(ii) tJj-I(C) ia a submani/old of M, which is diffeomorphic to K,X 
DIJXRn. 

Proof (i) Let tr(x, X) E <f)-I(C), Since G=KA+H, we can write 
x=k-1ah (k E K, a E A+> hE H). Hence ktr(x, X)=tr(a, Ad(h)X) and 
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tJ)(;r;(a, Ad (h)X)) =Ad (k)C. Since a is a diagonal matrix, we can deduce 
from (5.5) that the diagonal entries of 1J(;r;(a, Ad (h)X)) vanish and so do 
the diagonal entries of Ad(k)C. Therefore it follows from Lemma 5.1 
(ii) that uj e U(l) (l;;;;j ::;:n). Set t=diag(u1, ••• , Un, Ub ••• , Un). Then 
t e T and t-1k eKe. Hence we have t-1kn:(x, X)=n:(a, Z) where Z= 
Ad(t-1h)X e q and tJ)(n:(a, Z))=C. But as in Proposition 4.2, the last 
identity implies that a=exp(D(q))eA+ and Z is of the form Z(q,p). 
As the centralizer of a in K is also equal to T in this case, so the proof of 
the uniqueness of k e Ke and (q, p) E Do X Rn is quite similar to that of 
Proposition 4.2. 

(ii) The differential dtJ).ca,z) where a=exp(D(q)) e A+ and Z= 
Z(q,p) is given by the same formula as in (4.12). Thus the proof of the 
assertion (ii) is quite analogous to that of Proposition 4.2. So we shall 
omit it. 

Theorem 5.3. (i) Let M(C) be the set of Ko-orbits in 1J- 1(C) and 
let n: 0 be the canonical projection. Define a map cp of Do X Rn into M( C) 
by 

(5.11) cp(q, p)= n:o 0 n:(exp(D(q)), Z(q, p)). 

Then cp is bijective and hence M( C) has a smooth manifold structure under 
which cp is a diffeomorphism and n:o is a submersion. Thus M(C) is a re­
duced phase space with the symplectic structure wo. 

(ii) It holds that cp*wo= L:~~1 dqi /\dpi and hence cp is a symplectic 
diffeomorphism. 

(iii) Define a G-invariant Hamiltonian F on M by 

1 
F(n:(x, X))=-<X, X) 

2 
(n:(x, X) e M) 

and denote reduced Hamiltonian on M(C) by F O. Then 

FO 0 cp=Hccn"m) ifo=l and c2 =t'=O, 

FO 0 cp = H enn , Em) if 0=1 and c2 =O. 

FO 0 cp=HCCn,';") if 0=-1 and c2 =t'=O and 

FO 0 cp=Henn,E;") if 0=-1 and c2 =O. 

Proof (i) It is a direct consequence of Proposition 5.2 that cp is 
bijective and hence M(C) has a Coo-structure under which cp is a diffeomor­
phism. If we define a map rp of DoXRn into Gxq by rp(q,p)= 
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(exp(D(q», Z(q, p», then we can check that ia 0 Te 0 ip=Te 0 ip and Tea 0 Te 0 ip 
=cp. Thus Tea is a submersion. 

(ii) We have only to show the same formula as in (4.22) for (q,p) 
E Da X R" and (~, 7), (~', 7)') E Rn X Rn. But the proof is quite similar to 

that of (ii) in Theorem 4.3. The only difference is the definition of V(q). 
In the case at hand one may take V(q) E fj as 

(5.12) V(q) = [vtCq) V2(q)] 
OJm V2(q)Jm Jm Vl(q)Jm 

where vtCq)=(V1(q)jk) and V2(q)=(V2(q)jk) are given respectively by 

and either 

(5.14) 

if 0=1 or 

(5.15) 

if 0=-1. 

{
-.f=1 c2ch(2qj) sh- 2(2qj) 

V2(q)jk = -.f=1 C1 ch(qjk) sh-2(qjk) 

-.f=1 C1 sh(qjk) ch- 2(qjk) 

{
-.f=1 C2 sh(2qj) ch-2(2qj) 

V2(q)jk= -.f=1 C1 Sh(qjk). ch-2(qjk) 

-.f=1 C1 ch(qjk) sh- 2(qjk) 

(iii) As in Theorem 4.3 we can deduce 

(1<j=k~n), 

(U, k) E 1+), 

(U, k) e L) 

(1<j=k<n), 

(U, k) e 1+), 

(U, k) e L) 

Fa(cp(q, p»=2- I<Z(q, p), Z(q, p»=4- 1 tr(Z(q, py). 

Since Z(q,p)=D(p)+Z(q), we have 

Fa(cp(q, p» = 4 -I tr(D(p)2) +4 -I tr(Z(q )2) + 4 -1 tr (D(p)Z(q) + Z(q)D(p» 

But since the diagonal part of Z(q) is zero, the last term vanishes. It is 
clear that 4- 1 tr(D(p)2) =2- 1 2:p}. Since Z(q) is given by (5.6), we have 

By direct matrix computations we obtain 
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and if 0=1 

and if 0=-1 

These formulas clearly yeild (iii). 

We define G-invariant smooth functionsFI> ... , Fn on M by 

(5.16) 

Since X e q, they are real valued and moreover Fl=2F. The functions FIc 
(1 <k<n) are homogeneous polynomials on q of degree 2k, which are 
invariant under Ad (H). They are algebraically independent homogeneous 
generators of S(q)H. Let a' be the open subset of a such that 

Then the restrictions of Fk (1 ;;'k<n) to a' are known to be functionally 
independent (cf. [7]). Let Ff (1 <k~n) be the reduced Hamiltonians on 
M(C) corresponding to Fie. Put 

(5.17) 

Then we have 

This yields that 2- 111 is the Hamiltonian of our system and lie (1 <k<n) 
are rational functions of PI> ... , Pn, exp (Ql), ... , exp (qn). The proof of 
the following corollary is similar to that of Corollary 4.4. So we shall 
leave it to the reader. 

Corollary 5.4. The Hamiltonian systems attached to the root systems 
with signature (Cm em), (Dm em), (Cm e:") and (Dm e:") are completely inte­
grable. The above rational functions II, .. " In are mutually involutive 
integrals of motion, which are generically functionally independent. 

For qe D6 we set 
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(5.19) B(q)= [Bl(q) B2(q)] 
B2(q) B1(q) 

where Blq)=(Blq)jk) and B2(q)=(B2(q)jk) are given in the following 
manner; we put 

Moreover we put 

{
--I=1C2Sh-2(2qj) (1~j=k<n), 

(5.21) Biq)jk= --1=1 C1 sh-2(qjk) (U, k) e 1+), 

-1=1 C1 ch-2(Qjk) (U, k) e L) 

if 0= 1 and put 

{ 
-1=1 C2 ch- 2(2qj) (1 ~j =k<n), 

(5.22) B2(q)jk = -1=1 C1 ch- 2(Qjk) (U, k) e 1+), 

--1=1 C1 sh- 2(Qjk) (U, k) e L) 

if 0 = -1. Finally we define 

(5.23) (1 <j <n). 

Then one can see that B(q) e fa where fa is the Lie algebra of Ka. Define 
U(q) e fj for q e Da by 

(5.24) 1 U(q)= - (Ad (exp (-D(q)))B(q) +q(Ad(exp (-D(q)))B(q))). 
2 

Then we have U(q)jj=B(q)jj (1~j~2n) and U(q)jk= V(q)jk (1 <j-=f= 
k5:.2n), where V(q) is given by (5.12). We remark that the following 
relations hold; 

(5.24) Z(q)=l.(Ad(exp( -D(q)))B(q)-q(Ad(exp( -D(q)))B(q))) 
2 

and hence 

(5.26) Ad (exp (-D(q)))B(q) = U(q)+Z(q). 

Corollary 5.5. Let (q(t), p(t)) = rfitCq, p) be the trajectory of the 
Hamiltonianjiow starting from (q,p) e DaXRn. Then we have 
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(5.27) exp (D(q» exp (2tZ(q, p» exp (D(q»J =k(t) exp (2D(q(t»)Jk(t)-! 

where k(t) is a curve in K, given by 

(5.28) ~ k(t) =k(t)B(q(t», 
dt 

Moreover Z(q(t), pet»~ satisfies thefollowing Lax's isospectrai deformation 
equation; 

(5.29) d 
- Z(q(t), pet»~ + [U(q(t», Z(q(t), pet»~] = o. 
dt 

Proof The proof is parallel to that of Corollary 4.5. So we shall 
omit it. 

§ 6. The Hamiltonian systems attached to (Bn> em) and (BCn> em) 

In this section we treat the Hamiltonian systems attached to the root 
systems with signature (Bn> em) and (Ben, em) simultaneously. We recall 
that the configuration spaces D(Bn,tml and D(BCn,tml are identical, which we 
denote simply by D; 

Throughout the section we write an element X of M 2n + I(C) as a block 
form 

where Xoo E C, XOh X 02 E Mln(C), X IO , X 20 E Mnl(C) and X l1, Xu, Xu, X 22 E 

Mn(C). Let G be the closed subgroup of GL(2n+ 1, C) given by 

G={g E GL(2n+l, C);gQg*=Q} 

where Q is given by 

Thus G is isomorphic to U(n+ 1, n). Define J by 
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We define a nondegenerate invariant symmetric bilinear form on the Lie 
algebra g of G by 

(6.1) 1 
<X, Y)=- tr(XY). 

2 

We introduce involutive automorphisms a and 8 of G by 

. a(g)=J(g*)-lJ and 8(g) = (g*)-l. 

Then the corresponding involutions on g are given by 

a(X) = -JX*J and 8(X) = -X*. 

We set H=G. and K=Go• Then we have 

Put 

X"tr,Jm 

Xu 

-JmX12Jm 

-X~ 1 
X 12 ; 

JmXUJm 

Xoo~ -X •• X~~ -J.X,,J .. X~~ -X+ 

n={D(q)=diag(O, qb ... , qn' -qb ... , -qn); q=(qb ... , qn) ERn}. 
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Then a is a maximal abelian subalgebra of q n p, which is maximal 
abelian both in q and p. The root system R of g with respect to a is of 
type BC .. , which contains the root system of type Bn as a subroot system. 
The involution (T is easily seen to be the same as the one corresponding to 
the signature em. Set a+ = {D(q) e a; qeD}. Then it is a Weyl chamber 
for Rem' Since K=Gn U(2n+l), each k e K is a unitary matrix of the 
form 

(6.2) 

Puf T={diag(uo, Ub ••• , Un> Ub ••• , un); UJ e U(I) (O::::j::::n)} and ZK= 
{uI 2n + 1 ; U e U(I)}. Then T is a maximal torus of K contained in Hand 
Z K is the center of K. 

Let Co, Cb C2 be real constants such that Co and C1 are nonzero. In 
the remainder of the section, we assume that these constants satisfy the 
following relation; 

(6.3) 

Put e=t(1, .. " 1) e cn and define e e C 2n+l by 

Furthermore we define C e M 2n + 1(C) by 

(6.4) 

Then we have C e f1=[f, fl. 

Lemma 6.1. Assume (6.3). Then we obtain that 
( i) for every k e K, there exist Vo e C and v e C n such that ke = 

t(vo, v, v). 
(ii) For each k e K, we have 

[
ctClvoI2_(CO/Cl)2) CIVOV* c1Vov* 1 

Ad(k)C=J=T clVOv c1(vv*-ln) ctCvv*-l n )+c21n 

CIVOV c1(vv*-ln)+c21" c1(vv*-ln) 

where Vo and v are given in (i). 
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(iii) If we set Ka={k E K; Ad(k)C=C} and K.={k E K; ke=e}, 
then we have Ka=ZKKI! and KI! n T=(I2n+I). 

Proof ( i ) Each k E K can be written in the form (6.2). Hence if 
we put 

then we have ke=t(vo, v,v). 
(ii) Put Ad(k)C=.f=T C' and denote its block expression by 

C'=(C~s)0;;:;r.s;;:;2· First we shall show Crio=cl(lvoI2 -(coIcl)2). By direct 
matrix computation, we have 

On the other hand by (6.5) we have 

Hence we can write 

C~o= cl(j vl -(CO/CI)21 koo 12_ 2c11(2cl - c2)kolktt). 

Since k is a unitary matrix and hence IkooI2+2kolkti= 1, it follows that 

C~o= ctCl Vo 12_ c11(2cl- C2) -«CO/CIY - c11(2cl - c2)) I koo I2). 

Using (6.3), we have C~0=cl(jvoI2-(colcIY). Similarly by direct calcula­
tion, we have Cio=C~0=(C~I)*=(C~2)* and 

Cio =cr1~OO(kll + k I2)e+ 2cok lOe*ktt + 2ctCkll + kI2)(ee* -In)ktt 

+ c2(kll + k I2)ktt. 

By (6.5) this can be written as 

Since kooklO+(kll+kI2)kti=O, we have 

Cio = clVOv - ctC( col clY - C 11(2cl- c2))kook1O' 

Again by using (6.3), we have Cio=clvOv. The cases for Cit> Ci2' C~l and 
C~2 are treated quite analogously. So we shall omit the proof. 

(iii) From (ii) it follows that k E Ka if and only if a) IV0J2=(CO/CI)2, 
b) clvOv=cOe and c) vv*=ee*. From these we can easily deduce that 
k E Ka if and only if ke=ue for some u E U(I). This yields the assertion. 
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Let M be the cotangent bundle over G/H and ({J the moment map for 
the K-action given by (3.7). We consider the reduced phase space M(C) 
where C is given by (6.4). For qED, we define Z(q) E q by 

(6.6) 

Zo(q)*Jm 

Zl(q) 

-JmZzCq)Jm 

where 

and Zl(q) and Z2(q) are given respectively by the same formulas (5.7) and 
(5.8). Moreover we define Z(q, p) E q by 

(6.8) Z(q, p) =D(p) +Z(q). 

Proposition 6.2. Under the assumption (6.3), we have 
( i) for each IT(x, X) E ({J-\ C) there exist unique k E Ki! and (q, p) E 

DXRn such that hex, X) = IT(exp (D(q», Z(q,p». 
(ii) ({J -l( C) is a submanifold of M diffeomorphic to Ki! X D X Rn. 

Proof Let IT(x, X) E ({J-I(C). Since G=KA+H, we can write 
x = k-lah (k E K, a E A+, hE H). Then hex, X) = IT(a, Ad(h)X) and 
({J(lT(a, Ad(h)X»=Ad(k)C. Since a is a diagonal matrix, we can easily 
obtain that the diagonal part of ({J(lT(a, Ad(h)X» vanishes and so does the 
diagonal part of Ad(k)C. Thus we conclude from Lemma 6.1 (ii) that 
[VO[2=(CO/C 1y and Vi E U(I) (l:::::::i:::::::n). Put t=diag(c01cIVo, VI···, Vn , VI> 
... , vn). Then t E T and t- 1k E Ki!. Since t- 1a=at- 1 and TcH, if we 
put Z=Ad(t- 1h)X, then t- 1h(x, X) = IT(a, Z) and ({J(lT(a, Z»=C. Now 
we put a=exp(D(q» with D(q) E Q+. Then the last identity implies that 
D(q) E Ct+ and Z is of the form Z(q,p). The uniqueness of k E Ki! and 
(q,p) E DXRn and the assertion (ii) are proved in the same manner as in 
Proposition 4.2. 

Theorem 6.3. Keeping the assumption (6.3), we denote by M(C) the 
set of Kc-orbits in ({J-I(C) and by lTc the canonical projection of ((J-l(C) 
onto M( C). Define a map cp of D X Rn into M( C) by 

(6.9) cp(q, p) =lTc 0 IT(exp (D(q », Z(q, p». 

Then cp is a bijection and hence M( C) has a smooth manifold structure under 
which cp is a diffeomorphism and lTc is a submersion. Thus M(C) is a 
reduced phase space with the symplectic structure Wc. 
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(ii) It holds that cp*wa= I:f-l dqt!\dpi and hence cP is a symplectic 
diffeomorphism. 

(iii) Define a G-invariant Hamiltonian F on M by 

1 
F(~(x, X))=-<X, X> 

2 . 

and denote the reduced Hamiltonian on M(C) by Fa. Then we have 

and 

Proof ( i ) From Proposition 6.2, it is clear that cP is bijective, so 
that we can define a C~-structure on M(C) under which cP is a diffeomor­
phism. If we define a smooth map <p of DXRn into Gxq by <p(q,p}= 
(exp(D(q)), Z(q,p)), then it holds that cP=~oo~o<p and iao~o<p=~o<p. 
Hence ~a is a submersion and M(C) is a reduced phase space. 

(ii) We define V(q) e fj by 

(6.10) 

(6.11) 

- Vo(q)*Jm 

V1(q) 

Jm V2(q)Jm 

and VtCq) (resp. V2(q)) is the same as in (5.13) (resp. (5.14)). Then the 
differential d<p is again given by the same formula as (4.24). Hence the 
proof of (ii) is parallel to that of Theorem 4.3. 

(iii) In the same manner as in Theorem 4.3, we have 

From (6.6) and the fact that the diagonal part of Z(q) is equal to zero, it 
follows that 4-1tr(Z(q,p)2)=4- 1tr(D(p)2)+4- 1tr(Z(q)2). Since Z(q) is 
given by (6.6), we obtain 

The first term is equal to 
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d(tl Sh-2(qj)-jt+l Ch-2(qj)). 

The second term is computed as in Theorem 5.3 (iii). The result is 

c~(I;(I><sh -2(q J k) + sh -2(q j k)) 
n 

- I;(2)(ch-2(qjk)+ch- 2(Qjk))) + d/2 I; sh-2(2qJ). 
j=l 

From these we can deduce (iii). 

We define G-invariant smooth functions Fh ... , Fn on M by 

(6.12) 

Then they have the same properties described in Section 5. Moreover if 
we define Ik(q,p)=Ff(cp(q,p)) «q,p) E DXRn, 1 <k<n), then 

(6.13) I k (q,p)=(2k)-ltr(Z(q,p)2k) (l <k<n). 

They are clearly rational functions of PI> .. ·,Pm exp(ql),···, exp(qn). 
Hence the following corollary is valid. 

Corollary 6.4. The Hamiltonian systems attached to the root systems 
with signature (Bm em) and (Ben, em) are completely integrable under the 
assumption (6.3). The above rational functions II> ... , In are mutually 
involutive integrals of motion, which are generically functionally independent. 

For qED we set 

(6.14) 

where 

-Bo(q)* 

B1(q) 

B2(q) 

(6.15) Boo(q) = 2.v=:T Cl(tl Sh-2(qj)-j=t+l Ch- 2(qj)) 

and BoCq)=t(Bo(q)1> .", BoCq)n) such that 

{
-.v=:T Co sh-2(qj) (1 <j<m), 

(6.16) B (q) -
o j- .v=:Tcoch-2(qj) (m+l<j<n) 

and B1(q)jk (l <j *k<n) are given by (5.20) and B2(q)jk(1 <j, k~n) are 
given by (5.21) and finally 
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B1(q)jj= -2-1=1 CO(tl Sh- 2(qj)-j=t+l Ch- 2(q,)) 

-2: B1(q)iJ-2: B2(q)ij' 
i*;" i 
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for l$;,j<n. Then we can check B(q) E f, Furthermore we define 
U{q) E fj (q E D) by 

(6.17) U(q)=1-(Ad(exp( -D(q)))B(q) + a(Ad(exp { -D(q)))B(q))). 
2 

Then it holds that U(q)jJ=B(q)jj (0<j<2n) and U(q)jk= V(q)jk 
(O<j*k<2n) where V(q) is given by (6.10). Moreover we have 

(6.18) 1 Z(q)=-{Ad(exp (-D(q)))B(q)-a(Ad(exp( -D(q)))B(q))) 
2 

and hence 

(6.19) Ad (exp( -D(q)))B(q) = U(q) + Z(q). 

Corollary 6.5. Under the assumption (6.3), let (q(t),p(t))=¢h(q,P) 
be the trajectory of the Hamiltonian flow starting from (q,p) E DXRn • 

Then we have 

(6.20) exp (D(q)) exp (2tZ(q, p)) exp (D(q))l=k(t) exp (2D(q(t)))lk(t)-1 

where k(t) is a curve in K, given by 

(6.21) d -k{t)=k(t)B(q(t)), k(O) = 12n + 1• 

dt 

Moreover Z{q(t), pet)) satisfies the following Lax's isospectral deformation 
equation; 

(6.22) d -Z(q(t), p(t)) + [U{q{t)), Z(q(t), pet))] =0. 
dt 
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