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A Geometric Significance of Total Curvature
on Complete Open Surfaces

Masao Maeda

1. Let M be a 2-dimensional complete non-compact Riemannian
manifold with non-negative Gaussian curvature K. Then the total cur-
vature of M satisfies the inequality

f Kdv<2z,
M

where dv is the volume element of M induced from the Riemannian metric
on M. This was proved by Cohn-Vossen in {2]. Obviously in contrast
with compact case, the total curvature of M is not a topological invariant
when M is non-compact and it depends on the Riemannian structures on
M. Concerning this fact, in [5], [7], we showed that the total curvature
of M is expressing a certain curvedness of M. We will state it in the fol-
lowing. .

For a point ¢ € M, put S(M):={v e T(M); norm of v=1}, where
T,(M) is the tangent space of M at g. From the Euclidean metric on
T, (M), S,(M) becomes a Riemannian submanifold of T, (M) isometirc to
the standard unit circle. Thus we can consider the Riemannian measure
on S,(M). Let A(q)CS,(M) be the set defined as

{ve S, (M); geodesic T: [0, co)—M given by 7(¢t)=exp, tv is a ray}.

Here exp,: T,(M)—M is the exponential mapping of M and geodesic 7 is
called a ray when any subarc of 7 is a shortest connection between its end
points. Using these notations, the facts mentioned above are stated as

follows.

Fact 1. Let M be a 2-dimensional complete Riemannian manifold
with non-negative Gaussian curvature K diffeomorphic to a Euclidean
plane. Then for any point g € M,
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measure A(q)=2rx ——j Kdv.
M

Note that from classification by Cohn-Vossen, 2-dimensional com-
plete non-compact Riemannian manifold with non-negative Gaussian
curvature is diffeomorphic to a Euclidean plane or isometric to a flat
cylinder or a flat M&bius band.

And in [6], we have tried to estimate the measure 4(g) from above;

Fact 2. Let M be a 2-dimensional complete non-compact Rieman-
nian manifold with non-negative Gaussian curvature K. Then it holds

inf measure A(q)él%rc—-f Kdv.
M

qeEM

Here note that for each value u € (0, 2z], we can easily construct a
complete non-compact rotation surface in 3-dimensional Euclidean space

with non-negative Gaussian curvature K satisfyingj Kdv=u and with
M

point g € M satisfying measure 4(g)=2x. Thus it will be reasonable to
consider on an estimate of inf, ., measure 4(g). And as is easily seen,
the estimation in Fact 2 is very rough. So in this paper, we will give a
more sharper estimation which is

Theorem. Let M be a 2-dimensional complete non-compact Rieman-
nian manifold with non-negative Gaussian curvature K. Then it holds

inf measure A(g)<2r—| Kdv.
M

qEM

An upper bound 277:—I Kdv is optimal in this type of estimation,
M
because together with Fact 1, we have
Corollary. Let M be a 2-dimensional complete Riemannian manifold

with non-negative Gaussian curvature K diffeomorphic to a Euclidean plane.
Then it holds

f K dv=2x— inf measure A(q).
M

qeM

Thus we get a geometrical significance of the total curvature of M.
Another trials to give a geometrical significance of the total curvature are
done by K. Shichama, see [8], [9].

2. We will give the proof of the Theorem. For convenience of the
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proof, we will restate a main part of the proof of Fact 1, following in [6].
From classification by Cohn-Vossen, it sufficies to prove when M is dif-
feomorphic to a Euclidean plane. Then from [4], we have a family of
compact domains {Q, };,_1,,,... satisfying

(1) the boundary of Q,, is a geodesic quadrateral, i =1, 2, - - -

@ 9,c0,,. fori=1,2, ... and

(3) U Q”=M.
For this family {Q,,}, we have

Lemma 1. If M is not flat, then for each r,, there exists r;,>r; such
that every ray starting from any point of the complement of 0., does not
meet Q,..

The proof of this lemma is done by using Toponogov’s splitting
theorem [6; p.4].
Now for any small positive ¢ >0, there exists a number i, such that

I Kdvgf Kdv—e.
Qig M

This follows from the property (2) for {Q,,}. For this Q.. we apply
Lemma 1. Then we get Q,, which satisfies the following; for any point
q €(Q,,)° (=the complement of Q, ), any ray starting from g does not
meet Q,, . If § 4(g) (=number of the elements of 4(¢))=1, then there is
nothing to prove. So we consider the case #4(g)=2. So S,(M)—A(q)
is disjoint union of connected open subsets F; ;., of S,(M)ie. |UJ,esF:
=S, ,(M)—A(q), becauses A(q) is a closed subset of S,(M). For each
A€ A, 0F, consists of two vectors v}, vi € A(g). Let 72:[0, co)—M be the
ray defined by 74(¢)=exp, tv}, i=1, 2. Since 7}, 7} are rays, 71 and 7} do
not meet other than g. Let §>0 be the convexity radius of g. Then
from above facts, we get domains D, ,., whose boundary is 74([0, c0))
UT4[0, oo)) and which satisfies exp,{tv;ve F,, 0<¢t<é}CD, ,;., and
Wiea Di=M.

Now, let {C\},5, be the family of compact totally convex subsets of
M defined by

Ct= m (M —B ct)
ced
where by definition, B,,:=|J, B,(c(t+5)) (B,(x) is the open geodesic
ball in M with radius r centered at x) and A4 is the set of all rays starting
from ¢. In this paper, all geodesics have arc-length as their parameter.
Since C, is totally convex, C, is a topological manifold and hence 9C, is
homeomorphic to a circle for £ >0, because dim M =2, see [1]. For this
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family of totally convex sets {C,},»,, We have shown in [5] that for each
D, ;4 there exists a divergent sequence {#,} (¢,1 c0) and minimal geodesics
15, 75:00, 50D, i=1, 2, - - . satisfying the following conditions;

N 15,75.:0,5]-D,,i=1,2, -

@ THO=T0)=q, T3(s)=T5(s) €9C,, i=1,2, - -

() Ti-TL 75T as i—>c0.
For these 7}, 77, it holds;

Lemma 2. lim,,_.3((—7:(s), —#7(s0)=0.

Proof. Step 1. From the definition of C,, and the fact that 7}, 75 ¢
A, we can easily see that 73(z,), 7i(t,) € 8C,, for each ¢, and 72|10, t,], 73][0, #,]
is a shortest connection between g and 9C,,.

Step. 2. Fix a number #,, We consider a function ¢,: [0, s]—R
defined by ¢, (s):=d(7}(s), 8C,,) (d is the distance function on M). - Since
740, sDC C,,, from [1; Th. 1.10], ¢, is a concave function, that is, for
any a=0, b=0, a+b=1 and s<s’,

o{as+bs ) Zaps)+bp(s').
And from Step 1, we see
d(i(s), 0C,,)=t,—s.

So ) =d(T5(5), Ti(s) +d(T(), 9C.,)
=d(1;(s), TN+ 1,—s.

Using comparison theorem by Toponogov, we have
d(Ti(s), 1) <v/2T—cos ) s,

where we put 8:= < (#{(0), 77.(0)). Thus
=t;—(1—/2(1—cos 0))s.

Put m(f):=1—+2(1—cos@d). Then m(@)<1 and m@)—1 as 6—0.
Hence we have

ods)<t,—m(0)s
for 5 € [0, #,] and hence s ¢ [0, 5,] because of the concavity of ¢,.

Step 3. By using the concavity of ¢, and the inequality ¢,(s)<t,—
m(f)s, we can easily see that for any s, 5, s<<s'<s,,
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2N=0d8) ~_ 5.
s —s -

So putting §'=s3s, in the above inequality, we have
pd)Zm@)(s;—s)  for any s € [0, 5],
because ¢,(s;)=0.

Step 4. For a small ¢ >0, let c:[—&, ']—>M be a geodesic such
that c(0)=7/,(s;) € 9C,, and

e[, ¥DC(C, )y UaC,,.
Such a ¢ is obtained as follows. Since C,, is totally convex, tangent cone

c. [ve T.+0o(M); exp tvf||v] € int C,, for some}
e { positive ¢ <r(7/.(s;) U0}

at 7/(s,) € 9C,, is a convex cone in T}, (M), where r(7;(s) is the con-
vexity radius at 7(s,), see [1; Prop. 1.8]. Let v e dC,;(,,—{0} and define
c(t)=exp tv/||v|l. Then c is a desired one.

Now, choosing s sufficiently close to s, and fixing it for a moment,
we can assume that end point of the minimal geodesic ¢;: [0, d(7}(s),
([, 8D))—M from 7;(s) to c([—&, 8']) is c(s), 5, € (—&’, &). We only
consider the case 5,>0. If 5,<<0, then putting &(s):=c(—s), we can obtain
same conclusion. Put d(7/(s), c([— &, &'D)=d(/(s), c(sp))=": 5. Then
L(E(sy), (s =r/2. If ¢;=7} ], .30 then there is nothing to prove as is
seen in the following. So we consider the case ¢, #7} |, .3 Put s;—s
=15, Then because of the property of ¢, minimal geodesic ¢, from 7/(s)
to ¢([—¢’, &']) meet 0C,,. Thus

8 gﬂoi(s) gm(ﬁ)(si —S) = m(ﬁ)sn

ie. s,==m(f)s,. Let D be the compact domain surrounded by the geodesic
triangle (77 s, o35 Clo s €1)- Pt a:= <(—7/(s,), ¢(0)),

Bi= L), 6(0) and Ti=<(—d(s), —éls)  (=x/2).
Now for any small ¢’ >0, we choose s again sufficiently close to s,

satisfying e'gj Kdv. Then applying Gauss-Bonnet Theorem to D, we
D

have

e'gj Kdv=a-+p+7—r=a+f—Z20.
D
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Thus
x
2
In particular
T
a< . +¢.
2
From Toponogov’s comparison theorem, if we construct a triangle in a
Euclidean plane with sides having lengths s,, s,, 5, corresponding to the

geodesic triangle (77 |;,s.3 Clo.so» ¢1) and if &, f, 7 are the corresponding
angles to «, B, 7 respectively, then

aza, p=f, =1
So a+f<=+¢ and 7<

Thus, using &+E+7’:n we have

On the other hand, from Sine formula

sinf  siné
Sy 8

So sin @= 3% sin F=m(f)-sin <§—e’).

Sy

Thus we have
sin~* (m(ﬁ) -sin (%—s')) gagg 4+,

where sin~* () is the principal value. Since ¢’ is arbitraly letting ¢’—0,
we have

sin~! (m@@) <a< %’ i;e.
sin™! (m(0) < L (—7i(s), c(ongg.

So together with the case 5,<0, we have
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L(—7i(s0), €(0)) =sin~'(m(0))
and L(=7s), —E(0) =sin™* (m(8)).
Similary for 7;,, we have

L (—7als), 4O Zsin"" (m(©)
and L (—=7ils), —(0)Zsin~t (m(9)).

So L= 7iled, = als)S2( 5 —sin™ (m0))).
Now if i—> oo, then §—0 and hence m(f)—1. Thus
2(_’23 _sin-! (m(ﬁ))>—>0. g.e.d.

Now, let 4(¢;) be the compact domain surrounded by 77, and 7;, contained
in D,. Applying Gauss-Bonnet Theorem to 4(z,), we have

o Kdo= XG0, 72O)+ (726D, —7ale)).

If #,— o0, then A(t)—D,. Thus from Lemma 2, we have
Lemma 3. I_ K dv=J(7}(0), 74(0))=measure F,.
D,

From the choice of the point g € (Q,, )¢, any ray starting from g does
not meet Q,, . So we can find D,, such that Q,, CD,,. Thus we have

j Kdv—e< Kdv
M Qiy

< Kdv

Dy,
<>l Kdv

i D
=, measure F;

2
=measure |_J F;

2

=measure (S,(M)—A4(q))

=27 —measure A(g).

That is,
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measure A(q)éh—f Kdv+-e.
M

Hence inf measure A(q)<2xn —-I Kdv. q.e.d.
M

qQEM
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