
Geometry of Geodesics and Related Topics 
Advanced Studies in Pure Mathematics 3, 1984 
pp. 239-281 

Hadamard Manifolds 

Kiyoshi Shiga 

As the starting point in the study of Riemannian manifolds of non­
positive curvature, we first recall the Cartan-Hadamard theorem (cf. [9], 
[17], [68]). 

Theorem. Let H be an n-dimensional simply connected complete 
Riemannian manifold of non positive curvature. Then H is diffeomorphic to 
the n-dimensional Euclidean space Rft. More precisely, at any point p E H, 
the exponential mapping expp: Hp----,,"H is a diffeomorphism. 

This theorem presents a clear contrast to Meyer's theorem (cf. [9], 
[17], [68]): if a complete Riemannian manifold M is of strictly positive 
Ricci curvature, i.e., Ricci curvature >k>O for some k, then M is com­
pact. 

A simply connected complete Riemannian manifold of nonpositive 
curvature is called a Hadamard manifold or a Cartan-Hadamard manifold 
after the Cartan-Hadamard theorem. Unless otherwise mentioned, Hwill 
always denote a Hadamard manifold throughout this report. 

From the Cartan-Hadamard theorem, there follow several basic pro­
perties of Riemannian manifolds of nonpositive curvature. For example, 
any pair of distinct points of a Hadamard manifold can be joined uniquely 
by a geodesic segment. It also follows that the fundamental group of a 
compact Riemannian manifold of nonpositive curvature is an infinite 
group. 

The primary object of this survey article is to investigate the behavior 
of geodesics of a Hadamardmanifold. Then we apply these investigations 
to the study of the isometry groups, discrete subgroups of the isometry 
groups of Hadamard manifolds and the fundamental groups of compact 
Riemannian manifolds of nonpositive curvature. 

The geodesic behavior in respect to the ergodicity of the geodesic 
flows on compact Riemannian manifolds of negative curvature has been 
investigated by many authors. For this subject, there is Sunada's report 
[86] in this proceeding. 
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The behavior of geodesics is controlled by the curvature. In fact, 
the effect of curvature appears typically in the second variational formula 
of the lengths of curves. From this formula, we obtain three kinds of 
convex functions on a Hadamard manifold: distance functions, displace­
ment functions and Busemann functions. The convexity of these functions 
plays an essential role in the study of a Hadamard manifold. The relation 
between the lengths of the sides and the angles at the vertices of a geodesic 
triangle, called the law of cosines will also be of essential use in our argu­
ments. 

In [31], Eberlein and O'Neill defined an ideal boundary H( 00) of a 
Hadamard manifold H. H( 00) is defined to be the set of all asymptotic 
classes of geodesic rays of H. The space H=HUH(oo) has a natural 
topology called the cone topology. With this topology, H is homeo­
morphic to the closed ball, and H is a compactification of H (cf. 22). 
The cone topology has several natural properties. One of them is the 
following: every isometry of H is extended as a homeomorphism of H, 
hence the isometry group J(H) can be extended as a group of homeo­
morphisms of H. Using this compactification efficiently, we shall study 
Hadamard manifolds. 

Typical examples of Hadamard manifolds are the Euclidean space R" 
with the standard flat metric and the hyperbolic space form, i.e., a simply 
connected complete Riemannian manifold with negative constant cur­
vature. The behavior of geodesics of these spaces differs considerably. 
For instance, in Rn, a point at infinity can be joined by a complete 
geodesic with only one point at infinity. In the hyperbolic space form, 
any pair of points at infinity can be joined by a complete geodesic, which 
is also the case for Hadamard manifolds of strictly negative curvature. A 
Hadamard manifold is called a Visibility manifold if it has this property. 

It can occur, in general, that two distinct complete geodesics join the 
same pair of points at infinity. However, it is known, by Green [39] and 
others, that, in this case, the Riemannian structure is strongly restricted. 
In fact, if two distinct complete geodesics have the same end points, then 
they bound a totally geodesic flat surface, called a flat strip (Theorem 8). 
Owing to this fact, Wolf [88] proved an important splitting theorem, 
saying that a Hadamard manifold has nontrivial flat de Rham factor 
providing that it has a Clifford translation (Theorem 14). These theorems 
imply several consequences on the isometry group of a Hadamard mani­
fold (Theorem 15, 30) and the fundamental group of a compact manifold 
of nonpositive curvature (Theorem 36, 40). 

Let M be a complete Riemannian manifold of nonpositive curvature 
and H, a Hadamard manifold, be the universal covering manifold of M. 
Then M can be represented as the quotient HIT with T, some fixed point 
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free properly discontinuous subgroup of l(H). Following Eberlein and 
O'Neill [31], complete Riemannian manifolds of nonpositive curvature are 
classified into three classes: axial, parabolic and fuchsian manifolds. A 
manifold belonging to the first two classes has relatively simple structure 
(Theorems 21, 22). r acts on H as a group of homeomorphisms. For 
Visibility manifolds, this extension is useful to describe the structure of r. 
In fact, the above three classes of fixed point free properly discontinuous 
subgroup of l(H) are characterized in terms of the limit set of r, i.e., the 
set of all accumulation points in H( 00) of an orbit of r (Theorems 25, 26, 
27). 

A fixed point free properly discontinuous subgroup r of J(H) is 
called a lattice, if the quotient Hlr is of finite volume. It is well-known 
that a symmetric space of noncompact type admits a lattice (Borel [lID. 
The question what kind of Hadamard manifolds admits a lattice, has been 
studied by Heintze [55], Goto and Goto [36], Chen and Eberlein [21], 
Eberlein [28] and others. Let r be a lattice of a Hadamard manifold H. 
Then, from the theory of geodesic flows, we can see that r satisfies some 
density condition, called the duality condition. The duality condition 
restricts strongly the structure of a Hadamard manifold. In fact, Chen 
and Eberlein [21] proved that if J(H) satisfies the duality condition, then 
any nontrivial abelian normal subgroup of l(H) consists of Clifford 
translations (Proposition 29). Hence, if H has not nontrivial flat de Rham 
factor, then J(H) is discrete or the identity component loCH) of J(H) is 
semi-simple (Theorem 30). Using this fact, we can describe the structure 
of a Hadamard manifold which admits a lattice (Theorem 34). 

The fundamental group of a compact Riemannian manifold of non­
positive curvature M = HI r is isomorphic to r, and we can investigate it 
by the action of r on H. Since every element of r is axial, we can see, 
by the structure theorem of axial isometries (Proposition 12), Preismann's 
theorem: any nontrivial abelian subgroup of the fundamental group of a 
compact Riemannian manifold is infinite cyclic. For finitely generated 
group, Milnor [70] introduced the growth function which, roughly speak­
ing, measures the abundance of the relations among generators of the 
group, and he showed that the fundamental group of a compact manifold 
of negative curvature is of exponential growth, the most rapid possible 
growth (Theorem 38). Eberlein [26] generalized Milnor's result by an 
entirely different formulation (Theorem 39). In the case of nonpositive 
curvature, abelian subgroups and the center of the fundamental group 
give informations about totally geodesic flat submanifolds. 

In the last part of this report, we shall rewiew the study of Kahler 
Hadamard manifolds in the geometric function theory. This part is some­
what independent of the other parts in this report. Our concern is to see 
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how the geometric structure of a Kahler manifold is reflected in the 
function theoretic properties. 

Table· of contents 

1. Fundamental properties of Hadamard manifolds. 
2. Ideal boundaries of Hadamard manifolds. 
3. Classification of isometries and Wolf's splitting theorem. 
4. Properly discontinuous groups. 
5. The duality condition and symmetric spaces. 
6. Fundamental groups of compact Riemannian manifolds of non­

positive curvature. 
7. Kahler Hadamard manifolds and geometric function theory. 

§ 1. Fundamental properties of Hadamard manifolds 

In this section, we shall review some fundamental properties of 
Hadamard manifolds. First we shall recall the second variational formula 
of the lengths of curves and then the convexity of some naturally defined 
functions. Also we shall discuss briefly manifolds without conjugate points 
and manifolds without focal points. At the end of this section, we shall 
give several examples of Hadamard manifolds which might be model 
spaces in our arguments. 

For later use, we fix some notations. Let M be a Riemannian mani­
fold. We denote by < ., . > or ds2 the Riemannian metric on M. When 
it is necessary to specify the underlying manifoldM, it is denoted by 
< ., . >M or ds~. We use similar conventions for other notations. For a 
point p e M, Mp denotes the tangent space of M at p. We denote by P' 
the covariant derivative and by R the curvature tensor field defined by 
R(X, Y)Z=VXP'yZ-P'yP'xZ-p'cx.y]z. Let X, Ye Mp be linearly inde­
pendent tangent vectors. Then the sectional curvature K(X, Y) of the 
tangent plane spanned by X and Y is defined by 

K(X, y)=<R(X, y)Y, X>/OIXWIIYW-<X, Y>2), 

where IIXII=<X, X>1/2. If K(X, Y)<O (resp. K(X, Y)<O) for any pair X 
and Y, then M is called a Riemannian manifold of negative (resp. non-. . 

positive) curvature. If K(X, Y)< -c<O in particular, then M is called 
a Riemannian manifold of strictly negative curvature. 

1.1. The second variational formula 
The second variational formula of the lengths of curves is one of the 

fundamental tools in the study of the behavior of geodesics. We recall 
the first and the second variational formulas (cf. [9], [17], [68]). 
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Let r: [a, b]-+M be a geodesic segment. Unless otherwise men­
tioned, we always assume that a geodesic is parametrized by its arc length. 
Let jet) denote the tangent vector of r at ret). A variation of r is by 
definition a differentiable mapping ret, u): [a, b] X ( -e, e)-+M satisfying 
r(t,O)=r(t). The vector field along r defined by Y(t)=r*(ajau)(t,O) is 
called the variational vector field of r. We denote by leu) the length of 
the curve r(., u). The first variational formula is then given as follows: 

~(O)=<Y(b), j(b»-<Y(a), j(a». 
du 

This formula implies that a geodesic segment which attains the 
distance from a point p to a submanifold N intersects N perpendicularly. 

The second derivative of leu) at 0 is given by the second variational 
formula: 

where Y J.. stands for the normal component of Y to r. 
Let us define Jacobi fields. A smooth vector field Yalong a geodesic 

r is called a Jacobi field if it satisfies the following differential equation: 

It is well-known that a Jacobi field is in fact a variational vector field 
of a variation r: [a, b]X( -e, e)-+M such that everyr(., u) is a geodesic 
parametrized by a parameter proportional to its arc length. Rauch's 
comparison theorem (cf. [9], [17], [68]) shows that the growth of a Jacobi 
field is controlled by the curvature. 

1.2. A lemma of Synge 
The second variational formula implies a classical theorem, usually 

called a lemma of Synge [87] (see also [77]). Let r: Ca, b)-+M be a 
geodesic and S a 2-dimensional submanifold of M containing r. Take 
real numbers a<a' <b' <b and consider a variation r: [a', b'] X (-E, e)-+ 
S such that rea', u)=r(a') and reb', u)=r(b'). Then we may regard r as 
a variation either in M and in S. 

If r is regarded as a variation in M, then the second variational 
formula reads: 

d'l (O)=f b
' {llI7fYJ..112-K,w(Y, j)(IIYII'_<Y, j)2)}dt. 

du' a' 

If r is regarded as a variation in S, then we have 
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Since 1\ VfY.LW> IWfY.LW, it follows that 

S:: KsCY, t)(I\YIIZ-(Y, t)Z)dt~ S:: KM(Y, t)(II YW-(Y, tl)dt 

for any variation of r in S. This implies that KiY, t)-::;KM(Y, t) which 
proves the following: 

Theorem 1. Let r: (a, b)-+M be a geodesic and S be a 2-dimensional 
submanifold of M containing r. Then the Gaussian curvature of S along r 
is not greater that the corresponding sectional curvature of M. Further­
more, both are equal iff the tangent planes of S are parallel along r. 

With a typical application of Theorem 1, we arrive at the following 
fact. Suppose that a piece of surface S in a Hadamard manifold H is 
parametrized by r(u, v) such a way that r( ., v) is a geodesic in H for every 
v. Then the Gaussian curvature of S is nonpositive. Furthermore, if S 
is flat, then H is flat along Sand S is totally geodesic. 

1.3. The law of cosines 
Let H be a Hadamard manifold. We denote by SHp the set of all 

unit tangent vectors at a point p E H. For X, Y E SHp, the angle ()= 1:: 
(X, Y) is the unique number O<()<7r such that (X, Y)=cos ().For 
p=l=q E H, we denote by r pq the geodesic segment joining p and q. If p, q 
and r are distinct points of H, then we define the angle 1::p(q, r) by 
1::p(q, r)=1::(tvq{O), tvr(O)). 

Let us consider a geodesic triangle whose vertices are PI' Pz and Pa. 
Let ()t be the angle at Pt, i=l, 2,3, and ll=d(pz Ps), lz=d(PI,Pa) and 
Is = d(PIO pz). Since the sectional curvature is nonpositive, it is well-known 
that ()1+()z+()a::;;:7r. . 

Furthermore, the law of cosines states 

1~>I~+I~-2Ma cos ()l. 

The law of cosines plays a fundamental role in investigations of the 
behavior of geodesics. 

1.4. Convex functions 
Let M be a Riemannian manifold. A function f: M-+R on Mis 

called a convex function if the composition for is convex for any geodesic 
r, i.e., 
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f 0 r(ta+(1- t)b) < tf(r(a»+(l- t)f(r(b», for O:::::::t< 1. 

Given a C2-function J, Pi denotes the Hessian of f defined by 
f12J(X, Y)=X(Yf)-(f7 xY)J, which is a symmetric covariant 2-tensor field 
on M. Thenfis convex iff f12J?0. We say fis strictly convex if f12J>0. 

A subset of a Riemannian manifold is called totally convex if for 
arbitrary points p and q in the set, any geodesic segment joining p and q 
is contained in the set. It is easily seen that if f is convex then the set 
{p E M:f(p)~c} is totally convex for any c E R. Hence the existence of 
a nontrivial convex function places very strong restrictions on the topology 
of a manifold (cf. Cheeger and Gromoll [18], Gromoll and Meyer [49], 
Shiohama [83]). 

In this section, we will review the construction of three kinds of 
convex functions on a Hadamard manifold. For a detailed treatment, see 
Bishop and O'Nei1l[lO]. 

1.4.1 The distance function from a totally geodesic submanifold 
Let r 1 and r2 be geodesics of H, then the function g(t)=d(rlt), r2(t» 

is convex. In fact, define a variation r of the geodesic segment joining 
r1(to) and r2(to) for a fixed to so that r(., t) is the geodesic segment joining 
rlto+u) and r2(to+u). Then, applying the second variational formula, 
we can obtain g"(to»O. 

Now, let N be a closed totally geodesic submanifold of H. For a 
point p <t N, let r: [0, l]~H be the unique geodesic segment which attains 
the distance from p to N, r(O)=p, l=d(p, N). The point r(1) E N is 
called the foot of p. Let a: (-e, e)~H be another geodesic such that 
a(O)=p. For u E (-e, e), let r(., u) be a geodesic segment joining a(u) 
and its foot on N. Then r is a variation of r and, applying the second 
variational formula, it follows that d 2/du2 d(a(u), N)~O at u=O. 

Proposition 2. Let N be a closed totally geodesic submanifold of H. 
Then the function d(·, N) is convex on H and its square d(·, N)2 is smooth 
and convex. Furthermore, if the sectional curvature of H is negative, 
d( . ,N)2 is strictly convex on H - N. If N is a point, d(·, N)2 is smooth 
and convex on H. 

More generally, it is known that if ScH is a totally convex subset, 
then the distance function d(. , S) is a continuous convex function. 

1.4.2. The displacement function 
Given an isometry ifJ of H, the function dip) = d(p, ifJ(p» is called 

the displacement function of ifJ. 
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Proposition 3. The displacement function d~ of an isometry ifJ of a 
Hadamard manifold is convex and its square d; is smooth and convex. 
Furthermore, if the sectional curvature of H is negative, then d~ is strictly 
convex outside the minimum set C~={p E H: d/p)=inf d~} of d~. 

The convexity of d~ follows from the arguments in 1.4.1. In fact, it 
is sufficient to notice that d~ 0 ret) = d(r(t), ifJ 0 ret)) and ifJ 0 r is a geodesic 
for any geodesic r. 

The displacement functions of isometries will be used in Section 3 to 
classify isometries of a Hadamard manifold. 

1.4.3. Busemann functions 
Let r: [0, oo)---+Hbe a geodesic ray. For a pointp E H, the function 

tr---+d(p, r(t))-t is monotone nonincreasing and bounded from below, as 
easily seen by the triangle inequality. Hence we can define a function!r 
bY!r(p)=limt_ood(p,r(t))-t. Since the function d(·,r(t))-t is convex 
for each fixed t, the function!r is also convex. We call!r the Busemann 
function relative to a geodesic ray r (Busemann [14]). Properties of 
Busemann functions will be discussed in 2.4. 

1.5. Manifolds without conjugate points and manifolds without focal 
points 

Let M be a complete Riemannian manifold and r: [0, l]---+M be a 
geodesic segment. We call q=r(l) a conjugate point of p=r(O) along r 
if there is a nontrivial Jacobi field along r which vanishes both at p and 
at q. Suppose that a point p E M has no conjugate points along any 
geodesic issuing from p. Then the exponential mapping expp: Mp---+M 
is a covering map. If every point of M has the above property, we call 
M a manifold without conjugate points. Note that a simply connected 
Riemannian manifold M without conjugate points is diffeomorphic to Rn 
(n = dim M), and any pair of points p and q of M can be joined by the 
unique geodesic segment. 

Let us recall the definition of an N-Jacobi field for a submanifold N 
of M. Let 7:": [0, l]---+M be a geodesic segment such that z-(O) E Nand 
f(O)-.lNr(o). A perpendicular Jacobi field Y with IY(O) E Nr(o) along 7:" is 
called an N-Jacobi field if the vector At (o)Y(O)+f7t Y(O) is normal to N, 
where A. denotes the second fundamental tensor relative to a normal 
vector f; to N, defined by <A<X, Y)=<f;, f7 xY). It is known that an N­
Jacobi field is in fact a variational vector field of a variation of 7:" consisting 
of a family of geodesics which are perpendicular to N. We say q=7:"(l) 
is a focal point of N along 7:" if there is a nontrivial N-Jacobi field which 
vanishes at q. 

We call M a manifold without focal points if any geodesic in M, 
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regarded as a submanifold, has no focal points inM. 
The following proposition characterizes manifolds without focal 

points in terms of the growth of order Jacobi fields. 

Proposition 4 (O'Sullivan [76]). Let M be a complete Riemannian 
manifold. Then: 

( 1) M is of non positive curvature iff d 2ldt 2< Y, Y) -:c. 0 for any Jacobi 
field Yalong any-geodesic and for all t. . 

(2) M is without focal points iff dldt < Y, Y) >0 for any nontrivial 
initially vanishing Jacobifield Yandfor all t>O. 

( 3) M is without conjugate points iff < Y, Y) >0 for any nontrivial 
initially vanishing Jacobi field Y and for all t > O. 

From this proposition, it follows that if M is a complete Riemannian 
manifold of nonpositive curvature, then M is a manifold without focal 
points and that if M is without focal points, then M is without conjugate 
points. These three classes of Riemannian manifolds are actually differ­
ent, as was shown in Gulliver [52]. 

Another characterization of manifolds without focal points is given 
as follows. 

Proposition 5 (Eschenburg [32], Innami [59]). A simply connected 
complete Riemannian manifold M is without focal points iff the function 
d(·,p) is convexfor any pointp of M. 

Remark here that a complete Riemannian manifold of nonnegative 
curvature has no conjugate points if and only if it is flat. 

Recently, studies have been made on the similarity of manifolds 
without focal points to manifolds of nonpositive curvature (cf. [32], [34], 
[35], [59], [75], [76]). 

1.6. Examples of Hadamard manifolds 
We shall present here some typical examples of Hadamard manifolds 

which will be model spaces in our later considerations. 

1.6.1. Symmetric spaces 
A simply connected complete flat Riemannian manifold of dimension 

n is isometric to Rn with the standard metric. So Rn is the unique flat 
Hadamard manifold. 

Let Hbe the set {(Xl' "', xn) eRn: I: x~<l} with the metric ds2= 
4 I: d~/(l-I: ~)2. Then H is a complete Riemannian manifold with 
constant negative curvature, which is called the hyperbolic space form. 

Next we consider the unit open ball in en with the Bergman metric. 
Let H be the unit open ball {(Zl' .• " zn) e en: I: IZt 12< I} with the metric 
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ds2=4(1-L: ZiZj)-2{(l- L: ZiZi) (L: dzidzj)-(L: ZidZj) (L: Ztdzj)}. Then 
the holomorphic sectional curvature of H is negative constant - 1 and the 
sectional curvature varies between -1/4 and -1. 

The last two examples are known to be rank 1 symmetric spaces of 
noncompact type. It is known that rank 1 symmetric spaces of non­
compact type are manifolds of strictly negative curvature. 

More generally, it is known that a symmetric space of noncompact 
type is of nonpositive curvature. If the rank I of a symmetric space is 
greater than 2, then it contains a totally geodesic I-dimensional flat sub­
manifold. So its sectional curvature attains zero at some tangent plane. 

1.6.2. Homogeneous Hadamard manifolds 
Let H be a Hadamard manifold and J(H) the group of all isometries 

of H. If J(H) acts transitively on H, we call H a homogeneous Hadamard 
manifold. Wolf [88] showed that if H is a homogeneous Hadamard 
manifold, then there is a solvable subgroup of J(H) which acts transitively 
on H. Heintze [55] showed that in the same situation, it is actually 
possible to find a solvable subgroup which acts simply transitively. So 
every homogeneous Hadamard manifold can be described as a simply 
connected solvable Lie group G with a left invariant metric, whose cur­
vature is nonpositive. Identifying the Lie algebra of G and the tangent 
space of G at the identity element, it is sufficient to consider a solvable Lie 
algebra with a positive definite inner product. Heintze [55] has charac­
terized solvable Lie algebras which admit metrics with negative curvature, 
and Azencott and Wilson [4], [5] have generalized his characterization to 
the case of nonpositive curvature. 

1.6.3. Warped product 
Take two Riemannian manifolds M and N with metrics ds~ and ds1, 

respectively. Letf: M-+R be a positive smooth function on M. Then 
the product manifold MXN with the metric dS2=ds~+ Pds1 is called a 
warped product and is denoted by Mx jN. From the curvature formula 
of a warped product (cf. [10]), we obtain the following fact. If N is a 
Riemannian manifold of nonpositive curvature and f is a convex function 
on R, then R X jN is of nonpositive curvature. Furthermore, if f is 
strictly convex without minimum, then the sectional curvature of R X jN 
is negative everywhere. 

§ .2. Ideal boundaries of Hadamard manifolds 

Eberlein and O'Neill [31] defined the set of points at infinity H( 00) of 
a Hadamard manifold, and defined a natural topology on H = HU H( 00), 
called the cone topology. This section is devoted to a brief survey of 
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some properties of the cone topology. 

2.1. Asymptotic classes of geodesic rays 
Let H be a Hadamard manifold, and rj> r 2 : [0, oo)----+H be geodesic 

rays. We say r 1 and r 2 are asymptotic if the function d(rtCt), r 2(t)) is 
bounded on [0, 00). Since d(r1(t), r/t)) is convex, d(r/t), r 2(t)) is mono­
tone nonincreasing if r 1 and r2 are asymptotic. It is immediate that the 
asymptote relation is an equivalence relation on the set of all geodesic 
rays in H. 

We denote by H ( 00 ) the set of all asymptotic classes of geodesic rays 
and by r( 00) the asymptotic class containing a geodesic ray r. F or a 
complete geodesic r, we denote by r( - 00) the asymptotic class containing 
the reversed geodesic t>--*r( - t) of r. Let x be a point of H( 00) and r be 
a geodesic ray such that r(oo)=x. Let p E H and for each n take a 
geodesic r n such that r n(O)=p and r n passes through r(n). Passing to a 
subsequence if necessary, we may assume that {t nCO)} converges to a unit 
vector v at p. Then {r n} converges to rv, the geodesic ray with initial 
velocity v. Because of the convexity of the distance function between two 
geodesics rand rv, we can conclude that rv is asymptotic to r. Thus we 
have: 

Proposition 6. For any p E H and x E H( 00), there is a unique 
geodesic ray r such that r(O)=p andr(oo)=x. 

The uniqueness also follows from the convexity of the distance 
function between two geodesics. We denote by r px the geodesic ray in 
the proposition. 

2.2. The cone topology 
Following Eberlein and O'Neill [31], we shall define a topology on 

H =HU H( 00) compatible with the manifold topology on H. It is 
sufficient to define a fundamental neighbourhood system of x for each 
x E H(oo). Take a point p of H and a positive number e>O and put 
C(p, x, e)={q E H: <fiq, x)<e}, which is called the cone of vertex p with 
axis r px and angle e. Then take {C(p, x, e): e>O,p E H} as a fundamental 
neighbourhood system of x. It is not a trivial matter that the manifold 
topology together with the above fundamental neighbourhood systems 
define a topology on H. Refer to Eberlein and O'Neill [31] for details. 
We call this topology the cone topology of H. 

We can prove the existence of another natural topology on H which 
can be considered as an extension of the metric topology, called the horo­
cycle topology. The reader should refer Eberlein and O'Neill [31] and 
Eberlein [24] for this topology. 
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In the following, we always consider H as a topological space with 
the cone topology. 

Now we recall some basic facts about the cone topology. Take a 
pointp e H and put Bp={v e Hp: IIvll<I}. Define a mapping f/Jp: Bp-+H 
by f/Jiv)=exp(vjl-!!v!D if IIvll<1 and f/Jp(v)=rv(oo) if IIvll=1. Then 
the mapping f/Jp defines a homeomorphism of Bp and H. In particular H 
is compact. 

The following properties can be derived easily from the definition of 
the topology. 

1. Let r: [0, oo)-+H be a geodesic ray. Then the extension of r, 
r: [0, oo)-+H defined by r(oo)=r(oo) is continuous. 

2. Let ifJ e J(H). Then letting ifJ(r(oo))=(ifJ ° r)(oo), we define an 
extension of ifJ. Then ifJ: H-+H is a homeomorphism. 

For a simply connected Riemannian manifold without focal points, 
we can also define both the set of points at infinity and the cone topology 
(Goto [35], Innami [59]). But we do not know whether they can be 
generalized to a manifold without conjugate points. 

2.3. Visibility manifolds 
For a pair of distinct points p and q of H, there is a unique geodesic 

joining p and q. In the case where p e H and x e H( 00), there is also a 
unique geodesic ray r p:r; joining p and x, as we have seen in Proposition 6. 
But for x, y e H( 00), x=/= y, there is not always a complete geodesic joining 
x and y. For example, if H=Rn, then for any point x e H(oo), the 
point y e H( 00) which can be joined with x is uniquely determined by x. 
In [31], Eberlein and O'Neill formulated the possibility of joining points 
at infinity in the following fashion. 

Definition. A Hadamard manifold H is said to satisfy 

Axiom 1 if for any points x =/= y in H ( 00), there exists at least one 
complete geodesic joining x and y. 

Axiom 2 if for any points x=/= y in H( 00), there exists at most one 
complete geodesic joining x and y. 

Note that Rn satisfies neither Axiom 1 nor Axiom 2. 

Proposition 7 (Eberlein and O'Neill [31]). A Hadamard manifold H 
of strictly negative curvature satisfies both Axiom 1 and Axiom 2. 

Axiom 1 is equivalent to the following Visibility axiom, which is often 
more convenient (Eberlein and O'Neill [31]). 
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Visibility axiom. For any point p E Hand e > 0, there exists a posi­
tive number R(p, e) with the property that <Xia(a), a(b))<e, for any 
geodesic segment a: [a, b]~H such that d(p, a([a, b]))>R(p, e). 

This axiom can be interpreted as follows. If a geodesic segment a is 
sufficiently far from p, then no matter how long a is, any two of its points 
subtend an arbitrarily small angle at p. Roughly speaking, distant 
geodesics look small. 

A Hadamard manifold satisfying the Visibility axiom is called a 
Visibility manifold. Eberlein and O'Neill [31] gave a sufficient condition 
for the Visibility axiom in terms of decays of the sectional curvature. In 
the case of H having a compact quotient, it is known that H satisfies the 
Visibility axiom iff there is no isometrically imbedded totally geodesic flat 
submanifold of dimension 2 (Eberlein [23]). 

If two complete geodesics rl and rz satisfy rl( 00 )=rz( 00) and rl( - 00) 
=rz(-oo), we say that rl and rz are biasymptotic. Suppose that two 
complete geodesics rl and rz are biasymptotic. We reparametrize rl and 
7z so that the foot of rl(O) on rz is rzeO). Since the function d(rl(t), rz(t)) 
is a bounded convex function on R, it is constant, say I. Let F: [0, l] X R 
~H be a mapping such that F(·, t) is the geodesic segment joining rl(t) 
and r z(t). Endow the flat metric on [0, I] X R. Then, using the convexity 
of the length of a Jacobi field and the first variational formula, we can 
show that F is an isometric imbedding. By a lemma of Synge (1.2), we 
see that the image of F is totally geodesic. By a flat strip, we mean a 
totally geodesic isometric imbedding F: [0, I] X R~H. Then we obtain 
. the following theorem. 

Theorem 8 (Flat strip theorem; Green [39], Eberlein and O'Neill [31], 
O'Sullivan [75]). Let rl and rz be distinct biasymptotic geodesics in H. 
Then there exists af/at strip F: [0, l]XR~H such that F(O, t)=rl(t) and 
F(l, t)=rz(t) after a suitable reparametrization ofr;. 

From the above theorem, we see that H satisfies Axiom 2 iff H 
contains no flat strips. 

Some generalization of this theorem will be needed later, so let us 
state it here. Let B be a closed totally geodesic submanifold of H. 
Define the set of points at infinity of B by B(oo)={r(oo): r is a geodesic 
ray in B}. Then the following is due to Eberlein [29]. 

Theorem 9 (Sandwich lemma). Let BI and Bz be distinct closed totally 
geodesic submanifolds of H such that B1(00) = Bz(oo). Then there exists a 
totally geodesic isometric imbedding F: [0, /] X Bl ~ H such that F(O, b) = b 
for all b E Bl and F({l} X B1) = Bz• 
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This can be proved by a careful use of the flat strip theorem. 

2.4. Busemann functions 
The Busemann function fr relative to a geodesic ray r is defined by 

fr(p)=1im t _ oo d(p, r(t»-t, which is convex, as was seen in 1.4.3. We 
shall discuss here the dependence on r of the functionfr. 

Let r: [0, oo)~Hbe a geodesic ray, and {Pn} a sequence in H which 
converges to x=r(oo). Then the Busemann functionfr can be written as 
fr(p)=1iIDn_oo {d(P,Pn)-d(r(O),Pn)} (cf. [24]). 

Let r, -r: [0, oo)~ H be asymptotic geodesic rays and x be their asymp­
totic class. Compare the two functions fr and i. by the above descriptions 
of these functions and notice thatfr(r(t» = -to Then we obtain: 

Proposition 10. Let rand -r be asymptotic geodesic rays. Then: 

(1) fr-i.=fr(-r(O» 

(2) fr(-r(t»-fr(-r(s»=s-t. 

This proposition implies that the Busemann function is determined 
by the asymptotic class up to a constant. Hence it is reasonable to call 
fr a Busemann function at x=r(oo). Letfbe a Busemann function at x. 
Given a point P e H, we define two subsets L(p, x), B(p, x) respectively 
by L(p, x)={q e H: f(q)=f(p)} and B(p, x)={q e H:f(q)<f(p)}. It is 
easy to see that these sets do not depend on the choice of a Busemann 
function at x. We call L(p, x) the limit sphere or horosphere at x through 
p and B(p, x) the limit ball or horoball at x determined by p. 

In Heintze and 1m Hof [57] it is shown that a Busemann function is 
a C2-function. Given a point x e H( 00), we define the vector field V(., x) 
by Yep, x) = Tp",(O). Then it holds that grad f = - V(., x) for any 
Busemann function at x. 

Let L be a limit sphere at x e H( 00). For any point q e H, the 
complete geodesic r through q and belonging to x intersects L just one 
time. Define 7)L: H~L by 7)iq)=rnL. Then the point 7)L(q) is the 
nearest point in L from q. 

Proposition 11. Let Land L' be limit spheres at x e H( 00), and f be 
a Busemann function at x. Then: 

(1) deL, L')=lf(p)- f(p') I for any peL andp' e L'. 

(2) 7)Lxf: H~LXR is a homeomorphism. 

The properties mentioned above mean that a Busemann function 
may be regarded as a distance function from a point at infinity. 
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On a complete noncompact Riemannian manifold, we can define the 
Busemann function for a geodesic ray in a similar manner. The Buse­
mann functions play an essential role in the study of the topology of a 
noncompact complete Riemannian manifold. For this subject, see Shio­
hama's report [83]. 

§ 3. Classification of isometries and Wolf's splitting theorem 

3.1. Classification of isometries 
Following Bishop and O'Neill [10], we classify isometries of a 

Hadamard manifold into three classes. 
Let ifJ be an isometry of a Hadamard manifold Hand d", be the dis-

placement function of ifJ. Then three cases occur: 
( I) d", takes zero at some point. 
( 2 ) d", takes a nonzero minimum value. 
( 3) d", does not attain the minimum value on H. 
According to whether d", is (1), (2) or (3), we call ifJ elliptic, axial or 

parabolic respectively. It is immediate that ifJ is elliptic if and only if ifJ 
has a fixed point. First we investigate an axial isometry. Let ifJ be an 
axial isometry and w be the minimum value of d",. Then the minimum 
set C¢={p E H: dq,(p)=w} is not empty. Take a point p E C¢. Then 
rp¢(p)(w) = ifJ(p) = ifJrP¢(P)(O). If rp¢(p)(w):::J=ifJ*rp¢(p)(O), then, by the triangle 
inequality, d(r p¢(p)(t), ifJ 0 r P¢(P)(t» <d(p, ifJ(p» for 0< t<w. This implies 
that ifJ 0 r P¢(p)(t)=r P¢(P)(t+w), i.e., ifJ translates the geodesic through p and 
ifJ(p). Conversely, we assume that a complete geodesic r is translated by 
ifJ. Let q be a point outside rand p be the foot of q on r. Then the 
geodesic segment r pq intersects r perpendicularly. Since ifJ is an isometry, 
ifJ 0 rqp intersects r perpendicularly also. From the convexity of d(rqp(t), 
ifJ 0 rqit», we obtain that dp(q) = d(q, ifJ(q»~d(p, ifJ(p» = dP(p). That is, 
d", takes the minimum value on r. Hence it follows: 

Proposition 12. If ifJ is an axial isometry of H, then the minimum set 
of d", is the union of all geodesics which are translated by ifJ. 

A complete geodesic which is translated by an axial isometry ifJ is 
called an axis of ifJ. If two distinct complete geodesics are axes of the 
same isometry, then they are biasymptotic and bound a flat strip. Hence 
if H satisfies Axiom 2, for example, when H is of negative curvature, then 
an axis of an axial isometry is unique up to a parametrization. 

Let ifJ be an isometry of H. Then ifJ induces a homeomorphism of H 
(cf. 2.2). Since H is homeomorphic to a closed ball, ifJ has a fixed point 
in H by Brouwer's fixed point theorem. For example, a translation of Rn 

fixes every point at infinity. Under the assumption of the Visibility axiom, 
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axial and parabolic isometries are characterized in terms of the fixed point 
sets as follows: 

Theorem 13 (Eberlein and O'Neill [31]). Let H be a Hadamard mani­
fold satisfying the Visibility axiom. Then any non elliptic· isometry ifJ has 
at most two fixed points on H( 00). If ifJ has only one fixed point, then ifJ is 
parabolic. If ifJ has two fixed points {x, y} in H( 00), then ifJ is axial and 
ifJ translates a complete geodesic joining x and y. 

In order to see the necessity of the Visibility axiom in the theorem, we 
shall give a sketch of the proof. Let x e H( 00) be one of the fixed points 
of ifJ. Then, by the definition, for any geodesic ray r with rcoo)=x, r 
and ifJ 0 r are asymptotic, and d~ is monotone nonincreasing on r. The 
convexity of d~ means that there is a sequence {Pn} such that {Pn} con­
verges to x and {d/Pn)} converges to inf d~. Now we assume that ifJ has 
two fixed points x and y in H( 00). Then we can choose sequences {Pn} 
and {qn} so that Pn-";X, qn-";y and diPn)-,,;inf d~, diqn)-,,;inf d~. Take an 
arbitrary point P of H. Since <:fp(Pm qn) converges to <:fn(x, y»o and 
H satisfies the Visibility axiom, there is a compact set K such that {r Pnqn} 

intersects K for large n. Then we can choose a subsequence of {r Pnq,,} so 
that it converges to a complete geodesic, say r. From the convexity of 
d~, we observe that d~ takes the minimum value on r. That is, ifJ is an 
axial isometry and r is an axis of ifJ. Now we assume that ifJ has another 
fixed point z e H( 00) other than {x, y}. Since d~ is monotone nonincreas­
ing on rq• for arbitrary q e r, d~ takes the minimum value on rq.. Then 
for any point r on rq., there is an axis of ifJ through r. By the flat strip 
theorem we obtain a flat half plane bounded by r, i.e., a totally geodesic 
isometric imbedding F: [0, 00) XR-,,;H such that F(O, t)=r(t). The exist­
ence of a flat half plane contradicts to our assumption. In fact, any 
Hadamard manifold containing a flat half plane does not satisfy the 
Visibility axiom. And this implies that ifJ has at most two fixed points. 

3.2. A splitting theorem of Wolf 
In [88], Wolf proved that the existence of a Clifford translation 

implies the existence of a nontrivial flat de Rham factor. We shall review 
briefly his result. 

We begin with fixing some definition. A Clifford translation is by 
definition a nontrivial isometry ifJ whose displacement function d~ is 
constant. Since d~ is convex, ifJ is a Clifford translation if d~ is bounded 
onH. 

Recall that, by the de Rham decomposition theorem, any Hadamard 
manifold H splits uniquely into Ho X HI> where Ho is a Euclidean space 
and HI contains no nontrivial flat splitting components. We call Ho the 
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flat de Rham factor of H. The splitting theorem due to Wolf [88] is: 

Theorem 14. If there is a Clifford translation ifJ of H, then H splits 
into Ho X HI> where Ho is the nontrivial flat de Rham factor of Hand ifJ acts 
trivially on HI and as a translation on Ho. 

Associated with a Clifford translation ifJ, we define a vector field Xp 
by ifJ(p)=exppX~(p). Take a geodesic such that i{O).lX~. Since d~ is 
constant, 'I: and ifJ 0 'I: are biasymptotic and bound a flat strip. Considering 
every such a geodesic 'I: and using the fact a flat strip is totally geodesic, 
we see that XjI is a parallel vector field. This implies that H splits into 
R X H' and that ifJ acts on H as a translation of R. In consequence, H 
has the nontrivial flat de Rham factor Ho and ifJ acts as a translation of Ho. 

As an application of Theorem 14, Wolf [88] proved: 

Theorem 15. A homogeneous Riemannian manifold of non positive 
curvature must split into a flat torus X a homogeneous Hadamard manifold. 

Hence, in order to classify homogeneous Riemannian manifolds of 
nonpositive curvature, it is sufficient to consider homogeneous Hadamard 
manifolds. This problem has been studied by Chen [19], Heintze [55] and 
Azencott and Wilson [4], [5] (cf. 1.6). 

§ 4. Properly discontinuous groups 

Let M be a complete Riemannian manifold of nonpositive curvature 
and H be the universal covering manifold of M. Then H is a Hadamard 
manifold and M can be represented as M = HI r for some fixed point free 
properly discontinuous subgroup r of l(H). In this section, we shall 
study the structure of these r. We shall divide fixed point free properly 
discontinuous groups into three classes and give characterizations of these 
classes in terms of the limit sets for Visibility manifolds. 

4.1. Limit set 
Let G be a subgroup of l(H). Take a point p E H and consider the 

closure Gp in H of the orbit Gp={ifJ(p): ifJ E G}. Put L(G)=GpnH(oo). 
It follows from the law of cosines that the set L(G) is independent of the 
choice of p. We call L(G) the limit set of G. 

Definition. We say two points x and y in H( 00), not necessarily 
distinct, are dual relative to G if there exists a sequence {ifJn} C G such that 
ifJnP~x and ifJ;;lp~y as n~oo, for some pointp E H. 

It turns out from the law of cosines that if x and yare dual relative 
to G, then ifJnP~x and ifJ;;lp~y for any point p E H. If H is a Visibility 
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manifold, this is equivalent to a more stronger statement. That is: 

Proposition 16 (Eberlein and O'Neill [31]). Let H be a Visibility mani­
fold. Points x and y in H( 00) are dual relative to G if and only if, for any 
neighbourhoods U of x and V of y, there exists an element ifJ of G such that 
¢(H - U)c V and ifJ-l(H - V)C U. 

This can be seen from the following lemma which is proved by 
arguments similar to those in the proof of Theorem 13. 

Lemma 17 ([31]). Let H be a Visibility manifold and x be a point of 
H( 00). Then for any neighbourhood W of x and for any sequence {Pn}CH 
which converges to x, <}:pn(H- W)--+O as n--+oo. 

In the following, we denote by r a fixed point free properly dis­
continuous subgroup of I(H), and by 1C: H--+Hjr be the projection map. 

A point of O(T)=H(oo)-L(T) is called an ordinary point. For a 
Visibility manifold, the limit set is characterized by the action of r on H 
as follows: 

Proposition 18 (Eberlein and O'Neill [31]). Let H be a Visibility 
manifold and r be a fixed point free properly discontinuous subgroup of 
I(H). A point x E H( 00) is an ordinary point if and only if there is a 
neighbourhood U of x such that ifJ U n U is empty, for any 1"* ifJ E r. 

This proposition can be interpreted as follows. We say a point 
x E H( 00) is ultimately r-minimizing if for any geodesic ray belonging to 
x, there exists a number a>O such that 1C 0 rJea,oo) is a miminizing geodesic 
in M=Hjr. Then the Proposition 18 implies that every ordinary point 
relative to r is ultimately r-minimizing if H is a Visibility manifold. 

We observe another basic property of a Visibility manifold. 

Proposition 19 (Eberlein and O'Neill [31]). Let H be a Visibility 
manifold and r be a fixed point free porperly discontinuous subgroup of 
I(H). If points x"* y E H( 00) are dual relative to r, then for any neigh­
bourhoods U of x and V of y, there is an axial element ifJ E r such that an 
axis r of ifJ has the property that r( 00) E U and r( - 00) E V. 

To see this proposition, we may assume that U and V are cones such 
that Un v is empty. By Proposition 16, there exists an element ifJ E r 
such that ifJ(H - U) c V and ifJ-l(H - V) cU. This implies that ifJ(V) c V 
and ifJ -I( U) C U. Since U and V are n-cells, ifJ has fixed points in U and 
V. Since ifJ fixes two points at infinity, ifJ is an axial isomety. 

Proposition 19 corresponds to the fact that if M is a compact 
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Riemannian manifold of negative curvature, then the set of all closed 
geodesics is dense in the set of all complete geodesics in M. 

4.2. Axial groups 
We shall divide the fixed point free properly discontinuous subgroups 

of J(H) into three classes: axial groups, parabolic groups and fuchsian 
groups. 

Definition. A fixed point free properly discontinuous subgroup r of 
J(H) is said to be an axial group if there exist points x and y of H( 00) 
such that any element 1:;t:¢ E r translates a complete geodesic joining x 
and y. The quotient manifold M = HI r is called an axial manifold when 
r is axial. 

If the curvature of H is negative or more generally if H satisfies 
Axiom 2, then the complete geodesic joining x and y is unique. Then 
every element of an axial group r translates the same geodesic, say r. 
This implies r is an infinite cyclic group whose generator is an element 
that translates r with minimum period. 

This fact can be generalized to Hadamard manifolds by more 
involved arguments, namely: 

Theorem 20 (Eberlein and O'Neill [31]). An axial group of a Hada­
mard manifold is infinite cyclic. 

The topology of an axial manifold is rather simple. Let ¢ be a 
generator of r, and r be an axis of r. Then any element of r translates 
rand 7r 0 r is a closed geodesic of M with the minimum period. Further­
more, we can prove: 

Theorem 21 (Eberlein and O'Neill [31]). Let r be an axial group. 
Then the following hold. 

(1) Every closed geodesic in M =Hlr is simply closed. 
(2) Let r be a closed geodesic with the minimum period, then r is 

totally convex. Hence M is diffeomorphic to a vector' bundle, the normal 
bundle of r, over SI. 

Remarks. (1) Closed geodesics of an axial manifold are not unique 
in general, as is easily seen by considering a cylinder. (2) The periods 
of closed geodesics of an axial manifold are also not unique in general. 
To see this, it is sufficient to consider a Mobius band. However, we can 
prove that the period of a closed geodesic is an integral multiple of the 
minimum period. 
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4.3. Parabolic groups 
In this subsection, we shall investigate parabolic groups. The pro­

perty of a parabolic isometry due to Eberlein and O'Neill [31] is funda­
mental. 

Proposition 22. Let ifJ is a parabolic isometry of a Hadamard manifold 
H. Then ifJ preserves limit spheres at some fixed point of ifJ in H( 00 ). 

Remark that the fixed point of a parabolic isometry is unique, if H 
is a Visibility manifold. 

Now we define parabolic groups. 

Definition. A fixed point free properly discontinuous subgroup r of 
J(H) is said to be a parabolic group if there is a point Z E H( 00) such that 
Z is the unique fixed point of any element of r. The quotient manifold 
M =Hjr is called a parabolic manifold if r is a parabolic group. 

Let r be a parabolic subgroup of J(H) and z be the unique fixed 
point of r. By Proposition 22, every element of r preserves limit spheres 
at z. Then a Busemann function f at z is invariant under the action of r. 

Let L be a limit sphere at z and 1)L: H-+L be the projection defined 
in 2.4. We can easily show that the homeomorphism 1)L xf: H-+LXR 
is compatible with the action of r. Summarizing these arguments, we 
arrive at: 

Theorem 23 (Eberlein and O'Neill [31]). Let r be a parabolic sub­
group of J(H) and z be the fixed point of r. Then the following hold: 

(1) If a complete geodesic r belongs to z, then 7r 0 r is a minimizing 
geodesic in M=Hjr. 

(2) A Busemann function at z induces a convex function on M. 
(3) M is homeomorphic to FX R, where F is a level hypersurface of a 

convex function (2) above. 

The topology of a parabolic manifold is not so simple when com­
pared with that of an axial manifold. To explain this point, we shall 
look at an example. Let F be a complete Riemannian manifold of non­
positive curvature. Then the warped product R X etF is a parabolic mani­
fold. Clearly this manifold has the same homotopy type as that of F. 
This implies that the homotopy type of parabolic manifolds has no 
restrictions other than those of manifolds of nonpositive curvature. 

4.4. Trichotomy 
Let H be a Visibility manifold and r cJ(H) be a fixed point free 

properly discontinuous subgroup. r acts on R as a group of homeomor­
phisms. 
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Proposition 24 ([31]). Let Hand r be as above and XCH(oo) be a 
subset. If there exists an element ¢> E r, ¢>* 1 such that ¢>X =X, then X 
consists of one, two or infinitely many points. If #X, the cardinality of X, 
is finite, then ¢> fixes X pointwise/yo 

In fact, if #X =n is finite, ¢>n acts trivially on X. Since r is torsion 
free, ¢>n * 1. It then follows, by Theorem 13, that the number of the fixed 
points of ¢>n is at most two and this implies that #X ::;2. 

Since the limit set L(T) of r is r-invariant, #L(T) = 1,2 or 00. 
Now we introduce the following: 

Definition. A fixed point free properly discontinuous subgroup r of 
J(H) is said to be fuchsian if r is neither axial nor parabolic. If r is 
fuchsian, the quotient HI r is called a fuchsian manifold. 

Summarizing the above arguments, we obtain the characterizations 
of axial, parabolic and fuchsian groups, which are all due to Eberlein 
and O'Neill [31]. 

Theorem 25. Let H be a Visibility manifold and r be a fixed point 
free properly discontinuous subgroup of J(H). Then the following conditions 
are equivalent: 

(1) L(T) is a singleton {x}. 
(2) r has a unique fixed point in H( 00). 
(3) r is a parabolic group. 
(4) Any element of r is parabolic. 

Theorem 26. Let Hand r be as in the above theorem. Then the 
following conditions are equivalent: 

(1) L( 00) consists of two points. 
(2) r fixes two points of H( 00). 
(3) r is an axial group and hence is infinite cyclic. 

Also we obtain the following. 

Theorem 27. Let Hand r be as above. Then the following con-
ditions are equivalent: 

(1) L( 00) is an infinite set. 
(2) r has no fixed points in H( 00). 
(3) r is a fuchsian group. 

§ 5. The duality condition and symmetric spaces 

Let H be a Hadamard manifold. A fixed point free properly dis­
continuous subgroup r of J(H) is called a lattice if the quotient manifold 
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HI r is of finite volume. A lattice is said to be uniform or nonuniform 
according to whether Hlr is compact or noncompact. It is well-known 
that a symmetric space of noncompact type admits a lattice (Borel [11]). 
In [54], Heintze observed that if a homogeneous Hadamard manifold H of 
negative curvature has a compact quotient, then H is a rank I symmetric 
space. Goto and Goto [36] proved that if a 3-dimensional Hadamard 
manifold with negatively pinched curvature admits a lattice, then it is a rank 
1 symmetric space or its isometry group is discrete. Chen and Eberlein 
{21] and Eberlein [27], [29] generalized these results. 

If r is a lattice of H, then rand J(H) satisfy some density property, 
called the duality condition. In the case of symmetric spaces, Selberg's 
S-property implies the duality condition (Heintze [56]). Under the as­
sumption that J(H) satisfies the duality condition, we can show that any 
abelian normal subgroup of J(H) consists of Clifford translations. Hence 
if H has no flat de Rham factor, then Jo(H) is semi-simple unless J(H) is 
discrete. From this fact, it follows that a Hadamard manifold which 
admits a lattice splits into a product of a Euclidean space, a Hadamard 
manifold whose isometry group is discrete and a symmetric space. 

5.1. The duality condition 
In Section 4.1, we defined the notion of the duality of a pair of points 

at infinity relative to a subgroup G of J(H). Now we introduce: 

Definition. Let G be a subgroup of J(H). We say that G satisfies 
the duality condition if for any complete geodesic r in H, r( 00 ) and r( - 00 ) 

are dual relative to G. 

First we shall observe that a lattice satisfies the duality condition. 
Let SM = {v E TM: II v II = I} be the unit tangent bundle of a complete 

Riemannian manifold M. The geodesic flow {Tt}, Tt: SM-----+SM is defined 
by setting Tt(v)=rv(t). A unit vector v E SM is said to be a nonwander­
ing point if there exist sequences {tn}CR with tn-----+oo and {vn} with Vn-----+V 
such that {Ttnvn} converges to v. The set Q={v E SM: v is a nonwander­
ing point} is called the nonwandering set of the geodesic flow. 

Proposition 28 (Eberlein [23], [24]). Let r be a fixed point free 
properly discontinuous subgroup of J(H) and M=Hlr. Then r satisfies 
the duality condition if and only if the non wandering set Q = SM. Further­
more, if H is a Visibility manifold, Q = SM if and only if H( 00 ) = L (T). 

It is well-known that if M = HI r is of finite volume, i.e., if r is a 
lattice, then Q = SM, hence r satisfies the duality condition. This is a 
consequence of the general theory of geodesic flows. 

It follows immediately from the definition that if G, G' are sub-
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groups of J(H) such that GcG' and if G satisfies the duality condition, 
then G' also satisfies the duality condition. Hence if H admits a lattice, 
J(H) satisfies the duality condition. 

5.2. Isometry group 
We shall continue to investigate the structure of the isometry group 

of a Hadamard manifold. In [16], Byer showed that if a Hadamard 
manifold H of strictly negative curvature admits a uniform lattice, then 
J(H) is discrete or semi-simple. In this subsection, we shall give a 
generalization of this result. 

Now we assume, more generally, that J(H) satisfies the duality con­
dition. Under this assumption, the existence of a nontrivial abelian 
normal subgroup of J(H) implies a strong consequence: 

Proposition 29 (Chen and Eberlein [21]). Let AcJ(H) be a nontrivial 
abelian subgroup. If the normalizer G=NI(H)(A) of A in J(H) satisfies the 
duality condition, then every element of A is a Clifford translation. 

We shall give a sketch of the proof. For the details, see Chen and 
Eberlein [21]. First let x E H( 00), and then take a point y E H( 00) which 
can be joined with x. If Z E H( 00) is a point which can be joined with x, 
then it is contained in Gy. In fact, take a geodesics r and a such that 
r(-oo)=a(-oo)=x and r(oo)=y, a(oo)=z. Take a point P on r. 
Since G satisfies the duality condition, there exists a sequence {<]Sn} C G 
such that <]SnP---+z and <]S;;lp---+X. Since <;:'i<]SnP, <]SnY) = <;:'~nl(P, y)~ 
<;:'p(<]S;;lp, x)---+O, we obtain <]SnY---+z. From the assumption L(G)=H(oo), 
we find that A contains no elliptic elements other than the identity. Hence 
L(A) is not empty. Take a point x E L(A). Next we observe that x can 
be joined only with points of L(A). Let {<]Sn}cA be a sequence such that 
<]SnP---+x. We may assume that {<]S;;lp} converges to a point of L(A), say y. 
Take a point z E H( 00) which can be joined with y. For a point P on 
a complete geodesic joining z and y, <;:'p(<]SnP, <]Snzp) = <;:'~n'iP, z):S::: 
<;:'p(y, <]S;;lp)---+O. Then <]Snz converges to x. Since L(A) is invariant under 
G, z can be joined only with points of GycL(A). Put yn=rp~n.( - 00). 
Then Yn E L(A) and Yn---+r px( - 00) E L(A). This implies x can be joined 
with a point of L(A), hence only with points of L(A). Let y E L(A) be a 
point joined with x and r be a complete geodesic joining x and y. Take 
a point P on rand {<]Sn}cA such that <]SnP---+x. Since A acts trivially on 
L(A), <;:'p(<]S;;lp, y)= <;:'i<]S;;lp, <]S;;ly) = <;:'~nip, y)< <;:'/<]SnP, y)---+O. Sum­
marizing, we conclude that a point x E L(A) can be joined with a unique 
point y E H( 00) belonging to L(A). 

If a point x E H( 00 ) can be joined with only one point y E H( 00), we 
say y is an antipodal point of x. In our case, x and yare antipodal. Then 
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integral curves of the vector field V(p, x) (for definition, cf. 2.4) are 
biasymptotic to each other. By the flat strip theorem, V(p, x) is a parallel 
vector field and the flow {s6t} of V(p, x) are Clifford translations. By 
Wolf's splitting theorem, H splits into Ho X HI, where Ho is the nontrivial 
flat de Rham factor. Since HI contains no nontrivial flat de Rham factor, 
A elCHo) X {I}. Noticing that I(Ho) contains no parabolic elements, we 
can see that every element of A is a Clifford translation. This completes 
the sketch of the proof. 

From this proposition, we obtain: 

Theorem 30 (Chen and Eberlein [21]). Assume that I(H) satisfies the 
duality condition and that H contains no nontrivial flat de Rham factor. 
Then I(H) is discrete or loCH) is semi-simple Lie group without center and 
without compact factors. 

This can be seen as follows. We assume that loCH) is not trivial 
We first show that loCH) is not compact. If loCH) is compact, it has a 
fixed point p by Cartan's fixed point theorem. Since loCH) is normal in 
I(H), every element of loCH) fixes I(H)p pointwisely. Since L(I(H))= 
H(oo), we conclude that lo(H)={l}. Next we assume loCH) is not semi­
simple. From Proposition 29, we find that H has a nontrivial flat de 
Rham factor which is a contradiction. Repeating the argument in the 
first part, we can also show that loCH) has no nontrivial compact factors. 

5.3. Splitting theorem 
In this section, we shall give a splitting theorem of a Hadamard 

manifold under the assumption that the isometry group satisfies the duality 
condition. 

First we prepare the following: 

Proposition 31 (Eberlein [29]). Let B be a closed totally geodesic sub­
manifold of a Hadamard manifold Hand G be a subgroup of I(H) defined 
by G={s6 E I(H): s6(B(oo))=B(oo)}. Assume that L(G)=H(oo). Then 
there is a totally geodesic submanifold B' such that H splits into BXB'. 

The splitting in this theorem is obtained in the following manner. 
From the assumption L(G)=H(oo), we find that for any point p E H, 
there exists a totally geodesic submanifold Bp such that Bi 00 )=B( 00). 
Let N be the distribution on H defined by Np = (Bp)p- We can show that 
Nand N.L are parallel distributions by a method similar to that used in 
the proof of Wolf's splitting theorem, replacing the flat strip theorem by 
the sandwich lemma. Hence Hsplits into BXB' where B' is a leaf of N.L. 

Theorem 32 (Eberlein [29]). Let H be a Hadamard manifold without 
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flat de Rham factor and G*{l} be a closed connected subgroup of J(H). 
Assume that the normalizer N](H)(G) of G in J(H) satisfies the duality con­
dition. Then H splits into HI X H2, where 

(1) HI is a symmetric space of noncom pact type, and 
(2) Hloo)=Fix(G)nH(oo). 

We shall give a sketch of the proof. Since the normalizer of G 
satisfies the duality condition, every element of the center of G is a 
Clifford translation. Hence G is without center, for H has no fiat de 
Rham factor. By arguments similar to those in the proof of Theorem 30, 
we can show that G is a semi-simple Lie group without compact factors. 
Let K be a maximal compact subgroup of G. Then it follows that 
Fix(K)nH(oo)=Fix(G)nH(oo).Hence there exists a totally geodesic 
submanifold HI of H such that HI(oo) = Fix(G) n H(oo). Since N](H)(G) 
satisfies the duality condition, there is a totally geodesic submanifold H2 
such that H = HI X H2 by Proposition 31. This is the desired splitting. 

Summarizing the above arguments, we obtain: 

Theorem 33 (Eberlein [29]). Let H be a Hadamard manifold such 
that J(H) satisfies the duality condition. Then H splits into Ho X HI X H 
with the following properties: 

(1) Ho is a Euclidean space, 
(2) HI is a symmetric space of noncompact type, and 
(3) J(H2) is discrete and satisfies the duality condition. 

5.4. Lattices 
If a Hadamard manifold H admits a lattice, then H splits as in 

Theorem 33. We now remark some results concerning lattices in a 
Hadamard manifold. 

Let r be a lattice of a Hadamard manifold H. We say that r is 
reducible if there exists a finite covering of HI r which has a nontrivial 
splitting as a Riemannian manifold. If r is not reducible, we say r is 
irreducible. Even if H is reducible as a Riemannian manifold, a lattice in 
H is not necessarily reducible (cf. [82]) .. Eberlein [27], [29] investigated 
the reducibility of a lattice in a Hadamard manifold. One of his results 
is the following: 

Theorem 34 (Eberlein [29]). Let r be an irreducible lattice in a 
Hadamard manifold H. Assume that r contains no Clifford translations. 
Then: 

(1) J(H) is discrete and r is offinite index in J(H) and H is irredu­
cible, or 

(2) H = Ho X HI where Ho is a Euclidean space and HI is a symmetric 
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space of noncom pact type. 

As a special case, it follows the following: 

Theorem 35. Let H be a Hadamard manifold without flat de Rham 
factor and H = H1 X Hz be a nontrivial splitting. Assume that I(H1) is a 
discrete group. Then there are no irreducible lattices in H. 

Lattices in a symmetric space have strong rigidity properties. 
Mostow's rigidity theorem [74] can be stated as follows: Let H, H' be 
symmetric spaces of noncompact type without two dimensional compo­
nents. If lattices T in Hand T' in H' are isomorphic as a group, then 
HIT and H' I T' are isometric up to normalizing constants of the metrics. 

If HIT is a compact locally symmetric space of negative curvature, 
then a small perturbation of the metric yields a new compact Riemannian 
manifold of negative curvature. However, if H is a symmetric space of 
noncompact type whose rank is greater than 2, a compact quotient HIT 
has a strong rigidity. That is, if the fundamental group of a compact 
Riemannian manifold M* of nonpositive curvature is isomorphic to the 
fundamental group of M = HIT, then M* is isometric to M up to normal­
izing constants of the metrics, where H is a symmetric space of noncom­
pact type whose rank is greater than 2 and T is an irreducible uniform . 
lattice in H (Eberlein [28], Gromov). 

§ 6. Fundamental groups of compact Riemannian manifolds of nonpositive 
curvature 

Let M be a complete Riemannian manifold of nonpositive curvature. 
Then the universal covering manifold H of M is a Hadamard manifold 
and M can be written as HIT with T, some fixed point free properly dis­
continuous subgroup of I(H). 

Taking base points of M and H, T can be identified with the 
fundamental group of M in a canonical manner. This identification 
depends on the choice of base points, but it is not essential in the following 
arguments. We denote the fundamental group of M simply by n'1(M), for 
it is not necessary to specify the base point of the fundamental group. 

It should be noted that the fundamental group is the most important 
topological invariant in the sense that the homotopy type of M is de­
termined completely by the fundamental group. 

Now let M be a compact manifold of nonpositive curvature. From 
the compactness of M, if follows that n'1(M) is finitely generated. Note 
that the volume of M is finite and the volume of the universal covering 
manifold is infinite. This implies that n'1(M) is an infinite group. 
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It is known, by a theorem of Smith [85], that a finite cyclic group of 
isometries of a Hadamard manifold has a common fixed point. Since r 
is fixed point free, it'lM) does not contain a nontrivial finite cyclic group,. 
i.e., it'l(M) is torsion free. 

To verify these properties, we only need the fact that the universal 
covering is diffeomorphic to the Euclidean space. So these are also true 
for the fundamental group of a compact manifold without conjugate 
points. 

6.1. The fundamental groups of compact manifolds of negative 
curvature 

First we notice a basic fact concerning the fundamental group of a 
compact Riemannian manifold of nonpositive curvature. Let M = HI r 
be a compact Riemannian manifold of nonpositive curvature. Let K be 
a compact fundamental domain. Then for any element if> of r, the rest­
riction of the displacement function d~ to K attains the minimum value at 
a point of K, say p. It is easily verified that if> translates a complete 
geodesic through p and if>(p), and if> is an axial isometry. In consequence, 
every element of r is an axial isometry. 

Now we assume that M is a compact Riemannian manifold of nega­
tive curvature. The first remarkable result was obtained by Preismann 
[77]: 

Theorem 36. Let M be a compact Riemannian manifold of negative 
curvature. Then every nontrivial abelian subgroup of it'1 (M) is infinite 
cyclic. 

In fact, let A be a nontrivial abelian subgroup of it'l(M)~r. Take 
if>, 1fp E A, if> * 1 and 1fp* 1. If r is an axis of if>, then, since if> and 1fp com­
mute, if> also translates the geodesic 1fp 0 r. Since the curvature is negative, 
rand 1fp 0 r coinside up to parametrizations. Hence every element of A 
translates the same geodesic. This means that A is infinite cyclic. 

Byer [15] generalized Preismann's theorem in the follOWing way. 

Theorem 37. Let M be a compact Riemannian manifold of negative 
curvature. Then every nontrivial solvable subgroup of it'l(M) is infinite cyclic. 

Some other generalizations of Preis mann's theorem has been obtained 
by Chen [20] and Eberlein and O'Neill [31]. 

In 6.2, we shall see that when M is of nonpositive curvature, abelian 
subgroups of it'lM) give some information concerning totally geodesic 
flat submanifolds of M. 

From Preismann's theorem, we know that the product manifold M 



266 K. Shiga 

= Ml X M2 of compact manifolds Ml and M2 does not admit a Riemannian 
metric with negative curvature. But, it is not known whether there exists 
a Riemannian metric with positive curvature on a product manifold of 
compact manifolds. This is a problem known as Hopf's problem. 

Next we state a theorem of Milnor [70]. To this end, we define the 
growth function of a finitely generated group G. Let S={gl, ... , g.} be 
a system of generators of G. For a positive integer r, we denote by gs(r) 
the number of elements of the set {g=g~: g~: ... g~:: Ind+· .. +Intl~r}. 
We call the function gir) the growth function of G relative to a system of 
generators S. The growth function depends on the choice of a system of 
generators S, but the notions in the following definition does not. 

Definition. Let G be a finitely generated group and S be a system of 
generators of G. G is said to be of polynomial growth if there exist a> 1 
and c>O such that gir)<cr a• G is said to be of exponential growth if 
there exists a> 1 such that gir»ar • 

For example, a free abelian group G = zr is of polynomial growth 
and a finitely generated nonabelian free group is of exponential growth. 
For more arguments about the growth function, see [51], [71], [89]. 

A result of Milnor is the following: 

Theorem 38 (Milnor [70]). Lei M be a compact Riemannian manifold. 
Then: 

(1) If Ricci curvature of M is positive semidefinite, then It'l(M) is of 
polynomial growth. 

(2) If Mis of negative curvature, then It'l(M) is of exponential growth. 

The proof is done by comparing the growth order of the volume of 
geodesic balls. More precisely, in the case of positive semidefinite Ricci 
curvature, we use a volume comparison theorem of Bishop [8], and in the 
case of negative curvature, we use a standard volume comparison theorem. 

The second part of the theorem was generalized by Eberlein as 
follows: 

Theorem 39 (Eberlein [26]). Let H be a Visibility manifold and r a 
fuchsian subgroup of I(H). Then there exists an infinite subset S of r such 
that S generates a nonabelian free subgro1,lpof r. 

To prove this, we need the following two facts, and refer to [23] for 
their proof. 

1. Let H be a Visibility manifold and r be a fixed point free pro­
perly discontinuous subgroup of I(H). If the limit set L(T) is an infinite 
set, then any pair of points x and y of L(T), not necessarily distinct, are 
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dual relative to T. 
2. Let Hand T be as above. If L(T) is an infinite set, then L(T) 

is a perfect set, i.e., L(T)=L(T)"', the derived set of L(T). 
Now we shall sketch the proof of the theorem. Take a point ZI E 

L(T) and a neighbourhood UI of ZI so thatUI~L(T). Take a point Z2 e 
L(T)- VI and a neighbourhood U2 of Z2 so that VI and V2 are disjoint 
and VI U V2~L(T). Inductively, we choose, for each positive integer n, 
a point Zn e L(T) a neighbourhood Un of Z" so that Vn, n= 1,2, ... are 
mutually disjoint and Ut Vt~L(T). Since Z2n-1 and Z2" are dual relative 
to T, there exists ¢" E T, such that ¢,,(H- U2"_I)C U2n and ¢;;I(H- U2n) 
C U2n - t • Put S={¢1> ¢2' ... , ¢n, ... }. Then there are no relations among 
elements of S. In fact, let ¢=¢~:¢~: ... ¢'f:, where r is a positive integer 
and ik, 1 <k<r, are positive integers such that ik=l=ik+ t and nk, 1 ~k::;;:r, 
are non zero integers. Take a pointp e H-UJ Vir Then, by virtue of 
the choice of {¢t} and {Ut}, we can show that ¢(p) e U2t1 if nt>O and that 
4>(p)e U2il_tifnt<0. Hence ¢(p)=I=p. This means that ¢=I=l and that 
there are no relations among elements of S. 

Since a finitely generated nonabelian free group is of exponential 
growth, the above theorem implies the second part of Theorem 38. 

The assumption of the Visibility of H in the above theorem can be 
weakened somewhat to the assumption that there exists a complete 
geodesic in H which does not bound a flat half plane (Ballmann [6], [7]). 

6.2. The fundamental groups of compact manifolds· of nonpositive 
curvature 

In 6.1, we have studied the fundamental group of a compact manifold 
of negative curvature. In this section, we shall study the case of nonposi­
tive curvatllre. 

At first, we consider compact flat manifolds. The fundamental 
groups of compact flat manifolds have been characterized by Bieberbach 
(cf. Wolf [90]). Let M be a compact flat manifold of dimension n. Then 
M can be written as R" I T where T is a fixed point free properly dis­
continuous subgroup of the Euclidean transformation group. 

Theorem 40 (Bieberbach). Let M = Rn I r be a compact fiat manifold. 
Then there exists a maximal free abelian normal subgroup Ll of rank n such 
that riLl is a finite group. 

Conversely, if a torsion free finitely generated group T has a free 
abelian normal subgroup of rank n which is of finite index and maximal 
abelian, then T is isomorphic to the fundamental group of some compact 
flat manifold of dimension n. 

In this theorem, the normal abelian subgroup Ll is given in fact as 
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r n Rn, where an element of R n is identified with the translation defined 
by it. The above theorem says that a compact fiat manifold is covered 
by a fiat torus as a finite normal covering, and this is the geometric 
meaning of Bieberbach's theorem. 

A group is called a Bieberbach group if it has the properties in the 
above theorem. 

Bieberbach's theorem has been generalized by Wolf [89] and Yau [94]. 
Wolf showed that if the fundamental group of a compact manifold of 
nonpositive curvature has a nilpotent group of finite index, then M is fiat. 
This was generalized by Yau as follows: 

Theorem 41 (Yau [94]). Let M be a compact manifold of nonpositive 
curvature. Then every solvable subgroup of 1C1(M) is a Bieberbach group. 
In particular, if 1C/M) is solvable, then M is a flat manifold. 

Now we will investigate abelian subgroups and the center of the 
fundamental group. Let M = HI r be a compact Riemannian manifold of 
nonpositive curvature. We assume that 1Cl(M)=r contains a free abelian 
subgroup A of rank k. Let {¢1' ... , ¢k} be a system of generators of A. 
Then the minimum set C¢I of the displacement function d¢l of ¢l splits 
into Dl X R such that {d} X R is a ¢l-invariant geodesic, i.e., an axis of ¢1' 
where Dl is a totally convex subset of H. If r is a ¢cinvariant complete 
geodesic, ¢i 0 r is also ¢l-invariant, since ¢l and ¢i commute. Then ¢z 
acts on C¢l. Hence we obtain that C¢l n C¢2 is not empty and C¢l n C¢. 
splits into D2 X R2 such that {d} X R2 is spanned by axes of ¢l and ¢2. We 
continue this argument and finally obtain that c,p, n ... n C¢.=Dk XR k 

and that Rk is spanned by axes of ¢i' l~i~k. Hence Rkl{¢l> ... , ¢k} is 
a fiat torus of dimension k which is immersed totally geodesically in M. 

Theorem 42 (Gromoll and Wolf [50], Lawson and Yau [69]). Let M 
be a compact Riemannian manifold of non positive curvature. If the funda­
mental group 1C1(M) contains a free abelian subgroup of rank k, then there 
exists a totally geodesically immersed flat torus of dimension k. 

If we assume that 1Cl(M) has nontrivial center, we can assert more. 
Namely, if the fundamental group 1Cl(M) of a compact Riemannian mani­
fold of nonpositive curvature has nontrivial center Z, then Z is a free 
abelian group of rank k, k~n=dimM, and M is foliated by k-dimensional 
totally geodesically immersed fiat tori (Lawson and Yau [69], O'Sullivan 
[75]). 

Furthermore, Eberlein [30] determined the structure of a compact 
Riemannian manifold of nonpositive curvature whose fundamental group 
has nontrivial center. We begin by describing a general procedure for 
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constructing examples of such manifolds. For a given integer k, let Z be 
a lattice in Rk and denote by Tk the torus Rk/Z. Let Hz be a Hadamard 
manifold and T be a discrete subgroup of I(Hz) with trivial center, 
possibly containing elliptic elements, such that the quotient Hz/Tis com­
pact. Let p: T-+Tk be a homomorphism whose keruel contains no 
elliptic elements. We define an action of T to TkXHz by rp(~, h)= 
(p(rp)~, rp(h)) for each rp E T, ~ E Tkand h E Hz. Then the quotient mani­
fold M = Tk X Hz/Tis a compact manifold whose fundamental group has 
nontrivial center Z. For convenience, we call a manifold constructed as 
above a canonical manifold with nontrivial center. 

Theorem 43 (Eberlein [30]). Let M be a compact Riemannian mani­
fold of non positive curvature whose fundamental group has nontrivial center. 
Then: 

(1) M is a canonical manifold with nontrivial center, and 
(2) there exists a finite covering M* of M such that any finite cover­

ing M* * of M* is diffeomorphic to the product Tk X M where M is a 
compact manifold which admits a metric of non positive curvature and whose 
fundamental group has trivial center. 

The first part can be seen as follows. Since every element of center 
Z is a Clifford translation, H splits into Rk X H2, where H is the universal 
covering of M. The action of T preserves the splitting. We denote by 
Pi: T-+I(Hi) the projection, where Hl=Rk. Then T1=Pl(T) act as a 
translations and Tz=pz(T) is a discrete subgroup of I(Hz) (cf. [27]). Let 
P: Rk-+Tk=Rk/Z be the projection. We define p: Tz-+Tk by p(pzCrp)) = 
P(pM»)). Then we can show that M is isometric to Tk X Hz/ T. 

For the proof of the second part of the theorem, we need deeper 
observations and must refer to Eberlein [30]. 

Finally, we state a splitting theorem. 

Theorem 44 (Gromoll and Wolf [50], Lawson and Yau [69]). Let M 
be a compact manifold of non positive curvature. If the fundamental group 
niM) is without center and splits into 7i1(M) = G1 X Gz as a group, then M 
has a splitting M=M1 XMz so that 7il(M1)=G1 and 7il(Mz)=Gz. 

§ 7. Kahler Hadamard manifolds and geometric function theory 

We shall consider, in this section, Kahler Hadamard manifolds, i.e., 
simply connected complete Kahler manifolds of nonpositive curvature. 
Typical examples of Kahler Hadamard manifolds are the complex 
Euclidean space en with the standard flat metric and an open ball in en 
with the Bergman metric. It is well-known that the holomorphic sectional 
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curvature of an open ball is negative constant and its sectional curvature 
is strictly negative. 

It might· be reasonable to ask how the metric structure of a Kahler 
manifold restricts the function theoretic properties of the underlying com­
plex manifold. The problem that we will consider here is that under 
what geometrical conditions a Kahler manifold posseses properties similar 
to those of the above model spaces. We expect that if the curvature of a 
Kahler manifold is sufficiently negative, then the manifold has properties 
similar to those of a bounded domain of en, and if the curvature is not 
so negative, then the manifold has properties similar to those of en. 

Several surveys concerning this topic have been given already (Greene 
[40], [41], Greene and Wu [45], Wu [93]). 

7.1. Steinness 
A complex manifold is called a Stein manifold if it is biholomorphic 

to a closed submanifold of some complex Euclidean space. It is well­
known that every noncompact Riemann surface is Stein, while this is false 
for higher dimensional noncompact complex manifolds. Aomoto [3] 
conjectured that a Kahler Hadamard manifold is Stein, and this is proved 
by Wu [91] and Sasaki and Suzuki [80]. 

By Grauert's theorem (cf. [22]), in order to prove that a complex mani­
fold M is Stein, it is sufficient to find a smooth strictly plurisubharmonic 
exhaustion function on M. 

Let H be a Kahler Hadamard manifold. We have seen in 1.4, that 
the function d( . ,p )2, for any point p of H, is smooth and strictly convex. 
So we are going to show that a strictly convex function on a Kahler 
manifold is strictly plurisubharmonic. Now we recall some definitions. 
Let M be a complex manifold andfa real valued CZ-function on M. The 
Levi form of fis defined to be the hermitian form Lf= L: (a'1laziat)dzidtj, 
where (Zl' .. " zn) is a local coordinate system. We say a CZ-function f is 
plurisubharmonic (strictly plurisubharmonic) if the Levi form Lf is positive 
semi-definite (positive definite) everywhere. A real valued function f on 
M is called an exhaustion function if the set {x EM: f(x)<c} is compact 
for any c< sup f The relation of the convexity and the plurisubharmoni­
city is given by the following. 

Proposition 45 (cf. [44]). Let M be a Kahler manifold and J be the 
complex structure of M. For a real valued smooth function f on M, it holds 
that 

Lf(X, X)=PZf(X, X)+PZf(JX, JX). 

As a corollary, we obtain: 
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Theorem 46 ([80], [91], cf. [46] also). A Kahler Hadamard manifold is 
a Stein Manifold. 

Proposition 45 can be shown using the existence of the normal 
coordinate systems on a Kahler manifold. We remark that the assertion 
in the proposition is false for a hermitian manifold. In fact, the convexity 
of a function does not mean the plurisubharmonicity in general (cf. 
Klembeck [62]). 

A general method of estimating the hessian of a function on a 
Riemannian manifold is to use, so called, the comparison argument. We 
refer to Siu and Yau [84], Greene and Wu [46] and Kasue [60] for the 
hessian comparison theorem. 

It is also known that a complete noncompact Kahler manifold of 
positive curvature is Stein (WU [92]). 

7.2. The I-dimensional case and model spaces 
Let us first discuss the I-dimensional case. This case is very special 

in the ~ense that a I-dimensional simply connected noncompact complex 
manifold is biholomorphic to the unit disc or the complex plane C. 
Among characterizations of these space, the following, due to Milnor, is 
a most typical characterization in connection with arguments in higher 
dimensional manifolds. 

Theorem 47 (Milnor [72]). Let M be a simply connected I-dimensional 
Kahler manifold. Suppose that the metric is rotationally symmetric at some 
point 0 of M. Let r denote the distance function relative to o. Then: 

(1) If the Gaussian curvature is > -IJr2 10g r for large r, then M is 
biholomorphic to C. 

(2) If the Gaussian curvature is non positive and is ~ -(1 +e)Jr2 10g r 
for large r, then M is biholomorphic to the unit disc. 

We shall sketch the proof of the theorem. Since the metric is 
assumed to be rotationally symmetric at 0, it can be represented as dr2+ 
f(r)2d(P, where (r,O) being the geodesic polar coordinate at o. Then the 
Gaussian curvature is a function of r and which is denoted by K(r). It is 
well-known that the function fer) satisfies the Jacobi equation, f"(r)+ 
K(r)f(r)=O, f(O)=O and f'(O)=1. Define a mapping (/J: M~C by 

(/J(r, 0)= (exp U: Iff}, 0). We can see by ~irect calculation that (/J is con­

formal, i.e., is holomorphic. Hence, if f IIf(r)< 00, then Mis biholo-

J
~ 1 

morphic to the unit disc, and if 0 IIf(r) = 00, then M is biholomorphic to 

C. 
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It is observed, by Greene and Wu [46], that the assumption of 
rotational symmetricity of the metric can be omitted using Ahlfor's 
criterion [1] of the hyperbolicity of Riemann surfaces. 

Milnor's result mentioned above can be generalized to higher dimen­
sional manifolds. Let M be a complete Riemannian manifold. We call 
a point oEM a pole if the exponential mapping at 0, expo: Mo-+M, is a 
diffeomorphism. 

Definition. Let M be a complete Riemannian (Kahler) manifold 
with a pole 0. M is called a model (Kahlerian model) if any orthogonal 
(unitary) transformation of Mo can be realized as the linear isotropy of an 
isometry of M. 

Let M be a Riemannian manifold with a pole 0. Let op denote the 
radial vector at p, p*o, i.e., the tangent vector defined by op=top(l), 1= 
d(o,p). The sectional curvature of a tangent plane containing the radial 
vector is called the radial curvature. If M is a Kahler manifold, the 
sectional curvature K(op, Jo p) is called the holomorphic radial curvature. 

Under these terminologies, we obtain: 

Theorem 48 (Shiga [81]). Let H be an n-dimensional Kiihlerian model. 
Then H is biholomorphic to either an open ball in en or en itself. Further­
more, 

(1) if the holomorphic radial curvature is ~ -ljr2 log r for large r, 
then His biholomorphic to en, and 

(2) if the holomorphic radial curvature is non positive and is 
~ -(1 +s)jr2log r for large r, then His biholomorphic to an open ball. 

7.3. Kahler Hadamard manifolds with sufficiently negative curvature 
First we recall some properties of bounded domains of en. A 

simply connected bounded domain of e is biholomorphic to the unit disc 
by Riemann's mapping theorem. On the other hand, in higher dimen­
sional case, we can not expect such a simple phenomenon. In fact, there 
exists a family of inequivalent bounded domains with a infinite dimen­
sional parameter, by small perturbations of the unit ball (Burns, Shnider 
and Wells [13]). 

One of the basic properties of bounded domains is the existence of 
the Bergman metric. Let D be a bounded domain of en and ;;/f be the 
set of all D-holomorphic functions on D. It is well-known that :Yr is a 
separable Hilbert space. Take a complete orthonormal base {~i} of :Yr. 
Then the function K(z, w)=.L; ~;(Z)~i(W) is called the Bergman kernel of 
D. We define a Kahler metric ds 2=.L; o2jOZiOZJ log K(z, z)dzidz j , which 
is called the Bergman metric. We notice that the Bergman metric is 
invariant under holomorphic automorphisms of D. 
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Let D be a bounded domain with smooth boundary oD. Take a 
smooth functionf: en-+R so that D={x E en:f(x)<O} and gradf:;t=O on 
oD. We say D is strongly pseudoconvex if at any point of oD, 
L: o2f10ZiOZj~i~j >0 for any (~i):;t=O satisfying L: Of/OZi~i =0. Let D be a 
strongly pseudoconvex bounded domain with smooth boundary. Feffer­
man [33] and Boutet de Monvel and Sjostrand [12] determined the 
asymptotic behavior of the Bergman kernel at the boundary. From their 
result, we find that the Bergman metric is complete. The curvature of the 
Bergman metric near the boundary is calculated by Klembeck [63], using 
the asymptotic behavior of the Bergman kernel. The sectional curvature 
is negative near the boundary; in fact the curvature tensor converges, as 
the boundary is approached, to the curvature tensor of the unit ball. 
However in general, the sectional curvature is not ne~essarily negative on 
the whole of D. 

Concerning the geometry of bounded domains, we notice here two 
interesting results. The first one is a Hamilton's theorem [53] (cf. [42] 
also): if D is a strongly pseudoconvex bounded domain in en, then a small 
perturbation of the complex structure on D can be realized by another 
subdomain in en which is COO-closed to D. The second one is due to 
Greene and Krantz [42], [43]: if D is a simply connected complex manifold 
on which, for any .;;>0, there exists a complete Kahler metric with 
sectional curvature ~ - 1 +.;; and ~ - 4 -.;;, then D is biholomorphic to 
the unit ball. 

Now let us define the Bergman kernel form on a complex manifold 

M. Let:R be the set of holomorphic n-form w such that f M w/\w< 00. 

It is known that ;/f' is a separable Hilbert space. Take a complete ortho­
normal base {Wi} of:R. The 2n-form K(z, w)= L: wlz)/\wtCw) is called 
the Bergman kernel form. Take a local coordinate system (Zlo ... , zn) and 
represent K(z, w)=(~)n(n+l)/2 k(z, w)dzJ\ .. . /\dzn/\dw1 /\ •• ·/\dwn. 
We now assume that k(z, z»O on M. We consider the hermitian form 
L: 02/0ZiOZj log k(z, z)dzidzj. It can be seen that this hermitian form is 
independent of the choice of a local coordinate system. If this hermitian 
form is positive definite, it defines a Kahler metric on M. This metric is 
called the Bergman metric of M. The Bergman metric, if it exists, is 
invariant under holomorphic automorphisms of M. 

A complex manifold M has the Bergman metric if and only if M has 
the following two properties (cf. Kobayashi [64]). 1) for any point P E M, 
there exists w such that w(p):;t=O, and 2) for any point p there exist Wi= 
Widzl/\" ·/\dzn such that wlp)=O and oiJi/oZ/P)=Oij for l~i,j<n. 
Thus we want to find holomorphic n-forms with these properties. The 
most useful method to construct holomorphic n-forms on noncompact 
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complex manifold is the, so called, V-estimates of d (cf. [40], [41], [46], 
[58], [84]). The version convenient for our problem is: 

Theorem 49. Let M be a Stein manifold with a complete Kahler 
metric ds2. If A2 is a plurisubharmonic function on M and if A! is a C=­
function on M, then: 

(1) If the Levi form LA! is ~ C ds2 for some positive function c on M 
and iff is a C=(n, 1)-form on Mwith df =0, then there exists a C=(n, O)-form 
u such that du=f and 

(2) If LA! + Ric:2:c ds2 for some positive continuous function c, and 
iff is a C=(O, 1)-form on M with df=O, then there exists a C=-function u 
on M such that dU= f and 

We now assume that for a point p E M, it is possible to choose A2 so 
that A2 is continuous except at p and A2 tends to - 00 at p with suitable 
order. Let W be a holomorphic n-form defined on a neighbourhood of p, 
say U. Take a smooth function p on M which is 1 on a neighbourhood 
of p and whose support is contained in U. Consider the differential 
equation dU=d(pW), It is immediate from the definition of p, that 

f C!ldpwI2 e- l1 - l • is finite. Then there is a solution u such that f luI2 e- 11 - 1• 

is finite. Since A2 is singular at p, u must vanish with some order, which 
is determined from that of A2• Then u-pw is a holomorphic n-form 
which agrees with W at p up to some order. Hence the possibility of the 
choice of suitable Ai implies the existence of the Bergman metric. 

Proposition 50 (Greene and Wu [46]). Let M be a Kahler manifold 
with a pole o. If the radial curvature is non positive and is ~ - (1 + e)/r 2 log r 
for large r, then there exists a bounded exhaustion function cp: M -*[0, l) 
such that cp-l(O)=O, cp = 0(r2) at 0 and log cp is plurisubharmonic. 

From this proposition, Greene and Wu [46] obtained: 

Theorem 51. Let M be a Kahler Hadamard manifold and 0 be a point 
of M. If the sectional curvature is ::;: - A/r2(log r)1+e for large r, then M 
posseses the Bergman metric. 

To see this, it is sufficient to take Al =cp and Al =m log cp for some m, 
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where rp is the function in Proposition 50. Greene and Wu also obtained 
a sufficient condition for the completeness of the Bergman metric in [46]. 

Now we turn to the hyperbolicity of bounded domains in the sense 
of Kobayashi [65], [67]. Let LI={z E C: Izl< I} be the unit disc andf: LI 
-*LI be a holomorphic mapping such that f(O) =0. The Schwarz lemma 
says 11'(0) I:;::;; 1. This can be interpreted as follows. Let ds~ is the 
Poincare metric on LI and f: LI-*LI be a holomorphic mapping. Then 
f*ds~:;::;;ds~. The Schwarz lemma has been generalized by Ahlfors [2], 
Grauert and Reckziegel [38], Kobayashi [66], Yau [95] and others. The 
following is one of them. 

Theorem 52 (Kobayashi [66]). Let LI be the unit disk with the metric 
ds~=4 dzdz/A(1-lzI2)2 of constant negative curvature -A, and M be a 
hermitian manifold whose holomorphic sectional curvature is bounded from 
above by a negative constant - B. Then every holomorphic mapping f: LI 
-*M satisfiesf*ds~:;::;;A/B ds~. 

Kobayashi [65] defined an intrinsic pseudodistance on a complex 
manifold and its infinitesimal form was determined by Royden [78]. 

Let M be a complex manifold. We define a seminorm on the tangent 
bundle TM of Mby F(X) = inf{1 VldS3: V E TLI, and there is a holomorphic 
mappingf: LI-*M such that fiV)=X}. F is upper semicontinuous on 
TM. Given points p, q of M, we define a pseudo distance k(p, q) by 

k(p, q)=inf {FCi) where r runs over all smooth curves joining p and q. 

This is called the Kobayashi pseudodistance. It follows from the defini­
tion that the Kobayashi pseudodistance is invariant under a biholomorphic 
mapping. We say a complex manifold M is hyperbolic if the Kobayashi 
pseudodistance is actually a distance on M. For the general theory about 
hyperbolic manifolds, we refer to Kobayashi [67]. 

From the Proposition 52, it follows that if a complex manifold M 
admits a hermitian metric whose holomorphic sectional curvature is 
bounded from above by a negative constant, then M is hyperbolic. Since 
every bounded domain is biholomorphic to a subdomain of the unit ball, 
a bounded domain is hyperbolic. Furthermore, it is known that a 
strongly pseudoconvex bounded domain is complete hyperbolic (Graham 
[37]). Modifying the proof of Theorem 51, an application of the maximal 
principle, Greene and Wu [46] obtained: 

Theorem 53. Let ds2 be a hermitian metric on a complex manifold M 
such that its holomorphic sectional curvature is < - A/I + r2 for some 
positive number A. Then there exists a constant B depending only on A 
such that 
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In particular M is hyperbolic, and is complete hyperbolic if ds2 is 
complete. 

We have seen in the above argument that a Kahler Hadamard mani­
fold whose sectional curvature is sufficiently negative has several properties 
similar to those of bounded domains. It is then natural to ask the 
existence of nonconstant bounded holomorphic functions provided that 
the sectional curvature of a Kahler Hadamard manifold is sufficiently 
negative. At the present, however, we have no answers to this question. 
In Riemannian category, there is an analogous question: if the sectional 
curvature of a Hadamard manifold is sufficiently negative, then can we 
assert the existence of nonconstant bounded harmonic functions. We 
have only some partial answers to this question (Greene and Wu [46], 
Kasue [61], Sasaki [79]). 

7.4. Some geometric characterizations of the complex Euclidean space 
Let Hbe a Kahler Hadamard manifold. When dim H=l, we have 

already seen that if the Gaussian curvature is ~ -ljr2 10g r for large r, 
then H is biholomorphic to e. This phenomenon also holds in the higher 
dimensional case. Siu and Yau [84] showed: 

Theorem 54. Let H be a Kahler Hadamard manifold. If the sectional 
curvature is ::?:-Aj(l+r2)1+e for some A>O and 0:>0, then His biholo­
morphic to en. 

They constructed global coordinate functions which constitute a 
biholomorphism to en by the method of V-estimates of d. Greene and 
Wu [46] obtained some generalization of this theorem. 

Recently, some gap phenomenon has been obtained by Mok, Siu and 
Yau [73] in the Kahlerian case and by Greene and Wu [47], [48] in the 
Riemannian case. 

Theorem 55 (Greene and Wu [47], [48]). Let H be a Hadamard mani­
fold ofdimH>3, and 0 be a point of H. Define k: [0, co)~R by k(s) = 
sup {I sectional curvature at ql: q E Hand d(o, q)=s}. Then: 

(1) If the dimension of H is odd and if lim inf s2k(s)=0, then His 

isometric to Rn. 

(2) If the dimension of H is even and f sk(s) < co, then H is isometric 

to Rn. 

This theorem is obtained by the following volume comparison 
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theorem, which is a simple application of Rauch's comparison theorem. 

Lemma 56. Let H be a Hadamard manifold and 0 be a point of H. 
Let vH(r)(vRn(r)) denote the volume of the geodesic ball of radius r in H 
centered at o(in Rn). Then: 

(1) For all r>O, vH(r»vRn(r). 
(2) If1im inf vH(r)/VRn(r) = 1, then H is isometric to Rn. 

In order to show that H satisfies the condition in Lemma 55, they 
used the Gauss-Bonnet theorem in the odd dimensional case and some 
generalization of Gauss map in the even dimensional case. 

For manifolds of nonnegative curvature, there also exists a gap 
theorem corresponding to Theorem 55 ([48]). It follows from the Theorem 
55 together with a gap theorem for manifolds with positive curvature, that 
there exist no nontrivial examples if we assume that the curvature of a 
Kahler manifold is one sided and is sufficiently small at infinity. Mok, 
Siu and Yau [73] obtained a characterization of en for the case when the 
curvature takes both signs. 

Theorem 57. Let M be a complete Kahler manifold of dimension n"C.2 
with a pole o. Suppose that the curvature of M is bounded as 

where A is a sufficiently small constant depending on e >0. Then M is 
biholomorphic to en. 
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