Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 231-238

On Topological Blaschke Conjecture I

Cohomological Complex Projective Spaces

Hajime Sato

By a Blaschke manifold, we mean a Riemannian manifold (M, g)such that, for any point $m \in M$, the tangential cut locus C_m of m in $T_m M$ is isometric to the sphere of constant radius. There are some equivalent definitions (see Besse [2, 5.43]). The Blaschke conjecture is that any Blaschke manifold is isometric to a compact rank one symmetric space. If the integral cohomology ring of M is equal to the sphere S^k , or the real projective space RP^k , this conjecture is proved by Berger with other mathematicians [2, Appendix D]). We consider the case where the cohomology ring of M is equal to that of the complex projective space CP^k .

We obtain the following theorem.

Theorem. Let (M, g) be a 2k-dimensional Blaschke manifold such that the integral cohomology ring is equal to that of CP^k . Then M is PL-homeomorphic to CP^k for any k.

Blaschke manifolds with other cohomology rings will be treated in subsequent papers.

If (M, g) is a Blaschke manifold and $m \in M$, Allamigeon [1] has shown that the cut locus C(m) of m in M is the base manifold of a fibration of the tangential cut locus C_m by great spheres. We study the base manifold of such fibration by great circles. We apply the Browder-Novikov-Sullivan's theory in the classification of homotopy equivalent manifolds (see Wall [4]). Calculation of normal invariants gives our theorem. In Appendix, we give examples of non-trivial fibrations of S^3 by great circles. The author thanks to T. Mizutani and K. Masuda for the discussion of results in Appendix.

Detailed proof will appear elsewhere.

§ 1. Projectable bundles

In the paper [3], we have obtained a method of a calculation of the

Received January 8, 1983.

H. Sato

tangent bundle of the base space of an S^1 -principal bundle. We will briefly recall that.

Let X be a smooth manifold and let $\pi: L \rightarrow X$ be the projection of an S¹-principal bundle.

Definition. A vector bundle $p: E \to L$ over L is projectable onto X, if there exists a vector bundle $\hat{p}: \hat{E} \to X$ over X such that $\pi^* \hat{E} = E$. The map π induces the bundle map $\pi_1: E \to \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X. For any $a, b \in \pi^{-1}(x) = S^1$, we have a linear isomorphism

$$\Phi_{ab}: p^{-1}(a) \longrightarrow p^{-1}(b)$$

of vector spaces defined by $\Phi_{ab}(u) = v$, where $\pi_1(u) = \pi_1(v)$. Then we have, for $a, b, c \in \pi^{-1}(x)$,

 $(1) \qquad \qquad \Phi_{bc} \Phi_{ab} = \Phi_{ac}.$

Let $\pi^*L = \{(a, b) \in L \times L, \pi(a) = \pi(b)\}$ be the induced S^1 -bundle over L from L. We have two projections $\pi_1, \pi_2: \pi^*L \to L$ defined by $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$. Let π_i^*E (i=1, 2) be the induced vector bundle. The map $\Phi: \pi^*L \to \operatorname{Iso}(\pi_1^*E, \pi_2^*E)$ defined by $\Phi(a, b) = \Phi_{ab}$ is a continuous cross section of the bundle $\operatorname{Iso}(\pi_1^*E, \pi_2^*E)$ over π^*L .

We call Φ the projecting isomorphism associated with the projectable bundle *E*.

Proposition 1. Suppose given a vector bundle E over L and a cross section Φ of the bundle $\text{Iso}(\pi_1^*E, \pi_2^*E)$ satisfying (1). Then we have a vector bundle \hat{E} over X such that $\pi^*\hat{E} = E$ and the projecting isomorphism is equal to Φ .

Now let TL and TX be the tangent bundles of L and X respectively. Let $\rho: S^1 \times L \to L$ be the free S^1 -action. For each $t \in S^1$, the diffeomorphism $\rho(t) = \rho(t, \cdot)$ induces a bundle isomorphism $\rho(t)_*: TL \to TL$.

Proposition 2. The collection $\bigcup_{t \in S^1} \rho(t)_*$ induces a projecting isomorphism on the bundle TL such that the projected bundle TL is isomorphic to $TX \oplus 1$.

Proof. Choose a bundle metric on TL. Let TL_1 be the subbundle of TL consisting of tangent vectors normal to the S^1 -action. Then TL_1 is projected to TX. The line bundle tangent to the S^1 -action is projected to the trivial line bundle on X.

232

§ 2. Pontrjagin classes

Let S^{2k-1} be the unit sphere in \mathbb{R}^{2k} and let $\pi: S^{2k-1} \to B$ be a fibration of S^{2k-1} by great circles. Thus, for each $b \in B$, $\pi^{-1}(b)$ is the intersection of S^{2k-1} with a 2-plane in \mathbb{R}^{2k} . We write the 2-plane by P(b). Let $\rho: S^1 \times S^{2k-1} \to S^{2k-1}$ denote the free S^1 -action.

Let V(2k, 2) and G(2k, 2), respectively, be the Stiefel and the Grassmann manifold consisting of orthogonal 2 frames or oriented 2-planes in \mathbb{R}^{2k} . Then the natural mapping $\lambda: V(2k, 2) \rightarrow G(2k, 2)$ defines a principal S^1 -bundle.

The mapping $\theta: B \to G(2k, 2)$ defined by $\theta(b) = P(b)$ is a smooth embedding. Let $\theta^*(\lambda)$ denote the induced bundle of λ by θ . Since π is also the induced bundle of λ by θ , there exists a natural bundle isomorphism between π and $\theta^*(\lambda)$ inducing the identity on *B*. Thus we obtain;

Lemma 3. We may suppose that the free S^1 -action ρ on S^{2k-1} is equal to the restriction on $\pi^{-1}(b)$ of the linear action on P(b) for every $b \in B$.

In the following, we always assume that ρ is the linear action on each fibre. For each $x \in S^{2k-1}$, let Kx denote the point $\rho(1/4)x$ in S^{2k-1} , where we identify S^1 with $[0, 1]/[0] \sim [1]$. Define a mapping $\tilde{\theta}: S^{2k-1} \rightarrow V(2k, 2)$ by $\tilde{\theta}(x) = (x, -Kx)$. This is a smooth embedding and is a bundle map inducing θ on the base manifolds. For an orthogonal 2-frame w = (x, y), let $\tilde{\psi}(w)$ denote the vector $(x/\sqrt{2}, y/\sqrt{2})$ in $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$. Then the map $\tilde{\psi}: V(2k, 2) \rightarrow \mathbb{R}^{4k}$ is a smooth embedding of V(2k, 2) in $S^{4k-1} \subset \mathbb{R}^{4k}$. We identify $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$ with \mathbb{C}^{2k} such that the first summand \mathbb{R}^{2k} is the real part and the second pure imaginary. On $\mathbb{C}^{2k} - 0$, we have the free action ρ_0 of S^1 as the multiplication by the complex number of norm one. Then $\tilde{\psi}$ is S^1 -equivariant and we write by ψ the induced map $\psi: G(2k, 2) \rightarrow \mathbb{C}P^{2k-1}$.

Let $\tilde{f}: S^{2k-1} \to S^{4k-1}$ be the composition $\tilde{f} = \tilde{\psi}\tilde{\theta}$ and $f = \psi\theta: B \to C^{2k-1}$. The map \tilde{f} is given by $\tilde{f}(x) = (x/\sqrt{2}, -Kx/\sqrt{2})$ for $x \in S^{2k-1}$. We define a map $\tilde{F}: \mathbb{R}^{2k} - 0 \to \mathbb{C}^{2k} - 0$ by $\tilde{F}(tx) = t\tilde{f}(x)$ for t > 0 and

We define a map $\vec{F}: \mathbf{R}^{2k} - 0 \to \mathbf{C}^{2k} - 0$ by $\vec{F}(tx) = tf(x)$ for t > 0 and $x \in S^{2k-1}$. The map \tilde{F} is a smooth embedding. Let E denote the restriction of the tangent bundle $T(\mathbf{R}^{2k} - 0)$ of $\mathbf{R}^{2k} - 0$ on S^{2k-1} , and we write p for the projection $E \to S^{2k-1}$. Then \tilde{F} induces an injective bundle map $\tilde{F}_*: E \to \tilde{F}_*(E) \subset T(\mathbf{C}^{2k} - 0)|_{\vec{F}(S^{2k-1})}$.

 $\widetilde{F}_*: E \to \widetilde{F}_*(E) \subset T(\mathbb{C}^{2k} - 0)|_{\widetilde{F}(S^{2k-1})}.$ Now define a map $\widetilde{G}: \mathbb{R}^{2k} - 0 \to \mathbb{C}^{2k} - 0$ by $\widetilde{G}(tX) = (tX/\sqrt{2}, tK/\sqrt{2})$ for t > 0 and $x \in S^{2k-1}$. Then \widetilde{G} is also an embedding and \widetilde{G} induces an injective bundle map

$$\tilde{G}_*: E \longrightarrow \tilde{G}_*(E) \subset T(C^{2k-0} - 0)|_{\tilde{G}(S^{2k-1})}.$$

If $\overline{\rho}_0$ denote the conjugate action of S^1 on $C^{2k} = 0$. Then G is S^1 -equi-

variant concerning to this conjugate action.

For any $y \in C^{2k}$, we naturally identify the tangent space $T_y C^{2k}$ with C^{2k} itself. For $x \in S^{2k-1}$, let E_x denote the fiber $p^{-1}(x)$. Then $\tilde{F}_*(E_x)$ and $\tilde{G}_*(E_x)$ are subvector spaces of C^{2k} .

Since K: $S^{2k-1} \rightarrow \hat{S}^{2k-1}$ is a diffeomorphism, we obtain;

Lemma 4. The vector spaces $\tilde{F}_*(E_x)$ and $\tilde{G}_*(E_x)$ are transversal. Thus they span C^{2k} .

Let T denote the restriction of the tangent bundle $T(C^{2k})$ on $\tilde{F}(S^{2k-1})$. Then we have the direct sum decomposition by trivial vector bundles

$$T = \tilde{F}_*(E) \oplus \tilde{G}_*(E).$$

Notice that $\tilde{G}_{*}(E)$ on $\tilde{G}(S^{2k-1})$ is identified with the conjugate $\overline{\tilde{F}_{*}(E)}$ in T over $\tilde{F}(S^{2k-1})$.

For any $t \in S^1$, we have the induced bundle isomorphisms $\rho_*(t): E \to E$ and $\rho_{0*}(t): T \to T$.

Lemma 5. The isomorphism $\rho_{0*}(t)$ is equal to the direct sum

$$\rho_*(t) + \rho_*(t).$$

By Proposition 1, we obtain that the projected bundle \hat{T} , defined by the projecting isomorphism $\rho_*(t)$, is isomorphic to the Whitney sum;

 $\hat{T} \cong \hat{E} \oplus \hat{E}.$

On the other hand, by Proposition 2, we obtain the following.

Lemma 6. The bundle \hat{T} has the complex structure. As a complex vector bundle, \hat{T} is isomorphic to the Whitney sum $T(CP^{2k-1})|_{f(B)} \oplus 1$.

Lemma 7. As a real vector bundle, \hat{E} is isomorphic to the bundle $T(B) \oplus 2$.

Consequently, we obtain that

$$T(B) \oplus T(B) \oplus 4 \cong (T(CP^{2k-1})|_{f(B)} \oplus 1)_{\mathbf{R}}.$$

Since the cohomology groups $H^*(B; \mathbb{Z})$ has no torsion element, by the product formula of Pontrjagin classes, we obtain the following.

Proposition 8. The Pontrjagin classes of the smooth manifold B is equal to that of $\mathbb{C}P^{k-1}$, for any k.

234

§ 3. Z_2 -invariants and proof of Theorem

Let $\mathscr{S}(CP^{k-1})$ denote the set of *PL*-homeomorphism classes of closed *PL*-manifolds homotopy equivalent to CP^{k-1} . The following results are due to Sullivan (cf. [4, § 14C]).

Proposition 9. Suppose that k>3. For any $N \in \mathscr{S}(CP^{k-1})$, there are invariants $s_{4i+2}(N) \in \mathbb{Z}_2$ and $s_{4j}(N) \in \mathbb{Z}$, for all integers *i*, *j* satisfying $6 \le 4i+2<2(k-1)$, $4 \le 4j < 2(k-1)$. The invariants define a bijection of $\mathscr{S}(CP^{k-1})$ with

$$(\bigoplus_i Z_2) \oplus (\bigoplus_j Z).$$

The invariants s_{4j} satisfy the following relations.

Proposition 10. If all the Pontrjagin classes of N in $\mathscr{G}(CP^{k-1})$ coincide with that of CP^{k-1} , then $s_{44}(N) = 0$ for all j.

Concerning Z_2 -invariants s_{4i+2} , the following holds. Let $\mathscr{S}(RP^{2k-1})$ denote the set of *PL*-homeomorphism classes of closed *PL*-manifolds homotopy equivalent to RP^{2k-1} . This set is known to be equal to the isomorphism classes of homotopy triangulations of RP^{2k-1} . Any $N \in \mathscr{S}(CP^{k-1})$ is the base manifold of a *PL* free S¹-action on S^{2k-1}. By restricting the action to $Z_2 = S^0 \subset S^1$, we obtain a manifold homotopy equivalent to RP^{2k-1} . This defines a map

$$\pi^{b}:\mathscr{G}(CP^{k-1})\longrightarrow\mathscr{G}(RP^{2k-1}).$$

The following holds ([4, § 14D.3]).

Proposition 11. Let N be an element in $\mathscr{S}(CP^{k-1})$ such that $\pi^{b}(N)$ is PL-homeomorphic to RP^{2k-1} . Then

$$s_{4i+2}(N)=0,$$

for all i.

Now let $B \in \mathscr{S}(CP^{k-1})$ be the base manifold of the fibration of S^{2k-1} by great circles. Then, obviously, the image $\pi^{b}(B) \in \mathscr{S}(RP^{2k-1})$ is *PL*-homeomorphic to RP^{2k-1} .

Combining the result of Section 2 with Propositions, we obtain;

Proposition 12. The base manifold B of a fibration of S^{2k-1} by great circles is PL-homeomorphic to CP^{k-1} if $k \neq 3$.

Now let us prove Theorem. Since the integral cohomology ring of

M is equal to that of CP^k , *M* is simply connected ([2, 7.23]). Thus *M* is homotopy equivalent to CP^k . By Allamigeon's theorem, we know that *M* is *PL*-homeomorphic to the union of the disc D^{2k} with the D^2 -bundle associated with the fibration of S^{2k-1} by great circles. We write *B* for the base manifold of the fibration. If k=3, by Proposition 9, *M* is *PL*homeomorphic to CP^3 if and only if $s_4(M)=0$. The invariant $s_4(M)$ is calculated from the first Pontrjagin class $p_1(B)$ of *B*. By Proposition 8 of Section 2, $p_1(B)$ is equal to $p_1(CP^2)$. Thus we have $s_4(M)=0$ and *M* is *PL*-homeomorphic to CP^3 . Now suppose that $k\neq 3$. According to Proposition 12, *B* is *PL*-homeomorphic to CP^{k-1} . The Euler class of the S¹-bundle is equal to a generator of $H^2(CP^{k-1}; Z)=Z$. Thus the total space of the D^2 -bundle is *PL*-homeomorphic to the tubular neighborhood of CP^{k-1} in CP^k . Any orientation preserving *PL*-homeomorphism of S^{2k-1} is isotopic to the identity. The attached manifold *M* is *PL*homeomorphic to CP^k , which completes the proof of Theorem.

§ 4. Appendix

If $\pi: S^{2k-1} \to B$ is a fibration by great circles, we get the embedding $\theta: B \to G(2k, 2)$. Since the planes $\theta(b)$ for all $b \in B$ give a foliation of S^{2k-1} , we have the following property.

(*) For two different points b and b' in B, the planes $\theta(b)$ and $\theta(b')$ are transverse.

The converse holds.

Lemma 13. Let $\pi: S^{2k-1} \rightarrow B$ be a principal S¹-bundle induced from the S¹-bundle $\lambda: W(2k, 2) \rightarrow G(2k, 2)$ by a smooth embedding $\theta: B \rightarrow G(2k, 2)$. Suppose that, for any different points b and b' in B, the planes $\theta(b)$ and $\theta(b')$ are transversal. Then the bundle π is a fibration of S^{2k-1} by great circles.

Proof. Consider the union $\bigcup_{b} (\theta(b) \cap S^{2k-1})$. Then it covers S^{2k-1} and gives a fibration by great circles.

Now we consider the case where k=2. For the following discussion, see [2, p. 55]. Let $\Lambda^2 \mathbf{R}^4$ denote the space of skew-symmetric 2-tensors. The Grassmann manifold G(4, 2) is naturally identified with the set of decomposable elements of norm one in $\Lambda^2 \mathbf{R}^4$. We have the Hodge operator * from $\Lambda^2 \mathbf{R}^4$ onto itself. The space $\Lambda^2 \mathbf{R}^4$ is decomposed to two orthogonal subsets E_1 and E_{-1} associated to the eigenvalue 1 and -1 of *. let S_1^2 and S_{-1}^2 be the sphere in E_1 and E_{-1} of radius $1/\sqrt{2}$. Then G(4, 2)is equal to the product $S_1^2 \times S_{-1}^2$. Define a bilinear map $\zeta \colon \Lambda^2 \mathbf{R}^4 \times \Lambda^2 \mathbf{R}^4 \to \mathbf{R}$ by $\zeta(a, b) = ||a_A b||$, where || || is the norm on $\Lambda^2 \mathbf{R}^4 \cong \mathbf{R}$. Two planes P_1 and P_2 in G(4, 2) are transversal if and only if $\zeta(P_1, P_2) = 0$. Represent P_1 and P_2 by (x_1, x_2) and (y_1, y_2) , where $x_1, y_1 \in S_1^2$ and $x_2, y_2 \in S_{-1}^2$. Then we have

$$\zeta(P_1, P_2) = \langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle,$$

where $\langle \rangle$ is the inner product of the vector space E_1 or E_{-1} .

For a smooth map $\theta: S^2 \to G(4, 2)$, we define a smooth function $Z(\theta)$ on S^2 by $Z(\theta)(x) = \zeta(\theta(x), \theta(x'))$, by fixing x' in S^2 . Thus the principal S^1 -bundle $\pi: S^3 \to S^2$ induced by an embedding $\theta: S^2 \to G(4, 2)$ is a fibration by great circles if $Z(\theta)(x) = 0$ only when x = x'. Obviously $Z(\theta)(x) = 0$ at x = x'. We have;

Lemma 14. For a smooth map $\theta: S^2 \rightarrow G(4, 2)$, the function $Z(\theta)$, for fixed $x' \in S^2$, is critical at x = x'.

Proof. Fix P_2 in G(4, 2). The function $\zeta(P_1, P_2)$ on G(4, 2) is critical at $P_1 = P_2$. Thus $Z(\theta)$ is also critical at x = x'.

Now consider the Hopf fibration $\pi_0: S^3 \to S^2$. The associated map $\theta_0: S^2 \to G(4, 2) = S_1^2 \times S_{-1}^2$ is given by $\theta_0(x) = (1/\sqrt{2}x, \alpha_0)$, where $\alpha_0 = (1/\sqrt{2}, 0, 0)$. For two points $x = (x_1, x_2, x_3)$ and $x' = (x'_1, x'_2, x'_3)$ in S^2 , we have

$$\zeta(\theta_0(x), \theta_0(x')) = \langle x, x' \rangle - 1/2 = -1/2 \sum (x_i - x'_i)^2.$$

Thus the function $Z(\theta_0)$ is critical if and only if x = x'. The symmetric matrix $(\partial^2 Z(\theta_0)/\partial x_t \partial x_t)$ is positive definite.

Let $\text{Emb}(S^2, G(4, 2))$ denote the set of smooth embeddings of S^2 in G(4, 2) with C^2 -topology. Since S^2 is compact, we obtain the following.

Proposition 15. There exists a neighborhood U of θ_0 in Emb(S², G(4, 2)) such that the function $Z(\theta)(x, x') = \zeta(\theta(x), \theta(x'))$ is equal to zero if and only if x = x', for any $x, x' \in S^2$ and $\theta \in U$.

Corollary 16. In each direction in $\text{Emb}(S^2, G(4, 2))$, there is a deformation of fibrations of S^3 by great circles starting from the Hopf fibration.

The group of diffeomorphisms of S^2 , denoted by Diff S^2 , acts naturally on Emb(S^2 , G(4, 2)). We denote by Diff $S^2 \setminus \text{Emb}(S^2, G(4, 2))$ the quotient space. Let $\pi: S^3 \rightarrow B$ be a fibration of S^3 by great circles. The *B* is diffeomorphic to S^2 . Thus we have the class $\{\theta\}$ in Diff $S^2 \setminus \text{Emb}(S^2, G(4, 2))$.

Let π_1 and π_2 be two fibrations of S^3 by great circles, and let $\{\theta_1\}, \{\theta_2\} \in \text{Diff } S^2 \setminus \text{Emb}(S^2, G(4, 2))$ be the associated classes. We say that π_1 and π_2 are isometric if there exists a bundle map F from π_1 to π_2 such that F is an isometry of S^3 onto itself.

The group O(4) acts naturally on G(4, 2) and on Diff $S^2 \setminus \text{Emb}(S^2, G(4, 2))$. We denote by Diff $S^2 \setminus \text{Emb}(S^2, G(4, 2)) / O(4)$ the quotient space.

Proposition 17. Two fibrations π_1 and π_2 of S^3 by great circles are isometric if and only if the classes $\{\theta_1\}$ and $\{\theta_2\}$ in Diff $S^2 \setminus \text{Emb}(S^2, G(4, 2)) / O(4)$ are equal.

Remark that we can choose the neighborhood U in Proposition 15 such that U is invariant by the actions of Diff S^2 and O(4). The space Diff $S^2 \setminus U/O(4)$ is of infinite "dimension".

References

- [1] A. Allamigeon, Propriété globales des espaces de Riemann harmoniques, Ann. Inst. Fourier, 15 (1965), 91-132.
- [2] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 93 (1978), Springer.
- [3] H. Sato, On the manifolds of periodic geodesics, this volume.
- [4] C. T. C. Wall, Surgery on compact manifolds, Academic press (1970), London.

Department of Mathematics Tôhoku University Sendai 980 Japan