On Topological Blaschke Conjecture I

Cohomological Complex Projective Spaces

Hajime Sato

By a Blaschke manifold, we mean a Riemannian manifold (M, g) such that, for any point $m \in M$, the tangential cut locus C_{m} of m in $T_{m} M$ is isometric to the sphere of constant radius. There are some equivalent definitions (see Besse [2, 5.43]). The Blaschke conjecture is that any Blaschke manifold is isometric to a compact rank one symmetric space. If the integral cohomology ring of M is equal to the sphere S^{k}, or the real projective space $R P^{k}$, this conjecture is proved by Berger with other mathematicians [2, Appendix D]). We consider the case where the cohomology ring of M is equal to that of the complex projective space $C P^{k}$.

We obtain the following theorem.
Theorem. Let (M, g) be a $2 k$-dimensional Blaschke manifold such that the integral cohomology ring is equal to that of $C P^{k}$. Then M is $P L$-homeomorphic to $C P^{k}$ for any k.

Blaschke manifolds with other cohomology rings will be treated in subsequent papers.

If (M, g) is a Blaschke manifold and $m \in M$, Allamigeon [1] has shown that the cut locus $C(m)$ of m in M is the base manifold of a fibration of the tangential cut locus C_{m} by great spheres. We study the base manifold of such fibration by great circles. We apply the Browder-Novikov-Sullivan's theory in the classification of homotopy equivalent manifolds (see Wall [4]). Calculation of normal invariants gives our theorem. In Appendix, we give examples of non-trivial fibrations of S^{3} by great circles. The author thanks to T. Mizutani and K. Masuda for the discussion of results in Appendix.

Detailed proof will appear elsewhere.

§ 1. Projectable bundles

In the paper [3], we have obtained a method of a calculation of the
tangent bundle of the base space of an S^{1}-principal bundle. We will briefly recall that.

Let X be a smooth manifold and let $\pi: L \rightarrow X$ be the projection of an S^{1}-principal bundle.

Definition. A vector bundle $p: E \rightarrow L$ over L is projectable onto X, if there exists a vector bundle $\hat{p}: \hat{E} \rightarrow X$ over X such that $\pi^{*} \hat{E}=E$. The map π induces the bundle map $\pi_{!}: E \rightarrow \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X. For any $a, b \in \pi^{-1}(x)=S^{1}$, we have a linear isomorphism

$$
\Phi_{a b}: p^{-1}(a) \longrightarrow p^{-1}(b)
$$

of vector spaces defined by $\Phi_{a b}(u)=v$, where $\pi_{!}(u)=\pi_{!}(v)$. Then we have, for $a, b, c \in \pi^{-1}(x)$,

$$
\begin{equation*}
\Phi_{b c} \Phi_{a b}=\Phi_{a c} . \tag{1}
\end{equation*}
$$

Let $\pi^{*} L=\{(a, b) \in L \times L, \pi(a)=\pi(b)\}$ be the induced S^{1}-bundle over L from L. We have two projections $\pi_{1}, \pi_{2}: \pi^{*} L \rightarrow L$ defined by $\pi_{1}(a, b)=a$ and $\pi_{2}(a, b)=b$. Let $\pi_{i}^{*} E(i=1,2)$ be the induced vector bundle. The map $\Phi: \pi^{*} L \rightarrow \mathrm{Iso}\left(\pi_{1}{ }^{*} E, \pi_{2}{ }^{*} E\right)$ defined by $\Phi(a, b)=\Phi_{a b}$ is a continuous cross section of the bundle Iso $\left(\pi_{1}{ }^{*} E, \pi_{2}{ }^{*} E\right)$ over $\pi^{*} L$.

We call Φ the projecting isomorphism associated with the projectable bundle E.

Proposition 1. Suppose given a vector bundle E over L and a cross section Φ of the bundle $\operatorname{Iso}\left(\pi_{1}^{*} E, \pi_{2}^{*} E\right)$ satisfying (1). Then we have a vector bundle \hat{E} over X such that $\pi^{*} \hat{E}=E$ and the projecting isomorphism is equal to Φ.

Now let $T L$ and $T X$ be the tangent bundles of L and X respectively. Let $\rho: S^{1} \times L \rightarrow L$ be the free S^{1}-action. For each $t \in S^{1}$, the diffeomorphism $\rho(t)=\rho(t, \cdot)$ induces a bundle isomorphism $\rho(t)_{*}: T L \rightarrow T L$.

Proposition 2. The collection $\bigcup_{t \in S^{1}} \rho(t)_{*}$ induces a projecting isomorphism on the bundle $T L$ such that the projected bundle $T L$ is isomorphic to $T X \oplus 1$.

Proof. Choose a bundle metric on $T L$. Let $T L_{1}$ be the subbundle of $T L$ consisting of tangent vectors normal to the S^{1}-action. Then $T L_{1}$ is projected to $T X$. The line bundle tangent to the S^{1}-action is projected to the trivial line bundle on X.

§ 2. Pontrjagin classes

Let $S^{2 k-1}$ be the unit sphere in $R^{2 k}$ and let $\pi: S^{2 k-1} \rightarrow B$ be a fibration of $S^{2 k-1}$ by great circles. Thus, for each $b \in B, \pi^{-1}(b)$ is the intersection of $S^{2 k-1}$ with a 2-plane in $R^{2 k}$. We write the 2-plane by $P(b)$. Let $\rho: S^{1} \times$ $S^{2 k-1} \rightarrow S^{2 k-1}$ denote the free S^{1}-action.

Let $V(2 k, 2)$ and $G(2 k, 2)$, respectively, be the Stiefel and the Grassmann manifold consisting of orthogonal 2 frames or oriented 2-planes in $R^{2 k}$. Then the natural mapping $\lambda: V(2 k, 2) \rightarrow G(2 k, 2)$ defines a principal S^{1}-bundle.

The mapping $\theta: B \rightarrow G(2 k, 2)$ defined by $\theta(b)=P(b)$ is a smooth embedding. Let $\theta^{*}(\lambda)$ denote the induced bundle of λ by θ. Since π is also the induced bundle of λ by θ, there exists a natural bundle isomorphism between π and $\theta^{*}(\lambda)$ inducing the identity on B. Thus we obtain;

Lemma 3. We may suppose that the free S^{1}-action ρ on $S^{2 k-1}$ is equal to the restriction on $\pi^{-1}(b)$ of the linear action on $P(b)$ for every $b \in B$.

In the following, we always assume that ρ is the linear action on each fibre. For each $x \in S^{2 k-1}$, let $K x$ denote the point $\rho(1 / 4) x$ in $S^{2 k-1}$, where we identify S^{1} with $[0,1] /[0] \sim[1]$. Define a mapping $\tilde{\theta}: S^{2 k-1} \rightarrow V(2 k, 2)$ by $\tilde{\theta}(x)=(x,-K x)$. This is a smooth embedding and is a bundle map inducing θ on the base manifolds. For an orthogonal 2-frame $w=(x, y)$, let $\tilde{\psi}(w)$ denote the vector $(x / \sqrt{2}, y / \sqrt{2})$ in $\boldsymbol{R}^{2 k} \oplus \boldsymbol{R}^{2 k}$. Then the map $\tilde{\psi}: V(2 k, 2) \rightarrow \boldsymbol{R}^{4 k}$ is a smooth embedding of $V(2 k, 2)$ in $S^{4 k-1} \subset \boldsymbol{R}^{4 k}$. We identify $\boldsymbol{R}^{2 k} \oplus \boldsymbol{R}^{2 k}$ with $\boldsymbol{C}^{2 k}$ such that the first summand $\boldsymbol{R}^{2 k}$ is the real part and the second pure imaginary. On $C^{2 k}-0$, we have the free action ρ_{0} of S^{1} as the multiplication by the complex number of norm one. Then $\tilde{\psi}$ is S^{1}-equivariant and we write by ψ the induced map $\psi: G(2 k, 2) \rightarrow C P^{2 k-1}$.

Let $\tilde{f}: S^{2 k-1} \rightarrow S^{4 k-1}$ be the composition $\tilde{f}=\tilde{\psi} \tilde{\theta}$ and $f=\psi \theta: B \rightarrow C^{2 k-1}$. The map \tilde{f} is given by $\tilde{f}(x)=(x / \sqrt{2},-K x / \sqrt{2})$ for $x \in S^{2 k-1}$.

We define a map $\widetilde{F}: R^{2 k}-0 \rightarrow C^{2 k}-0$ by $\tilde{F}(t x)=t \tilde{f}(x)$ for $t>0$ and $x \in S^{2 k-1}$. The map \widetilde{F} is a smooth embedding. Let E denote the restriction of the tangent bundle $T\left(R^{2 k}-0\right)$ of $R^{2 k}-0$ on $S^{2 k-1}$, and we write p for the projection $E \rightarrow S^{2 k-1}$. Then \tilde{F} induces an injective bundle map $\widetilde{F}_{*}:\left.E \rightarrow \widetilde{F}_{*}(E) \subset T\left(C^{2 k}-0\right)\right|_{\tilde{F}\left(S^{2 k-1}\right)}$.

Now define a map $\widetilde{G}: R^{2 k}-0 \rightarrow C^{2 k}-0$ by $\tilde{G}(t X)=(t x / \sqrt{2}, t K / \sqrt{2})$ for $t>0$ and $x \in S^{2 k-1}$. Then \widetilde{G} is also an embedding and \widetilde{G} induces an injective bundle map

$$
\widetilde{G}_{*}:\left.E \longrightarrow \widetilde{G}_{*}(E) \subset T\left(C^{2 k-0}-0\right)\right|_{\tilde{\sigma}(S 2 k-1)} .
$$

If $\bar{\rho}_{0}$ denote the conjugate action of S^{1} on $C^{2 k}-0$. Then G is S^{1}-equi-
variant concerning to this conjugate action.
For any $y \in C^{2 k}$, we naturally identify the tangent space $T_{y} C^{2 k}$ with $C^{2 k}$ itself. For $x \in S^{2 k-1}$, let E_{x} denote the fiber $p^{-1}(x)$. Then $\tilde{F}_{*}\left(E_{x}\right)$ and $\widetilde{G}_{*}\left(E_{x}\right)$ are subvector spaces of $C^{2 k}$.

Since $K: S^{2 k-1} \rightarrow S^{2 k-1}$ is a diffeomorphism, we obtain;
Lemma 4. The vector spaces $\tilde{F}_{*}\left(E_{x}\right)$ and $\widetilde{G}_{*}\left(E_{x}\right)$ are transversal. Thus they span $C^{2 k}$.

Let T denote the restriction of the tangent bundle $T\left(C^{2 k}\right)$ on $\tilde{F}\left(S^{2 k-1}\right)$. Then we have the direct sum decomposition by trivial vector bundles

$$
T=\widetilde{F}_{*}(E) \oplus \widetilde{G}_{*}(E)
$$

Notice that $\widetilde{G}_{*}(E)$ on $\widetilde{G}\left(S^{2 k-1}\right)$ is identified with the conjugate $\overline{\widetilde{F}_{*}(E)}$ in T over $\tilde{F}\left(S^{2 k-1}\right)$.

For any $t \in S^{1}$, we have the induced bundle isomorphisms $\rho_{*}(t): E \rightarrow$ E and $\rho_{0 *}(t): T \rightarrow T$.

Lemma 5. The isomorphism $\rho_{0 *}(t)$ is equal to the direct sum

$$
\rho_{*}(t)+\rho_{*}(t)
$$

By Proposition 1, we obtain that the projected bundle \hat{T}, defined by the projecting isomorphism $\rho_{*}(t)$, is isomorphic to the Whitney sum;

$$
\hat{T} \cong \hat{E} \oplus \hat{E}
$$

On the other hand, by Proposition 2, we obtain the following.
Lemma 6. The bundle \hat{T} has the complex structure. As a complex vector bundle, \hat{T} is isomorphic to the Whitney sum $\left.T\left(C P^{2 k-1}\right)\right|_{f(B)} \oplus 1$.

Lemma 7. As a real vector bundle, \hat{E} is isomorphic to the bundle $T(B) \oplus 2$.

Consequently, we obtain that

$$
T(B) \oplus T(B) \oplus 4 \cong\left(\left.T\left(C P^{2 k-1}\right)\right|_{f(B)} \oplus 1\right)_{R}
$$

Since the cohomology groups $H^{*}(B ; Z)$ has no torsion element, by the product formula of Pontrjagin classes, we obtain the following.

Proposition 8. The Pontrjagin classes of the smooth manifold B is equal to that of $C P^{k-1}$, for any k.

§ 3. \boldsymbol{Z}_{2}-invariants and proof of Theorem

Let $\mathscr{S}\left(C P^{k-1}\right)$ denote the set of $P L$-homeomorphism classes of closed $P L$-manifolds homotopy equivalent to $C P^{k-1}$. The following results are due to Sullivan (cf. [4, § 14C]).

Proposition 9. Suppose that $k>3$. For any $N \in \mathscr{S}\left(C P^{k-1}\right)$, there are invariants $s_{4 i+2}(N) \in Z_{2}$ and $s_{4 j}(N) \in Z$, for all integers i, j satisfying $6 \leq$ $4 i+2<2(k-1), 4 \leq 4 j<2(k-1)$. The invariants define a bijection of $\mathscr{S}\left(C P^{k-1}\right)$ with

$$
\left(\oplus_{i} \boldsymbol{Z}_{2}\right) \oplus\left(\oplus_{j} \boldsymbol{Z}\right) .
$$

The invariants $s_{4 j}$ satisfy the following relations.
Proposition 10. If all the Pontrjagin classes of N in $\mathscr{S}\left(C P^{k-1}\right)$ coincide with that of $C P^{k-1}$, then $S_{4 j}(N)=0$ for all j.

Concerning Z_{2}-invariants $S_{4 i+2}$, the following holds. Let $\mathscr{S}\left(R P^{2 k-1}\right)$ denote the set of $P L$-homeomorphism classes of closed $P L$-manifolds homotopy equivalent to $R P^{2 k-1}$. This set is known to be equal to the isomorphism classes of homotopy triangulations of $R P^{2 k-1}$. Any $N \in$ $\mathscr{S}\left(C P^{k-1}\right)$ is the base manifold of a $P L$ free S^{1}-action on $S^{2 k-1}$. By restricting the action to $Z_{2}=S^{0} \subset S^{1}$, we obtain a manifold homotopy equivalent to $R P^{2 k-1}$. This defines a map

$$
\pi^{b}: \mathscr{S}\left(C P^{k-1}\right) \longrightarrow \mathscr{S}\left(R P^{2 k-1}\right)
$$

The following holds ([4, § 14D.3]).
Proposition 11. Let N be an element in $\mathscr{S}\left(C P^{k-1}\right)$ such that $\pi^{b}(N)$ is PL-homeomorphic to $R P^{2 k-1}$. Then

$$
S_{4 i+2}(N)=0
$$

for all i.
Now let $B \in \mathscr{S}\left(C P^{k-1}\right)$ be the base manifold of the fibration of $S^{2 k-1}$ by great circles. Then, obviously, the image $\pi^{b}(B) \in \mathscr{S}\left(R P^{2 k-1}\right)$ is $P L$ homeomorphic to $R P^{2 k-1}$.

Combining the result of Section 2 with Propositions, we obtain;
Proposition 12. The base manifold B of a fibration of $S^{2 k-1}$ by great circles is $P L$-homeomorphic to $C P^{k-1}$ if $k \neq 3$.

Now let us prove Theorem. Since the integral cohomology ring of
M is equal to that of $C P^{k}, M$ is simply connected ([2, 7.23]). Thus M is homotopy equivalent to $C P^{k}$. By Allamigeon's theorem, we know that M is $P L$-homeomorphic to the union of the disc $D^{2 k}$ with the D^{2}-bundle associated with the fibration of $S^{2 k-1}$ by great circles. We write B for the base manifold of the fibration. If $k=3$, by Proposition $9, M$ is $P L-$ homeomorphic to $C P^{3}$ if and only if $s_{4}(M)=0$. The invariant $s_{4}(M)$ is calculated from the first Pontrjagin class $p_{1}(B)$ of B. By Proposition 8 of Section 2, $p_{1}(B)$ is equal to $p_{1}\left(C P^{2}\right)$. Thus we have $s_{4}(M)=0$ and M is $P L$-homeomorphic to $C P^{3}$. Now suppose that $k \neq 3$. According to Proposition 12, B is $P L$-homeomorphic to $C P^{k-1}$. The Euler class of the S^{1}-bundle is equal to a generator of $H^{2}\left(C P^{k-1} ; Z\right)=Z$. Thus the total space of the D^{2}-bundle is $P L$-homeomorphic to the tubular neighborhood of $C P^{k-1}$ in $C P^{k}$. Any orientation preserving $P L$-homeomorphism of $S^{2 k-1}$ is isotopic to the identity. The attached manifold M is $P L-$ homeomorphic to $C P^{k}$, which completes the proof of Theorem.

§ 4. Appendix

If $\pi: S^{2 k-1} \rightarrow B$ is a fibration by great circles, we get the embedding $\theta: B \rightarrow G(2 k, 2)$. Since the planes $\theta(b)$ for all $b \in B$ give a foliation of $S^{2 k-1}$, we have the following property.
$\left(^{*}\right)$ For two different points b and b^{\prime} in B, the planes $\theta(b)$ and $\theta\left(b^{\prime}\right)$ are transverse.

The converse holds.
Lemma 13. Let $\pi: S^{2 k-1} \rightarrow B$ be a principal S^{1}-bundle induced from the S^{1}-bundle $\lambda: W(2 k, 2) \rightarrow G(2 k, 2)$ by a smooth embedding $\theta: B \rightarrow$ $G(2 k, 2)$. Suppose that, for any different points b and b^{\prime} in B, the planes $\theta(b)$ and $\theta\left(b^{\prime}\right)$ are transversal. Then the bundle π is a fibration of $S^{2 k-1}$ by great circles.

Proof. Consider the union $\bigcup_{b}\left(\theta(b) \cap S^{2 k-1}\right)$. Then it covers $S^{2 k-1}$ and gives a fibration by great circles.

Now we consider the case where $k=2$. For the following discussion, see [2, p. 55]. Let $\Lambda^{2} \boldsymbol{R}^{4}$ denote the space of skew-symmetric 2-tensors. The Grassmann manifold $G(4,2)$ is naturally identified with the set of decomposable elements of norm one in $\Lambda^{2} \boldsymbol{R}^{4}$. We have the Hodge operator ${ }^{*}$ from $\Lambda^{2} \boldsymbol{R}^{4}$ onto itself. The space $\Lambda^{2} \boldsymbol{R}^{4}$ is decomposed to two orthogonal subsets E_{1} and E_{-1} associated to the eigenvalue 1 and -1 of *. let S_{1}^{2} and S_{-1}^{2} be the sphere in E_{1} and E_{-1} of radius $1 / \sqrt{2}$. Then $G(4,2)$ is equal to the product $S_{1}^{2} \times S_{-1}^{2}$. Define a bilinear map $\zeta: \Lambda^{2} \boldsymbol{R}^{4} \times \Lambda^{2} \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}$ by $\zeta(a, b)=\left\|a_{A} b\right\|$, where $\left\|\|\right.$ is the norm on $\Lambda^{2} \boldsymbol{R}^{4} \cong \boldsymbol{R}$. Two planes P_{1} and P_{2} in $G(4,2)$ are transversal if and only if $\zeta\left(P_{1}, P_{2}\right)=0$. Represent P_{1} and
P_{2} by $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$, where $x_{1}, y_{1} \in S_{1}^{2}$ and $x_{2}, y_{2} \in S_{-1}^{2}$. Then we have

$$
\zeta\left(P_{1}, P_{2}\right)=\left\langle x_{1}, y_{1}\right\rangle-\left\langle x_{2}, y_{2}\right\rangle
$$

where $\left\rangle\right.$ is the inner product of the vector space E_{1} or E_{-1}.
For a smooth map $\theta: S^{2} \rightarrow G(4,2)$, we define a smooth function $Z(\theta)$ on S^{2} by $Z(\theta)(x)=\zeta\left(\theta(x), \theta\left(x^{\prime}\right)\right)$, by fixing x^{\prime} in S^{2}. Thus the principal S^{1}-bundle $\pi: S^{3} \rightarrow S^{2}$ induced by an embedding $\theta: S^{2} \rightarrow G(4,2)$ is a fibration by great circles if $Z(\theta)(x)=0$ only when $x=x^{\prime}$. Obviously $Z(\theta)(x)=0$ at $x=x^{\prime}$. We have;

Lemma 14. For a smooth map $\theta: S^{2} \rightarrow G(4,2)$, the function $Z(\theta)$, for fixed $x^{\prime} \in S^{2}$, is critical at $x=x^{\prime}$.

Proof. Fix P_{2} in $G(4,2)$. The function $\zeta\left(P_{1}, P_{2}\right)$ on $G(4,2)$ is critical at $P_{1}=P_{2}$. Thus $Z(\theta)$ is also critical at $x=x^{\prime}$.

Now consider the Hopf fibration $\pi_{0}: S^{3} \rightarrow S^{2}$. The associated map $\theta_{0}: S^{2} \rightarrow G(4,2)=S_{1}^{2} \times S_{-1}^{2}$ is given by $\theta_{0}(x)=\left(1 / \sqrt{2} x, \alpha_{0}\right)$, where $\alpha_{0}=$ $(1 / \sqrt{2}, 0,0)$. For two points $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ in S^{2}, we have

$$
\zeta\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)=\left\langle x, x^{\prime}\right\rangle-1 / 2=-1 / 2 \sum\left(x_{i}-x_{i}^{\prime}\right)^{2} .
$$

Thus the function $Z\left(\theta_{0}\right)$ is critical if and only if $x=x^{\prime}$. The symmetric matrix $\left(\partial^{2} Z\left(\theta_{0}\right) / \partial x_{i} \partial x_{j}\right)$ is positive definite.

Let $\operatorname{Emb}\left(S^{2}, G(4,2)\right)$ denote the set of smooth embeddings of S^{2} in $G(4,2)$ with C^{2}-topology. Since S^{2} is compact, we obtain the following.

Proposition 15. There exists a neighborhood U of θ_{0} in $\operatorname{Emb}\left(S^{2}\right.$, $G(4,2))$ such that the function $Z(\theta)\left(x, x^{\prime}\right)=\zeta\left(\theta(x), \theta\left(x^{\prime}\right)\right)$ is equal to zero if and only if $x=x^{\prime}$, for any $x, x^{\prime} \in S^{2}$ and $\theta \in U$.

Corollary 16. In each direction in $\operatorname{Emb}\left(S^{2}, G(4,2)\right)$, there is a deformation of fibrations of S^{3} by great circles starting from the Hopf fibration.

The group of diffeomorphisms of S^{2}, denoted by Diff S^{2}, acts naturally on $\operatorname{Emb}\left(S^{2}, G(4,2)\right)$. We denote by $\operatorname{Diff} S^{2} \backslash \operatorname{Emb}\left(S^{2}, G(4,2)\right)$ the quotient space. Let $\pi: S^{3} \rightarrow B$ be a fibration of S^{3} by great circles. The B is diffeomorphic to S^{2}. Thus we have the class $\{\theta\}$ in Diff $S^{2} \backslash$ $\operatorname{Emb}\left(S^{2}, G(4,2)\right)$.

Let π_{1} and π_{2} be two fibrations of S^{3} by great circles, and let $\left\{\theta_{1}\right\},\left\{\theta_{2}\right\}$ $\in \operatorname{Diff} S^{2} \backslash \operatorname{Emb}\left(S^{2}, G(4,2)\right)$ be the associated classes. We say that π_{1} and π_{2} are isometric if there exists a bundle map F from π_{1} to π_{2} such that F is an isometry of S^{3} onto itself.

The group $O(4)$ acts naturally on $G(4,2))$ and on $\operatorname{Diff} S^{2} \backslash \operatorname{Emb}\left(S^{2}\right.$, $G(4,2)$). We denote by $\operatorname{Diff} S^{2} \backslash \operatorname{Emb}\left(S^{2}, G(4,2)\right) / O(4)$ the quotient space.

Proposition 17. Two fibrations π_{1} and π_{2} of S^{3} by great circles are isometric if and only if the classes $\left\{\theta_{1}\right\}$ and $\left\{\theta_{2}\right\}$ in $\operatorname{Diff} S^{2} \backslash \operatorname{Emb}\left(S^{2}, G(4,2)\right) /$ $O(4)$ are equal.

Remark that we can choose the neighborhood U in Proposition 15 such that U is invariant by the actions of Diff S^{2} and $O(4)$. The space Diff $S^{2} \backslash U / O(4)$ is of infinite "dimension".

References

[1] A. Allamigeon, Propriété globales des espaces de Riemann harmoniques, Ann. Inst. Fourier, 15 (1965), 91-132.
[2] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 93 (1978), Springer.
[3] H. Sato, On the manifolds of periodic geodesics, this volume.
[4] C. T. C. Wall, Surgery on compact manifolds, Academic press (1970), London.

Department of Mathematics
Tôhoku University
Sendai 980
Japan

