A Geometric Significance of Total Curvature on Complete Open Surfaces

Masao Maeda

1. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then the total curvature of M satisfies the inequality

$$\int_{M} K dv \leq 2\pi,$$

where dv is the volume element of M induced from the Riemannian metric on M. This was proved by Cohn-Vossen in [2]. Obviously in contrast with compact case, the total curvature of M is not a topological invariant when M is non-compact and it depends on the Riemannian structures on M. Concerning this fact, in [5], [7], we showed that the total curvature of M is expressing a certain curvedness of M. We will state it in the following.

For a point $q \in M$, put $S_q(M) := \{v \in T_q(M); \text{ norm of } v = 1\}$, where $T_q(M)$ is the tangent space of M at q. From the Euclidean metric on $T_q(M)$, $S_q(M)$ becomes a Riemannian submanifold of $T_q(M)$ isometic to the standard unit circle. Thus we can consider the Riemannian measure on $S_q(M)$. Let $A(q) \subset S_q(M)$ be the set defined as

$$\{v \in S_q(M); \text{ geodesic } \varUpsilon: [0, \infty) \rightarrow M \text{ given by } \varUpsilon(t) = \exp_q tv \text{ is a ray}\}.$$

Here $\exp_q: T_q(M) \to M$ is the exponential mapping of M and geodesic Υ is called a ray when any subarc of Υ is a shortest connection between its end points. Using these notations, the facts mentioned above are stated as follows.

Fact 1. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane. Then for any point $q \in M$,

Received November 8, 1982. Revised May 8, 1983.

measure
$$A(q) \ge 2\pi - \int_{M} K dv$$
.

Note that from classification by Cohn-Vossen, 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature is diffeomorphic to a Euclidean plane or isometric to a flat cylinder or a flat Möbius band.

And in [6], we have tried to estimate the measure A(q) from above;

Fact 2. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then it holds

$$\inf_{q \in M} \text{ measure } A(q) \leq 3\pi - \int_{M} K \, dv.$$

Here note that for each value $u \in (0, 2\pi]$, we can easily construct a complete non-compact rotation surface in 3-dimensional Euclidean space with non-negative Gaussian curvature K satisfying $\int_{M} K dv = u$ and with point $q \in M$ satisfying measure $A(q) = 2\pi$. Thus it will be reasonable to consider on an estimate of $\inf_{q \in M}$ measure A(q). And as is easily seen, the estimation in Fact 2 is very rough. So in this paper, we will give a more sharper estimation which is

Theorem. Let M be a 2-dimensional complete non-compact Riemannian manifold with non-negative Gaussian curvature K. Then it holds

$$\inf_{q \in M} \text{ measure } A(q) \leq 2\pi - \int_{M} K \, dv.$$

An upper bound $2\pi - \int_{M} K dv$ is optimal in this type of estimation, because together with Fact 1, we have

Corollary. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane. Then it holds

$$\int_{M} K dv = 2\pi - \inf_{q \in M} \text{ measure } A(q).$$

Thus we get a geometrical significance of the total curvature of M. Another trials to give a geometrical significance of the total curvature are done by K. Shiohama, see [8], [9].

2. We will give the proof of the Theorem. For convenience of the

proof, we will restate a main part of the proof of Fact 1, following in [6]. From classification by Cohn-Vossen, it sufficies to prove when M is diffeomorphic to a Euclidean plane. Then from [4], we have a family of compact domains $\{Q_{ri}\}_{i=1,2,...}$ satisfying

- (1) the boundary of Q_{r_i} is a geodesic quadrateral, $i = 1, 2, \cdots$
- (2) $Q_{r_i} \subset Q_{r_{i+1}}$ for $i=1, 2, \cdots$ and
- (3) $\bigcup_{i=1}^{\infty} Q_{r_i} = M$.

For this family $\{Q_{r_i}\}$, we have

Lemma 1. If M is not flat, then for each r_i , there exists $r_{ij} > r_i$ such that every ray starting from any point of the complement of $Q_{r_{ij}}$ does not meet Q_{r_i} .

The proof of this lemma is done by using Toponogov's splitting theorem [6; p.4].

Now for any small positive $\varepsilon > 0$, there exists a number i_0 such that

$$\int_{Q_{i_0}} K dv \ge \int_{M} K dv - \varepsilon.$$

This follows from the property (2) for $\{Q_{r_i}\}$. For this $Q_{r_{i_0}}$, we apply Lemma 1. Then we get $Q_{r_{j_0}}$ which satisfies the following; for any point $q \in (Q_{r_{j_0}})^c$ (=the complement of $Q_{r_{j_0}}$), any ray starting from q does not meet $Q_{r_{i_0}}$. If $\sharp A(q)$ (=number of the elements of A(q))=1, then there is nothing to prove. So we consider the case $\sharp A(q) \ge 2$. So $S_q(M) - A(q)$ is disjoint union of connected open subsets $F_{\lambda,\lambda\in A}$ of $S_q(M)$ i.e. $\bigcup_{\lambda\in A}F_{\lambda} = S_q(M) - A(q)$, becauses A(q) is a closed subset of $S_q(M)$. For each $\lambda \in \Lambda$, ∂F_{λ} consists of two vectors v_1^2 , $v_2^2 \in A(q)$. Let r_i^2 : $[0, \infty) \to M$ be the ray defined by $r_i^{\lambda}(t) = \exp_q tv_i^{\lambda}$, i = 1, 2. Since r_1^{λ} , r_2^{λ} are rays, r_1^{λ} and r_2^{λ} do not meet other than q. Let $\delta > 0$ be the convexity radius of q. Then from above facts, we get domains $D_{\lambda,\lambda\in A}$ whose boundary is $r_1^{\lambda}([0,\infty)) \cup r_2^{\lambda}([0,\infty))$ and which satisfies $\exp_q\{tv; v \in F_{\lambda}, 0 < t \le \delta\} \subset D_{\lambda,\lambda\in A}$ and $\bigcup_{\lambda\in A}\overline{D_{\lambda}} = M$.

Now, let $\{C_t\}_{t\geq 0}$ be the family of compact totally convex subsets of M defined by

$$C_t = \bigcap_{c \in A} (M - B_{c_t})$$

where by definition, $B_{c_t} := \bigcup_{s>0} B_s(c(t+s))$ ($B_r(x)$ is the open geodesic ball in M with radius r centered at x) and A is the set of all rays starting from q. In this paper, all geodesics have arc-length as their parameter. Since C_t is totally convex, C_t is a topological manifold and hence ∂C_t is homeomorphic to a circle for t>0, because dim M=2, see [1]. For this

454 M. Maeda

family of totally convex sets $\{C_t\}_{t\geq 0}$, we have shown in [5] that for each $D_{\lambda, \lambda \in A}$, there exists a divergent sequence $\{t_i\}$ $(t_i \uparrow \infty)$ and minimal geodesics $T_{t_i}^*, T_{t_i}^* \colon [0, s_i] \to \overline{D}_{\lambda}, i = 1, 2, \cdots$ satisfying the following conditions;

(1) $\gamma_{t_i}^+, \gamma_{t_i}^-$: $(0, s_i] \rightarrow D_{\lambda}, i = 1, 2, \cdots$

(2)
$$\gamma_{t_i}^+(0) = \gamma_{t_i}^-(0) = q, \ \gamma_{t_i}^+(s_i) = \gamma_{t_i}^-(s_i) \in \partial C_{t_i}, \ i = 1, 2, \cdots$$

(3) $\gamma_{t_i}^+ \rightarrow \gamma_1^{\lambda}, \gamma_{t_i}^- \rightarrow \gamma_2^{\lambda} \text{ as } i \rightarrow \infty.$

For these $\gamma_{t_i}^+$, $\gamma_{t_i}^-$, it holds;

Lemma 2.
$$\lim_{t_i\to\infty} \langle (-\dot{\gamma}_{t_i}^+(s_i), -\dot{\gamma}_{t_i}^-(s_i)) = 0.$$

Proof. Step 1. From the definition of C_{t_i} and the fact that Υ_1^{λ} , $\Upsilon_2^{\lambda} \in A$, we can easily see that $\Upsilon_1^{\lambda}(t_i)$, $\Upsilon_2^{\lambda}(t_i) \in \partial C_{t_i}$ for each t_i and $\Upsilon_1^{\lambda}[[0, t_i]]$, $\Upsilon_2^{\lambda}[[0, t_i]]$ is a shortest connection between q and ∂C_{t_i} .

Step. 2. Fix a number t_i . We consider a function $\varphi_i: [0, s_i] \to R$ defined by $\varphi_i(s) := d(\Upsilon_{t_i}^+(s), \partial C_{t_i})$ (d is the distance function on M). Since $\Upsilon_{t_i}^+([0, s_i]) \subset C_{t_i}$, from [1; Th. 1.10], φ_i is a concave function, that is, for any $a \ge 0$, $b \ge 0$, a+b=1 and s < s',

$$\varphi_i(as+bs') \ge a\varphi_i(s) + b\varphi_i(s').$$

And from Step 1, we see

$$d(\Upsilon_1^{\lambda}(s), \partial C_{t_i}) = t_i - s.$$

So

$$\varphi_i(s) \leq d(\Upsilon_{t_i}^+(s), \Upsilon_1^{\lambda}(s)) + d(\Upsilon_1^{\lambda}(s), \partial C_{t_i})$$

= $d(\Upsilon_{t_i}^+(s), \Upsilon_1^{\lambda}(s)) + t_i - s$.

Using comparison theorem by Toponogov, we have

$$d(\Upsilon_1^{\lambda}(s), \Upsilon_{t_i}^+(s)) \leq \sqrt{2(1-\cos\theta)} \cdot s,$$

where we put $\theta := \langle (\dot{\gamma}_1^3(0), \dot{\gamma}_{t_i}^+(0))$. Thus

$$\varphi_i(s) \leq t_i - s + \sqrt{2(1 - \cos \theta)} \cdot s$$

= $t_i - (1 - \sqrt{2(1 - \cos \theta)})s$.

Put $m(\theta) := 1 - \sqrt{2(1 - \cos \theta)}$. Then $m(\theta) < 1$ and $m(\theta) \to 1$ as $\theta \to 0$. Hence we have

$$\varphi_i(s) \leq t_i - m(\theta)s$$

for $s \in [0, t_i]$ and hence $s \in [0, s_i]$ because of the concavity of φ_i .

Step 3. By using the concavity of φ_i and the inequality $\varphi_i(s) \leq t_i - m(\theta)s$, we can easily see that for any $s, s', s < s' \leq s_i$,

$$\frac{\varphi_i(s') - \varphi_i(s)}{s' - s} \leq -m(\theta).$$

So putting $s' = s_i$ in the above inequality, we have

$$\varphi_i(s) \ge m(\theta)(s_i - s)$$
 for any $s \in [0, s_i]$,

because $\varphi_i(s_i) = 0$.

Step 4. For a small $\delta' > 0$, let $c: [-\delta', \delta'] \rightarrow M$ be a geodesic such that $c(0) = \gamma_{t_i}^+(s_i) \in \partial C_{t_i}$ and

$$c([-\delta',\delta'])\subset (C_{t_i})^c\cup \partial C_{t_i}.$$

Such a c is obtained as follows. Since C_{t_i} is totally convex, tangent cone

$$C_{\tau_{t_i}^+(s_i)} = \left\{ v \in T_{\tau_{t_i}^+(s_i)}(M); \text{ exp } tv/||v|| \in \text{int } C_{t_i} \text{ for some} \right\} \cup \{0\}$$

$$\text{positive } t < r(\Upsilon_{t_i}^+(s_i))$$

at $\Upsilon_{t_i}^+(s_i) \in \partial C_{t_i}$ is a convex cone in $T_{r_{t_i}^+(s_i)}(M)$, where $r(\Upsilon_{t_i}^+(s_i))$ is the convexity radius at $\Upsilon_{t_i}^+(s_i)$, see [1; Prop. 1.8]. Let $v \in \partial C_{r_{t_i}^+(s_i)} - \{0\}$ and define $c(t) = \exp tv/||v||$. Then c is a desired one.

Now, choosing s sufficiently close to s_i and fixing it for a moment, we can assume that end point of the minimal geodesic c_1 : $[0, d(\Upsilon_{t_i}^+(s), c([-\delta', \delta']))] \rightarrow M$ from $\Upsilon_{t_i}^+(s)$ to $c([-\delta', \delta'])$ is $c(s_0)$, $s_0 \in (-\delta', \delta')$. We only consider the case $s_0 \ge 0$. If $s_0 < 0$, then putting $\tilde{c}(s) := c(-s)$, we can obtain same conclusion. Put $d(\Upsilon_{t_i}^+(s), c([-\delta', \delta'])) = d(\Upsilon_{t_i}^+(s), c(s_0)) = : s_1$. Then $\not\subset (\dot{c}(s_0), \dot{c}_1(s_1)) = \pi/2$. If $c_1 = \Upsilon_{t_i}^+|_{[s,s_i]}$, then there is nothing to prove as is seen in the following. So we consider the case $c_1 \ne \Upsilon_{t_i}^+|_{[s,s_i]}$. Put $s_i - s = : s_2$. Then because of the property of c, minimal geodesic c_1 from $\Upsilon_{t_i}^+(s)$ to $c([-\delta', \delta'])$ meet ∂C_{t_i} . Thus

$$s_1 \geq \varphi_i(s) \geq m(\theta)(s_i - s) = m(\theta)s_2,$$

i.e. $s_1 \ge m(\theta) s_2$. Let *D* be the compact domain surrounded by the geodesic triangle $(\gamma_{t_i}^+|_{[s_i,s_i]}, c|_{[0,s_0]}, c_1)$. Put $\alpha := (-\dot{\gamma}_{t_i}^+(s_i), \dot{c}(0))$,

$$\beta := \langle (\dot{\gamma}_{t_4}^+(s), \dot{c}_1(0)) \text{ and } \gamma := \langle (-\dot{c}(s_0), -\dot{c}_1(s_1)) \rangle = \pi/2$$
.

Now for any small $\varepsilon' > 0$, we choose s again sufficiently close to s_i satisfying $\varepsilon' \ge \int_D K dv$. Then applying Gauss-Bonnet Theorem to D, we have

$$\varepsilon' \ge \int_{D} K dv = \alpha + \beta + \gamma - \pi = \alpha + \beta - \frac{\pi}{2} \ge 0.$$

Thus

$$\frac{\pi}{2} \leq \alpha + \beta \leq \frac{\pi}{2} + \varepsilon'.$$

In particular

$$\alpha \leq \frac{\pi}{2} + \varepsilon'$$
.

From Toponogov's comparison theorem, if we construct a triangle in a Euclidean plane with sides having lengths s_2 , s_0 , s_1 corresponding to the geodesic triangle $(\mathcal{T}_{t_i}^+|_{[s,s_i]}, c|_{[0,s_0]}, c_1)$ and if $\tilde{\alpha}$, $\tilde{\beta}$, $\tilde{\gamma}$ are the corresponding angles to α , β , γ respectively, then

$$\alpha \geq \tilde{\alpha}, \qquad \beta \geq \tilde{\beta}, \qquad \gamma \geq \tilde{\gamma}.$$

So

$$\tilde{\alpha} + \tilde{\beta} \leq \frac{\pi}{2} + \varepsilon'$$
 and $\tilde{\gamma} \leq \frac{\pi}{2}$.

Thus, using $\tilde{\alpha} + \tilde{\beta} + \tilde{\gamma} = \pi$ we have

$$\frac{\pi}{2} - \varepsilon' \leq \tilde{\gamma} \leq \frac{\pi}{2}$$
.

On the other hand, from Sine formula

$$\frac{\sin\tilde{\gamma}}{s_2} = \frac{\sin\tilde{\alpha}}{s_1}.$$

So

$$\sin \tilde{\alpha} = \frac{s_1}{s_2} \sin \tilde{\gamma} \ge m(\theta) \cdot \sin \left(\frac{\pi}{2} - \varepsilon' \right).$$

Thus we have

$$\sin^{-1}\left(m(\theta)\cdot\sin\left(\frac{\pi}{2}-\varepsilon'\right)\right) \leq \alpha \leq \frac{\pi}{2}+\varepsilon',$$

where $\sin^{-1}($) is the principal value. Since ε' is arbitraly letting $\varepsilon' \rightarrow 0$, we have

$$\sin^{-1}(m(\theta)) \leq \alpha \leq \frac{\pi}{2}$$
, i.e.

$$\sin^{-1}(m(\theta)) \leq \langle (-\dot{\gamma}_{t_i}^+(s_i), \dot{c}(0)) \leq \frac{\pi}{2}.$$

So together with the case $s_0 < 0$, we have

$$\langle (-\dot{\gamma}_{\iota_i}^+(s_i), \dot{c}(0)) \geq \sin^{-1}(m(\theta))$$

$$\langle (-\dot{\gamma}_{\iota_i}^+(s_i), -\dot{c}(0)) \geq \sin^{-1}(m(\theta)).$$

Similary for $\gamma_{t_i}^-$, we have

and

and
$$\langle (-\dot{\gamma}_{t_i}^-(s_i), \dot{c}(0)) \geq \sin^{-1}(m(\theta))$$

$$\langle (-\dot{\gamma}_{t_i}^-(s_i), -\dot{c}(0)) \geq \sin^{-1}(m(\theta)).$$

So $\langle (-\dot{\gamma}_{\iota_i}^+(s_i), -\dot{\gamma}_{\iota_i}^-(s_i)) \leq 2\left(\frac{\pi}{2} - \sin^{-1}(m(\theta))\right).$

Now if $i \rightarrow \infty$, then $\theta \rightarrow 0$ and hence $m(\theta) \rightarrow 1$. Thus

$$2\left(\frac{\pi}{2} - \sin^{-1}(m(\theta))\right) \to 0.$$
 q.e.d.

Now, let $\Delta(t_i)$ be the compact domain surrounded by $\Upsilon_{t_i}^+$ and $\Upsilon_{t_i}^-$ contained in \overline{D}_{λ} . Applying Gauss-Bonnet Theorem to $\Delta(t_i)$, we have

$$\int_{A(t_i)} K \, dv = \langle (\dot{\gamma}_{t_i}^+(0), \, \dot{\gamma}_{t_i}^-(0)) + \langle (-\dot{\gamma}_{t_i}^+(s_i), \, -\dot{\gamma}_{t_i}^-(s_i)).$$

If $t_i \rightarrow \infty$, then $\Delta(t_i) \rightarrow \overline{D}_{\lambda}$. Thus from Lemma 2, we have

Lemma 3.
$$\int_{\bar{D}_{\lambda}} K dv = \langle (\dot{\gamma}_{1}^{\lambda}(0), \dot{\gamma}_{2}^{\lambda}(0)) = \text{measure } F_{\lambda}.$$

From the choice of the point $q \in (Q_{r_{j_0}})^c$, any ray starting from q does not meet $Q_{r_{i_0}}$. So we can find D_{λ_0} such that $Q_{r_{i_0}} \subset D_{\lambda_0}$. Thus we have

$$\int_{M} K dv - \varepsilon \leq \int_{Q_{L_0}} K dv$$

$$\leq \int_{\bar{D}_{\lambda_0}} K dv$$

$$\leq \sum_{\lambda} \int_{\bar{D}_{\lambda}} K dv$$

$$= \sum_{\lambda} \text{ measure } F_{\lambda}$$

$$= \text{measure } \bigcup_{\lambda} F_{\lambda}$$

$$= \text{measure } (S_q(M) - A(q))$$

$$= 2\pi - \text{measure } A(q).$$

That is,

measure
$$A(q) \leq 2\pi - \int_{M} K dv + \varepsilon$$
.

Hence

$$\inf_{q \in M} \text{ measure } A(q) \leq 2\pi - \int_{M} K \, dv.$$
 q.e.d.

References

[1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann of Math., 96 (1972), 413-443.

[2] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math., 2 (1935), 69–133.

[3] D. Gromoll and W. Meyer, On complete manifolds of positive curvature, Ann. of Math., 90 (1969), 75-90.

[4] M. Maeda, On the total curvature of non-compact Riemannian manifolds, Kodai Math. Sem. Rep., 26 (1974), 95-99.

[5] —, On the existence of rays, Sci. Rep. Yokohama National Univ. Sec. I, 26 (1979), 1-4.

[6] —, Remarks on the distribution of rays, to appear in Sci. Rep. Yokohama National Univ. Sec. I.

[7] K. Shiga, On a relation between the total curvature and the measure of rays, Tsukuba, J. Math., 6 (1982), 41-50.

[8] K. Shiohama, Busemann functions and total curvature, Invent. Math., 53 (1979), 281-297.

[9] —, A role of total curvature on complete non-compact Riemannian 2-manifolds, to appear in Illinois, J. Math.

Department of Mathematics Faculty of Education Yokohama National University Hodogaya-ku, Yokohama 240 Japan