Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 213-230

On the Manifolds of Periodic Geodesics

Hajime Sato

Let S^n be the *n*-dimensional sphere with a Riemannian metric *g*. If all geodesics are periodic with the same period *l*, we say that the Riemannian manifold (S^n, g) is a C_i -manifold, or *g* is a C_i -metric on S^n . (For detail see Besse [2]). Let g_0 be the canonical metric of S^n . Then (S^n, g_0) is a $C_{2\pi}$ -manifold. There are some examples of C_i -metric on S^n (Zoll [10], Weinstein [2], Guillemin [5]) other than the canonical metric. These examples are all obtained from deformations of g_0 in the space of C_i -metrics.

Let $T_1(S^n, g) = T_1(S^n)$ denote the tangent sphere bundle of radius 1 of a C_l -manifold (S^n, g) . Then the geodesic flow induces a free S^1 -action on T_1S^n . Since the geodesic flow vector field is a contact vector field on T_1S^n , the quotient space T_1S^n/S^1 is a (2n-2)-dimensional symplectic manifold. We call T_1S^n/S^1 the manifold of geodesics and denote by Geod (S^n, g) . The manifold Geod (S_n, g_0) is symplectically diffeomorphic to the Kähler manifold Q^{n-1} , called hyperquadric and defined by the equation

$$Z_0^2 + Z_1^2 + \cdots + Z_n^2 = 0$$

in CP^n . Since every known example of C_i -manifold (S^n, g) is a deformation of (S^n, g_0) , the manifold of geodesics Geod (S^n, g) for such manifold is symplectically diffeomorphic to Q^{n-1} .

A result of Weinstein [7] says that, if Geod (S^n, g_1) and Geod (S^n, g_2) are symplectically diffeomorphic, then the eigenvalues of the Laplacian on two C_l -manifolds (S^n, g_1) and (S^n, g_2) are asymptotically similar.

Our problem is as follows. For any C_i -metric g on S^n , is Geod (S^n, g) diffeomorphic to Q^{n-1} ? In this paper we study the tangent bundle of Geod (S^n, g) and its characteristic classes.

Since $Sp(n-1, \mathbf{R})$ is homotopy equivalent to U(n-1), the symplectic manifold Geod (S^n, g) has the unique almost complex structure up to homotopy.

Let γ denote the complex line bundle associated to the S¹-principal

Received January 8, 1983. Revised May 18, 1983.

bundle $T_1S^n \rightarrow \text{Geod}(S^n, g)$. Recall the structure of the tangent bundle τ_{ι} of Geod $(S^n, g_0) = Q^{n-1}$. We have

$$\tau_0 \otimes \Upsilon \oplus \Upsilon \oplus \Upsilon \oplus \Upsilon^* = \varepsilon^{n+1}$$

where γ^* is the dual of γ and ε^{n+1} is the trivial (n+1)-dimensional complex vector bundle over Q^{n-1} . Let $g \in H^2(\text{Geod}(S^n, g); Z)$ be the class represented by the symplectic form. For the Chern class C_i of $\tau_0 \otimes \gamma$, we have

$$C_i(\tau_0 \otimes \tilde{\tau}) = \begin{cases} 0 & i: \text{ odd} \\ g^i & i: \text{ even.} \end{cases}$$

The characterictic class of Geod (S^n, g_0) is determined by this equation. The bundle $\Upsilon \oplus \Upsilon^*$ is isomorphic to $\Upsilon_R \otimes_R C$, where Υ_R denote the underlying real vector bundle of Υ .

By a stable class of a bundle η , we mean the Whitney sum of η with a trivial bundle of sufficient dimension. We write η^{st} for the stable class of η .

Our main result is as follows.

Theorem. Let (S^n, g) be a C_l -manifold and let τ be the tangent bundle of Geod (S^n, g) . Then there exists a real vector bundle ξ over Geod (S^n, g) such that

$$(\tau \otimes \widetilde{\tau})^{st} = \xi \bigotimes_R C.$$

Remark that there are many examples of free S^1 -action on T_1S^n , not coming from a geodesic vector field, such that the tangent bundle of the orbit space does not satisfy the relation in Theorem.

The cohomology ring $H^*(\text{Geod}(S^n, g); Z)$ is known to be isomorphic to $H^*(Q^{n-1}; Z)$ which has no torsion (Yang [9]).

Corollary 1. Every odd dimensional Chern class of the bundle $\tau \otimes \tilde{\tau}$ vanishes.

If $n \leq 4$, then the non-zero Chern class of $\tau \otimes \tilde{\tau}$ is only $C_2(\tau \otimes \tilde{\tau}) \in H^4(\text{Geod}(S^n, g); Z)$. The (n-1)-dimensional Chern class $C_{n-1}(\tau)$ of τ is representable by $C_2(\tau \otimes \tilde{\tau})$, which must be equal to the Euler class.

By identifying the isomorphic cohomology rings $H^*(\text{Geod}(S^n, g); Z)$ and $H^*(Q^{n-1}; Z)$, we have the following.

Corollary 2. If $n \le 4$, then the Chern classes of the manifold Geod (S^n, g) are equal to that of Geod (S^n, g_0) .

S. Sasao has shown the author the following result.

Proposition. Let M be a simply connected 6-dimensional closed manifold with cohomology ring $H^*(M; Z)$ isomorphic to $H^*(Q^3; Z)$. If the second Stiefel class $w_2(M) \neq 0$, then M is homotopy equivalent to Q^3 .

By using the Browder-Novikov's surgery technique, we obtain

Corollary 3. For any C_i -metric g on S^4 , the manifold Geod (S^4, g) is diffeomorphic to Q^3 .

For the proof of Theorem, we need an inverse of Thom isomorphism in *K*-theory, a global Jacobi equation written in terms of the horizontal lift of connections and a topological study of Sturm-Liouville equations by means of Morse theory.

We outline our argument. Detailed proof will appear elsewhere.

I. Topological Preliminaries

1. Projectable bundles

Let X be a smooth manifold and let $\pi: L \rightarrow X$ be the projection of an S¹-principal bundle.

Definition. A vector bundle $p: E \to L$ over L is projectable onto X, if there exists a vector bundle $\hat{P}: \hat{E} \to X$ over X such that $\pi^* \hat{E} = E$. The map π induces the bundle map $\pi_1: E \to \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X. For any $a, b \in \pi^{-1}(x) = S^1$, we have a linear isomorphism

 $\Phi_{ab}: p^{-1}(a) \longrightarrow p^{-1}(b)$

of vector spaces defined by $\Phi_{ab}(u) = v$, where $\pi_1(u) = \pi_1(v)$. Then we have, for $a, b, c \in \pi^{-1}(x)$,

(1)
$$\Phi_{bc} \Phi_{ab} = \Phi_{ac}.$$

Let $\pi^*L = \{(a, b) \in L \times L, \pi(a) = \pi(b)\}$ be the induced S^1 -bundle over L from L. We have two projections $\pi_1, \pi_2: \pi^*L \to L$ defined by $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$. Let π_i^*E (i=1, 2) be the induced vector bundle. The map $\Phi: \pi^*L \to \text{Iso}(\pi_1^*E, \pi_2^*E)$ defined by $\Phi(a, b) = \Phi_{ab}$ is a continuous cross section of the bundle Iso (π_1^*E, π_2^*E) over π^*L .

We call Φ the projecting isomorphism associated with the projectable bundle E. Given a cross section Φ satisfying (1) and a vector bundle E over L, we can regard E as a projectable bundle with Φ as the projecting isomorphism.

Assume that the vector bundle $p: E \to L$ is isomorphic to the trivial bundle. Then we may regard Φ_{ab} as an element of the general linear group GL. The bundle Iso (π_1^*E, π_2^*E) is isomorphic to the trivial bundle $GL \times \pi^*L$ over π^*L . The space π^*L is naturally homeomorphic to $S^1 \times L$. Let G be a subgroup of GL such that Φ_{ab} is contained in G for any $(a, b) \in \pi^*L$. Then Φ is a map from $S^1 \times L$ to G. Define a map $\tilde{\Phi}: L \to L \times \Omega G$ by $\tilde{\Phi}(a) = (a, \Phi(\cdot, a))$. We have the action of S^1 on L. On the loop space ΩG , the group S^1 acts by $(t\omega)(s) = \omega(t+s) \cdot \omega(t)^{-1}$, where $t, s \in S^1$, $\omega \in \Omega G$, and \cdot denote the composition of G. Thus we have the product action of S^1 on $L \times \Omega G$. Using (1), we can easily see that $\tilde{\Phi}$ is S^1 -equivariant. The factor space $L \times_{S^1} \Omega G$ is the total space of a fiber bundle over $X = L/S^1$. Thus $\tilde{\Phi}$ is a cross section of the bundle $L \times_{S^1} \Omega G$, i.e. $\tilde{\Phi} \in \Gamma(X, L \times_{S^1} \Omega G)$.

2. Homotopy theorem

Let Λ denote the complex line bundle over X associated to L and let X^{Λ} denote the Thom space of Λ . Let Vect (X^{Λ}) denote the set of isomorphism classes of vector bundles over X. Let $\Pi\Gamma(X, L \times_{S^1} \Omega G)$ denote the set of homotopy classes of $\Gamma(X, L \times_{S^1} \Omega G)$. By taking the homotopy classes of $\tilde{\Phi}$, we have the set map

$$\Phi \colon \operatorname{Vect} (X^{\scriptscriptstyle A}) \longrightarrow \Pi \Gamma(X, L \underset{S^1}{\times} \Omega G).$$

Now suppose that we are given an element f in $\Gamma(X, L \times_{s_1} \Omega G)$. Let E be a trivial bundle over L. Then we naturally obtain a projecting isomorphism Ψ_f of E which satisfy (1). We write $\Psi_f(E)$ for the projected bundle over X.

Proposition. If f_1, f_2 in $\Gamma(X, L \times_{S^1} \Omega G)$ are homotopic, then $\Psi_{f_1}(E)$ and $\Psi_{f_2}(E)$ are isomorphic vector bundles over X.

3. Stable case

Suppose that the dimension of the fiber of the trivial bundle E is sufficiently large. Let $G = GL(\mathbf{R}, \infty)$, $GL(\mathbf{C}, \infty)$ or $GL(\mathbf{H}, \infty)$. According to Bott [4], the space ΩG is homotopy equivalent to the space of minimal geodesics, on which S^1 acts trivially.

Proposition. The fiber bundle $L \times_{S^1} \Omega G$ is homotopy equivalent to the trivial bundle $X \times \Omega G$.

If $G = GL(C, \infty)$, then $\Gamma \Pi(X, L \times_{s1} \Omega G) = K(X)$. The map Φ in Section 2 may be regarded as a map

$$\Phi \colon \widetilde{K}(X^{\scriptscriptstyle A}) \longrightarrow K(X).$$

Let $\tau: K(X) \to \widetilde{K}(X^{A})$ be the Thom isomorphism defined by $\tau(x) = \lambda_{A}x$, where $\lambda_{A} \in \widetilde{K}(X^{A})$ is defined by the exterior algebra of Λ ([1]).

Proposition. The map Φ is the inverse of τ .

Corollary. For $f \in \Gamma(X, L \times_{s^1} \Omega GL(C, \infty))$,

$$\{\psi_f(E)\} = (1 - [\Lambda])\{f\} \in \widetilde{K}(X).$$

If $G = GL(\mathbf{R}, \infty)$, then the projected bundle is isomorphic to the complexification of a real vector bundle. Let $i: [X, \Omega GL(\mathbf{R}, \infty)] \rightarrow [X, \Omega GL(\mathbf{C}, \infty)]$ be the natural homomorphism.

Corollary. For any $\gamma \in K(X)$ represented by a line bundle over X, and for any $\varepsilon \in [X, \Omega GL(\mathbf{R}, \infty)]$, there exists a real vector bundle β on X, such that

$$(1-\tilde{\tau})i(\varepsilon) = \beta_c \in \tilde{K}(X),$$

where β_{C} is the complexification $\beta \otimes_{R} C$.

II. The Manifold of Geodesics

4. Global Jacobi differential equation

Let V be a connection on the tangent bundle TM of a smooth manifold M, and let V^H be the horizontal lift of V (Yano-Ishihara [8]). Then V^H is a connection on the tangent bundle TTM of TM. We decompose the tangent space T_vTM , $v \in TM$, as the sum of the horizontal part and the vertical part

$$T_vTM = H_vTM + V_vTM.$$

We write $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ for $X = x_1^H + x_2^V \in T_v TM$, where $x_1, x_2 \in T_{\pi(v)}M$, x_1^H and x_2^V are horizontal and vertical lifts, π is the projection $TM \rightarrow M$. For a vector field X on M, by definition, we have

$$\mathcal{V}_{\mathcal{X}^{\mathcal{H}}}^{\mathcal{H}} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = 0, \qquad \mathcal{V}_{\mathcal{X}^{\mathcal{H}}}^{\mathcal{H}} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} \overline{\mathcal{V}}_{\mathcal{X}} Y_1 \\ \overline{\mathcal{V}}_{\mathcal{X}} Y_2 \end{pmatrix}.$$

H. Sato

Let g be a Riemannian metric on M. For $v \in T_xM$, we define a linear symmetric transformation R_v of T_xM by

$$R_v w = R(w, v)v,$$

where $w \in T_x M$ and R is the curvature tensor of (M, g). To each $v \in T_x M$, we define a linear endomorphism P_v of $T_v TM$ by

$$P_{v}\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix} = \begin{pmatrix}0 & I\\-R_{v} & 0\end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}.$$

This defines a smooth cross section P of the bundle Hom (TTM, TTM)over TM. Let Z be the geodesic flow vector field. Then we have $Z(v) = \begin{pmatrix} v \\ 0 \end{pmatrix}$ for $v \in TM$. We define a linear differential equation on TM by

(2) $\nabla_Z^H Y = PY,$

where $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ is a time dependent smooth cross section of the bundle *TTM* over *TM*. We call (2) the global Jacobi differential equation. It is a second order differential equation.

5. The tangent bundle of the manifold of geodesics

Let (M, g) be a C_i -manifold. Then the geodesic flow is periodic and defines a free S^1 -action on the unit tangent sphere bundle T_1M . The manifold of geodesics Geod (M, g) is the quotient space T_1M/S^1 . We give the canonical metric on TM. Let \tilde{F} be the subbundle of TTM consisting of vectors orthogonal to X^H and x^v at $x \in TM$. Let F be the restriction of \tilde{F} on T_1M . Then the global Jacobi equation (2) can be restricted on F and it defines a projecting isomorphism on F. Since the solution of the Jacobi equation is the integral curve of the complete lift ([8]) of the geodesic flow vector field, we obtain

Proposition. The projected bundle \hat{F} defined by the global Jacobi differential equation is isomorphic to the tangent bundle $T \operatorname{Geod}(M, g)$ of $\operatorname{Geod}(M, g)$.

III. Differential Equation and Morse Theory

6. Sturm-Liouville equation and a symmetric space

We want to study geometrically families of curves defined by vectorvalued Sturm-Liouville equations

(3)
$$y'' - q_x(t)y = 0,$$

where y'' means d^2y/dt^2 and $q_x(t)$ is a symmetric matrix-valued continuous function on $t \in \mathbf{R}$ parameterized by a point x in a smooth manifold X. Put $z = \begin{pmatrix} y \\ y' \end{pmatrix}$ and we obtain

(4)
$$z' - \begin{pmatrix} 0 & I \\ q_x & 0 \end{pmatrix} z = 0.$$

Since $\begin{pmatrix} 0 & I \\ q_x & 0 \end{pmatrix}$ is contained in the Lie algebra $\mathfrak{sp}(m, \mathbf{R})$, the fundamental solution $W_n(t)$ with $W_n(0) = I$ is contained in the Lie group $Sp(m, \mathbf{R})$.

We embed $GL^+(m, \mathbf{R})$ in $Sp(m, \mathbf{R})$ by regarding $x \in GL^+(m, \mathbf{R})$ as $\begin{pmatrix} x & 0 \\ 0 & t_{x^{-1}} \end{pmatrix}$ in $Sp(m, \mathbf{R})$. Let N be the subgroup of $Sp(m, \mathbf{R})$ defined by

$$N = \left\{ \begin{pmatrix} I & 0 \\ C & I \end{pmatrix}; {}^{t}C = C \right\}.$$

Then $N \cap GL^+(m, \mathbf{R}) = I$ and $xNx^{-1} = N$ for all $x \in GL^+(m, \mathbf{R})$. Thus $N \cdot GL^+(m, \mathbf{R}) = GL^+(m, \mathbf{R}) \cdot N$, which we denote by H. Let Q be the space of right cosets $H \setminus Sp(m, \mathbf{R})$ and let

$$\mu: Sp(m, \mathbf{R}) \longrightarrow Q = N \cdot GL^+(m, \mathbf{R}) \setminus Sp(m, \mathbf{R})$$

be the natural projection. Since $U(m) \cap H = SO(m)$, we have $SO(m) \setminus U(m) = H \setminus Sp(m, \mathbf{R}) = Q$. We also denote by μ the projection $U(m) \rightarrow Q$. Let b be the Lie algebra of H and let \mathfrak{M} be the subspace of $\mathfrak{u}(m) \subset \mathfrak{Sp}(M, \mathbf{R})$ defined by

$$\mathfrak{M} = \left\{ \begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix}; {}^{t}B = B \right\}.$$

Then we have

$$\mathfrak{sp}(m, \mathbf{R}) = \mathfrak{M} + \mathfrak{h}, \quad \mathfrak{u}(m) = \mathfrak{M} + \mathfrak{so}(m),$$

 $[\mathfrak{M}, \mathfrak{so}(m)] \subset \mathfrak{M}, \quad [\mathfrak{M}, \mathfrak{M}] \subset \mathfrak{so}(m).$

The space Q has a U(m)-invariant metric such that Q is a Riemannian symmetric space.

7. Sturm-Liouville curve

We identify $\mathfrak{Sp}(m, \mathbf{R})$ with the right invariant vector field on $Sp(m, \mathbf{R})$. Define a subspace stl (m) of $\mathfrak{Sp}(m, \mathbf{R})$ by

$$\operatorname{stl}(m) = \left\{ \begin{pmatrix} 0 & I \\ C & 0 \end{pmatrix}; {}^{t}C = C \right\}.$$

We say that a smooth curve $c: [0, 1] \rightarrow Sp(m, \mathbf{R})$ is a Sturm-Liouville curve (abbrev. SL-curve) if dc/dt is contained in the set stl (m) for all $t \in [0, 1]$. Let \mathfrak{M}^+ be the subspace of \mathfrak{M} defined by

$$\mathfrak{M}^{*} = \left\{ \begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix}; {}^{t}B = B > 0 \right\}.$$

For $x \in Sp(m, \mathbf{R})$, we write \mathfrak{M}_x^+ for the subspace of $T_x Sp(m, \mathbf{R})$ corresponding to \mathfrak{M}^+ . If $\mu(x_1) = \mu(x_2)$ for $x_1, x_2 \in Sp(m, \mathbf{R})$, then

$$\mu_*(\mathfrak{M}^+_{x_1}) = \mu_*(\mathfrak{M}^+_{x_2}).$$

For $q \in Q$, we define a subspace $\mu_*(\mathfrak{M}^+)$ of T_qQ by $\mu_*(\mathfrak{M}_x^+)$ for some $x \in Sp(m, \mathbb{R}), \mu(x) = q$.

A smooth curve c; $[0, 1] \rightarrow Q$ is called a positive curve (abbrev. (+)curve) if dc/dt is contained in $\mu_*(\mathfrak{M}^+)$ for all $t \in [0, 1]$. The image $\hat{c} = \mu c$: $[0, 1] \rightarrow Q$ of a SL-curve c: $[0, 1] \rightarrow Sp(m, \mathbb{R})$ is a (+)-curve. Let us define a space $\Omega^+(Q)$ by the set of all piecewise smooth (+)-curves c: $[0, 1] \rightarrow Q$ with $c(0) = c(1) = p_0$, where $p_0 = \{H\} \in Q$. An element in $\Omega^+(Q)$ is called a (+)-loop. We give a topology on $\Omega^+(Q)$ as the subspace of the loop space $\Omega(Q)$. The energy function E is given by $E(\omega) = \int_0^1 \left\| \frac{d\omega}{dt} \right\|^2 dt$ for $\omega \in \Omega^+(Q)$. A (+)-loop ω in $\Omega^+(Q)$ is a critical point for the function E if and only if ω is a geodesic (+)-loop. Remark that a geodesic of Qemanating from p_0 is given by

$$\gamma_{X}(t) = p_0 \exp tX$$

for $X \in \mathfrak{M}$.

Remark that we can define the space of (+)-curves in $\Omega(U(m))$ to be the inverse image of $\Omega^+(Q)$ by the natural projection $\Omega(U(m)) \rightarrow \Omega(Q)$. The following arguments are also valid. But for our purpose, the definition is sufficient.

8. Morse theory on $\Omega^+(Q)$

We study the weak homotopy type of the space $\Omega^+(Q)$ by using the Morse theory, where $Q = SO(m) \setminus U(m)$. On $\Omega = \Omega(Q)$, we have the energy function *E* defined by

$$E(\omega) = \int_0^1 \left\| \frac{d\omega}{dt} \right\|^2 dt,$$

for $\omega \in \Omega(Q)$. Given c > 0, let $\Omega_c = \Omega_c(Q)$ denote the closed subset $E^{-1}([0, c]) \subset \Omega(Q)$ and let Int Ω_c denote the open subset $E^{-1}([0, c])$. Put $\Omega_c^+ = \Omega_c \cap \Omega^+(Q)$ and Int $\Omega_c^+ = \operatorname{Int} \Omega_c \cap \Omega^+(Q)$. Regard S^1 as $[0, 1]/\{0\} \sim \{1\}$. We can choose a subdivision $0 = t_0 < t_1 < \cdots < t_k = 1$ of [0, 1] so that, for any $\omega \in \Omega_c$, the geodesic connecting $\omega(t_{i-1})$ and $\omega(t_i)$ is uniquely and differentiably determined by the two end points, for each $i=1, 2, \cdots, k$ (cf. $[6, \S 16]$). For any $j \in N$, let $0 = t_0 < t_1 < \cdots < t_{2^{j-1}k} = 1$ be the vertexes of the (j-1)-th barycentric subdivision of the polyhedron [0, 1] with the vertexes t_0, t_1, \cdots, t_k . We define ${}^j\Omega_c$ to be the subspace of Ω_c consisting of loops $\omega \in \Omega_c$ such that $\omega|_{[t_{i-1}, t_i]}$ is the geodesic for each $i=1, 2, \cdots, 2^{j-1}k$. Put ${}^j\Omega_c^+ = {}^j\Omega_c \cap \Omega^+$, and Int $\Omega_c^+ = \operatorname{Int}{}^j\Omega_c \cap \Omega^+$. We have the natural inclusions

$${}^{1}\mathcal{Q}_{c}^{+} \subset {}^{2}\mathcal{Q}_{c}^{+} \subset \cdots \subset {}^{j}\mathcal{Q}_{c}^{+} \subset \cdots$$

We study the homotopy type of ${}^{j}\Omega_{c}^{+}$ and show that the inclusions are homotopy equivalences. Note that Int ${}^{j}\Omega_{c}$ has the structure of a smooth finite dimensional manifold, and Int ${}^{j}\Omega_{c}^{+}$ is an open submanifold of Int ${}^{j}\Omega_{c}$. Choose a Riemannian metric on Int ${}^{j}\Omega_{c}$, and consider the gradient vector field grad (-E) = -grad E. Let ϕ_{s} be the associated local one-parameter group of transformations. The main result of this section is the following

Proposition. For any $\omega \in \text{Int } {}^{j}\Omega_{c}^{+}$, the maximal integral curve $\phi_{s}(\omega)$ for $s \ge 0$ of -grad E in $\text{Int } {}^{j}\Omega_{c}^{-}$ is contained in $\text{Int } {}^{j}\Omega_{c}^{+}$.

For the proof, we need the following. For a real symmetric $(m \times m)$ matrix A, we associate a real number $\sigma(A)$ defined by

$$\sigma(A) = \min_{\|a\|=1} \langle Aa, a \rangle,$$

where $a \in \mathbb{R}^m$, and $\langle \rangle$ is the usual inner product in \mathbb{R}^m .

Obviously we have

Lemma. For any two real symmetric $(m \times m)$ -matrices A and B, we have

$$\sigma(A+B) \geq \sigma(A) + \sigma(B).$$

Let p be a point in Q. We can express p by p = SO(m)g for some g in U(m). We identify T_pQ with $\mathfrak{M} = T_{p_0}Q$ by the right translation $(R_g)_*$. Thus a vector $X \in T_pQ$ is identified with $A \in \mathfrak{M}$, where $X = (R_g)_*A$. The space \mathfrak{M} is naturally identified with the set of real symmetric $(m \times m)$ matrices. We define a real number $\sigma(X)$ by

$$\sigma(X) = \sigma(A).$$

Lemma. The value $\sigma(X)$ is independent of the choice of g in U(m).

Thus σ is a well-defined function on $T_p(Q)$. Let h be an element of U(m). For any $p \in Q$ and $X \in T_pQ$, we have

$$\sigma((R_h)_*X) = \sigma(X).$$

Now let ω be an element in Int ${}^{j}\Omega_{c}$. Then ω is a broken geodesic with $E(\omega) < c$. Put $V_{t} = d\omega/dt$, and

 $\Delta_t V = V_{t+} - V_{t-}$ = discontinuity in the velocity vector at t, where 0 < t < 1.

Then $\Delta_t V = 0$ except for $t = t_1, t_2, \dots, t_{2^{j-1}k-1}$. We define a real number $\sigma(\omega)$ by

$$\sigma(\omega) = \min_{i=0,1,\dots,2^{j-1}k-1} \sigma(V_{t_i+}).$$

Remark that $\sigma(V_{t_i+}) = \sigma(V_{t_{i+1}-}) = \sigma(V_t)$ for $t_i < t < t_{i+1}$. Obviously σ is a continuous function on the manifold Int ${}^{j}\Omega_{c}$. More precisely, we have the following

Lemma. For any smooth curve $\psi: \mathbf{R} \rightarrow \text{Int } {}^{j}\Omega_{c}$, the function $\psi^{*}\sigma$ is a piecewise smooth function on \mathbf{R} .

Remark that $\omega \in \text{Int } {}^{j}\Omega_{c}$ is contained in Int ${}^{j}\Omega_{c}^{+}$ if and only if $\sigma(\omega) > 0$. Let ω be an element in Int ${}^{j}\Omega_{c}^{+}$, and let $\phi: (-\varepsilon, \varepsilon) \to \text{Int } {}^{j}\Omega_{c}^{+}$ be the integral curve of the vector field -grad E with $\phi(0) = \omega$.

Lemma. Suppose that $\phi^* \sigma$ is smooth at 0. Then we have

 $(-\operatorname{grad} E)_{\omega}(\sigma) \geq 0.$

The proof is given as follows. By the first variational formula, we have

$$(-\operatorname{grad} E)_{\omega} = \sum_{i} \Delta_{t_i} V.$$

We show that, for each i, $(\Delta_{t_i}V)(\sigma) \ge 0$. The integral curve $\omega(s)(t) = \omega^s(t)$ of $\Delta_{t_i}V$ with $\omega^0(t) = \omega(t)$ in Int ${}^{j}\Omega_c^+$ for $-\varepsilon < s < \varepsilon$, ε small, is given as follows. Let $\eta(t)$, $0 \le t$, be the geodesic with $\eta(0) = \omega(t_i)$ such that $d\eta/dt(0) = \Delta_{t_i}V$. We define the loop ω^s by

$$\omega^{s}(t) = \begin{cases} \omega(t) & \text{for } 0 \leq t \leq t_{i-1} \text{ and } t_{i+1} \leq t \leq 1, \\ \text{geodesic connecting } \omega(t_{i-1}) \text{ and } \eta(s) & \text{for } t_{i-1} \leq t \leq t_{i}, \\ \text{geodesic connecting } \eta(s) \text{ and } \omega(t_{i+1}) & \text{for } t_{i} \leq t \leq t_{i+1}. \end{cases}$$

Put $V_t^s = d\omega^s/dt$. By the definition of $\sigma(\omega)$, it is sufficient to show that $\lim_{s\to 0} 1/s(\sigma(V_{t_i}^s) - \sigma(V_{t_i})) \ge 0$ and $\lim_{s\to 0} 1/s(\sigma(V_{t_i}^s) - \sigma(V_{t_i})) \ge 0$. For fixed s, let $\alpha^s(t)$ $(0 \le t \le s)$ denote the geodesic such that $\alpha^s(0) = \omega(t_i - s)$ and $\alpha^s(s) = \eta(s)$. Let $\exp: \mathfrak{u}(m) \to U(m)$ be the exponential mapping of the group U(m). Fix an identification of $T_{\omega(t_i-s)}Q$ with \mathfrak{M} and identify $T_{\omega(t_i)}Q$ with $T_{\omega(t_i-s)}Q$ by the action of $\exp((V_{t_i}))$. Then the velocity vector $d\alpha^s/dt(0)$ is given by $\mu_* \{\exp^{-1}(\exp(s\mathcal{A}_{t_i}V)\exp(sV_{t_i-s}))\}$, where $\mu_*:\mathfrak{u}(m) \to \mathfrak{M}$ is the projection. Since $V_{t_i-s} = V_{t_i}$ by the identification, we have $\mathcal{A}_{t_i}V + V_{t_i-s} = V_{t_i}$. Consequently we have

$$\frac{d\alpha^{s}}{dt}(0) = \mu_{*}\left\{sV_{t_{i}+} + \frac{s^{2}}{2}[\varDelta_{t_{i}}V, V_{t_{i}-}] + o(s^{3})\right\},\$$

where $o(s^3)$ denote a $\alpha(m)$ -valued function of order s^3 . Since $\sigma(V_{t_i+1})>0$, we have $((d\alpha^s/dt)(0))>0$ for small s>0. Let $\text{Exp}=\text{Exp}_{\eta(s)}: T_{\eta(s)}Q \rightarrow Q$ be the exponential mapping of the symmetric space Q. In the vector space $T_{\eta(s)}Q$, we have equalities

$$\operatorname{Exp}^{-1}(\omega(t_i-s)) = -\frac{d\alpha^s}{dt}(s), \qquad \operatorname{Exp}^{-1}(\omega(t_{i-1})) = -V_{t_i-}^s.$$

Since

 $\{\operatorname{Exp}^{-1}(\omega(t_i-s)-\operatorname{Exp}^{-1}(\omega(t_{i-1})))\}+\{-\operatorname{Exp}^{-1}(\omega(t_i-s))\}=-\operatorname{Exp}^{-1}(\omega(t_{i-1})),$

we have

$$\sigma(\operatorname{Exp}^{-1}(\omega(t_i-s))-\operatorname{Exp}^{-1}(\omega(t_{i-1})))+\sigma\left(\frac{d\alpha^s}{dt}(s)\right)\leq\sigma(V_{t_i-1}^s).$$

Note that

$$\lim_{s\to 0} \left\{ \operatorname{Exp}^{-1}(\omega(t_i - s)) - \operatorname{Exp}^{-1}(\omega(t_{i-1})) \right\} = V_{t_i} \in T_{\omega(t_i)}Q$$

and

$$\sigma\left(\frac{d\alpha^s}{dt}(s)\right) = \sigma\left(\frac{d\alpha^s}{dt}(0)\right).$$

Consequently we have

$$\lim_{s\to 0+} \{\sigma(V_{t_i}^s) - \sigma(V_{t_i})\} \ge 0,$$

and

$$\lim_{s\to 0}\frac{1}{s}\left\{\sigma(V_{t_i}^s)-\sigma(V_{t_i})\right\}\geq 0$$

if it exists. The proof that

$$\lim_{s\to 0}\frac{1}{s}\left\{\sigma(V_{t_i+}^s)-\sigma(V_{t_i+})\right\}\geq 0$$

is quite similar.

Let W_i $(i=1, 2, \dots, p)$ be the collection of critical manifolds in Int ${}^{j}\Omega_c^+$ (Bott [4]). Remark that these collections are equal for every $j=1, 2, \dots$ Let ξ_i be the negative bundle of W_i ([4]).

Corollary. For any $j \ge 1$, the space ${}^{j}\Omega_{c}$ is homotopy equivalent to the CW-complex

$$K = \xi_1 \cup \xi_2 \cup \cdots \cup \xi_n.$$

Corollary. The inclusions

 ${}^{1}\mathcal{Q}_{c}^{+} \subset {}^{2}\mathcal{Q}_{c}^{+} \subset \cdots \subset {}^{j}\mathcal{Q}_{c}^{+} \subset \cdots$

are homotopy equivalences.

Put ${}^{p_f}\Omega_c^+ = \varinjlim_j {}^j\Omega_c^+$. Then ${}^{p_f}\Omega_c^+$ is homotopy equivalent to ${}^j\Omega_c^+$ for any

 $j \ge 1$.

The following is easy to see.

Proposition. For any compact topological space X, the inclusion i: ${}^{pf}\Omega_{e}^{+} \longrightarrow \Omega_{e}^{+}$ induces an isomorphism

$$i_*: [X, {}^{pf}\Omega_c^+] \cong [X, \Omega_c^+].$$

9. Degree and index of (+)-loops

For $x \in Q = SO(m) \setminus U(m)$, we have the determinant det $(x) \in S^1 = \{z \in C; ||z|| = 1\}$. For a map $\omega: S^1 \to Q$, the degree $d(\omega)$ is defined to be the winding number of the composition det $\cdot \omega: S^1 \to S^1$. Two elements ω_1 and ω_2 in $\Omega(Q)$ are contained in the same connected component if and only if $d(\omega_1) = d(\omega_2)$. For $k \in Z$, put ${}_k\Omega(Q) = \{\omega \in \Omega(Q); d(\omega) = k\}$ and ${}_k\Omega^+(Q) = \Omega^+(Q) \cap {}_k\Omega(Q)$.

The following follows from results of Section 8.

Proposition. Every (+)-loop ω is homotopic in $\Omega^+(Q)$ to a geodesic loop.

Each geodesic issuing from $p_0 = \{SO(m)\}$ is written as $p_0 \exp tA$ for some $A \in \mathfrak{M}$. Diagonalize A, and we obtain

Proposition. For $Q = SO(m) \setminus U(m)$, ${}_{k}\Omega^{+}(Q)$ is non-vacuous if and only if $k \ge m$.

The critical manifold in ${}_{m}\Omega^{+}(Q)$ consists of one point \tilde{r}_{0} defined by $p_{0} \exp \frac{t}{2\pi} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

Proposition. The space ${}_{m}\Omega^{+}(SO(m)\setminus U(m))$ is contractible (up to weak homotopy type).

Now to each (+)-loop $\omega \in \Omega^+(Q)$, we will associate a non-negative integer $i(\omega)$ called the index of ω . Let $\Pi : \mathfrak{Sp}(m, \mathbb{R}) = \mathfrak{M} + \mathfrak{h} \to \mathfrak{M}$ be the projection. A (+)-loop $\omega \in \Omega^+(Q)$ is the image by μ of a piecewise smooth curve $\zeta : [0, 1] \to Sp(m, \mathbb{R})$ satisfying the relations

$$\begin{aligned} \zeta(0) &= I, \quad \zeta(1) \subset H, \\ \Pi\left(\frac{d\zeta}{dt}(t)\zeta^{-1}(t)\right) \subset \mathfrak{M}^+ \quad \text{for all } t \in [0, 1]. \end{aligned}$$

We say that ζ is a lifting of ω . Express the $\mathfrak{Sp}(m, \mathbb{R})$ -valued function $d\zeta/dt \cdot \zeta^{-1}$ on [0, 1] as

$$\frac{d\zeta}{dt} = \begin{pmatrix} A & B \\ C & -{}^{t}A \end{pmatrix} \zeta.$$

Then $\Pi(d\zeta/dt \cdot \zeta^{-1}) \subset \mathfrak{M}^+$ if and only if B > 0. The curve

$$\zeta(t) = \begin{pmatrix} X(t) & Y(t) \\ Z(t) & W(t) \end{pmatrix}$$

is the fundamental matrix of the differential equation

(5)
$$\binom{U}{V}' = \binom{A}{C} = \binom{B}{V}\binom{U}{V}.$$

We say that $0 \le t \le 1$ is conjugate to 0 if there exists a non-zero solution $\begin{pmatrix} U \\ V \end{pmatrix}$ of (5) such that

(6)
$$U(0) = U(t) = 0.$$

Thus t with $0 \le t \le 1$ is conjugate to 0 if and only if det Y(t)=0. The multiplicity of the conjugate point t is defined to be the dimension of the solutions $\binom{U}{V}$ of (5) which satisfy (6). We define the k-th conjugate point by counting multiplicities. The index of the curve $\zeta: [0, 1] \rightarrow Sp(m, \mathbf{R})$ is defined to be the number of conjugate points in (0, 1) counted with their multiplicities.

By a (+)-variation of the curve $\zeta(t) = \zeta_0(t)$, we mean a continuous mapping

 $\zeta: (-\varepsilon, \varepsilon) \times [0, 1] \longrightarrow Sp(m, \mathbf{R})$

for some $\varepsilon > 0$, such that

*) ζ_s is piecewise smooth,

**) $\Pi((d\zeta_s/dt)(t)) \in \mathfrak{M}^+$ for all $s \in (-\varepsilon, \varepsilon)$ and $t \in [0, 1]$, where we put $\zeta_s(t) = \zeta(s, t)$.

By the classical method in the calculus of variations, we obtain

Proposition. For a (+)-variation, the k-th conjugate points vary continuously for all $k \in N$.

Suppose that ζ_s is a (+)-variation of ζ , such that $\zeta_s(0) = e$, and $\zeta_s(1) \in H$ for all $s \in (-\varepsilon, \varepsilon)$. Then the point 1 is conjugate to 0 with multiplicity equal to *m*. Since *m* is the maximum of possible multiplicities, conjugate points do not cross the point 1.

Proposition. Suppose that a(+)-variation ζ_s satisfies the relation $\zeta_s(0) = e, \zeta_s(1) \in H$ for all $s \in (-\varepsilon, \varepsilon)$. Then, for any $s \in (-\varepsilon, \varepsilon)$, the index of ζ_s is equal to the index of ζ_0 .

For an element $\omega \in \Omega^+(Q)$, we define the index $i(\omega)$ to be the index of a lifting ζ . Obviously we have

Lemma. If ω_0 and ω_1 lie in the same arcwise connected component of $\Omega^+(Q)$, then $i(\omega_0) = i(\omega_1)$.

The sum of conjugate points in (0, 1] of a geodesic loop $\mathcal{T} \in \Omega(Q)$ is equal to $2d(\mathcal{T})$.

Lemma. For a geodesic loop $\gamma \in \Omega^+(Q)$, we have

 $i(\Upsilon) = 2d(\Upsilon) - m.$

Combining lemmas, we obtain

Proposition. For a(+)-loop $\omega \in \Omega^+(Q)$,

 $i(\omega) = 2d(\omega) - m.$

IV. C_i -metrics on S^n

10. A stable bundle

Let g be a C_l -metric on S^n . We may assume that l=1. We embed

 S^n in \mathbb{R}^{n+1} as the unit sphere. We give a Riemannian metric h on \mathbb{R}^{n+1} such that h is equal to the product $g \times g_0$ on a tubular neighborhood of S^n in \mathbb{R}^{n+1} , where g_0 is the standard metric on (-1, 1). The metric h naturally induces the Riemannian metric h on $T\mathbb{R}^{n+1}$.

Let $L=T_1S^n$ be the unit tangent sphere bundle of S^n . Define a (2n+2)-dimensional vector bundle E over L by $E=TTR^{n+1}|L$. Of course E is isomorphic to the trivial bundle. The geodesic flow defines a free S^1 -action on L such that the base space X is equal to Geod (S^n, g) . We give a projecting isomorphism Φ on E as follows. Let B be the (2n-2)-dimensional subbundle of E consisting of tangent vectors of L orthogonal to the geodesic flow vector. Thus we have the orthogonal decomposition

$$E = A \oplus B$$
,

where A is the real 4-dimensional vector bundle isomorphic to the trivial bundle. Consider the following differential equation on E,

(7)
$$\nabla^{H}_{i} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix} = \widetilde{P} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix},$$

where $\dot{\gamma}$ is the geodesic flow vector, and \tilde{P} is the linear endomorphism of E defined by,

$$\tilde{P}_{v} = \begin{cases} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} & \text{on } A \\ P_{v} = \begin{pmatrix} 0 & I \\ -R_{v} & 0 \end{pmatrix} & \text{on } B, \end{cases}$$

where $v \in L \subset TR^{n+1}$ and R is the curvature tensor of (R^{n+1}, h) . We write $\tilde{P}_v = \begin{pmatrix} 0 & I \\ P^* & 0 \end{pmatrix}$ on E. Then all the solutions of (7) are periodic and it defines a projecting isomorphism Φ on E. Remark that Φ can be restricted to subbundles A and B. Let \hat{A} and \hat{B} be the projected bundle. Then the projected bundle \hat{E} is isomorphic to the Whitney sum $\hat{A} \oplus \hat{B}$. The natural complex structure of the bundle TTR^{n+1} induces the complex structure on \hat{E} such that \hat{A} and \hat{B} are complex subbundles. By the result of Section 5, \hat{B} is isomorphic to the tangent bundle TX.

Let γ denote the complex line bundle associated to the S¹-principal bundle $T_1S^n \rightarrow X$, and γ^* be the dual bundle.

Proposition. The complex bundle A is isomorphic to the bundle $2\gamma^* = \gamma^* \oplus \gamma^*$.

11. Proof of Theorem

Let Z_1, Z_2, \dots, Z_{n+1} be a global orthonormal frame of (\mathbb{R}^{n+1}, h) . We have the horizontal and the vertical lifts

$$Z_1^H, Z_2^H, \cdots, Z_{n+1}^H,$$

 $Z_1^V, Z_2^V, \cdots, Z_{n+1}^V,$

on the manifold $T\mathbf{R}^{n+1}$. Define an $(n+1) \times (n+1)$ -matrix valued function $A = (a_{ij})$ on $L = T_1 S^n$ by

$$\nabla_{i}Z_{j}=\sum_{k=1}^{n+1}a_{ik}Z_{k},$$

where $\dot{\gamma}$ is the geodesic flow vector field. Remark that $a_{ij} = -a_{ji}$. For unknown vectors Y_1 and Y_2 , write

$$Y_1^i = \sum_j f_{ij} Z_j,$$

$$Y_2^i = \sum_j g_{ij} Z_j.$$

The vector $Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ is represented by (2n+2, n+1)-matrix $\begin{pmatrix} F \\ G \end{pmatrix}$, where $F = (f_{ij})$ and $G = (g_{ij})$. Consider the following differential equation,

(8)
$$(Y,Z)' = (Y,Z) \begin{pmatrix} -A & 0 \\ 0 & -A \end{pmatrix} + \begin{pmatrix} 0 & I \\ P^* & 0 \end{pmatrix} (Y,Z),$$

where Y and Z are (2n+2, n+1)-matrices and ' means d/dt. The solutions Y and Z of (8) give the solutions of (7). Let U and V be the fundamental matrix of the differential equations

$$U' = U \begin{pmatrix} -A & 0 \\ 0 & -A \end{pmatrix}, \qquad V' = \begin{pmatrix} 0 & I \\ P^* & 0 \end{pmatrix} V.$$

Then the matrix equation W of (8) is given by

$$W = VU$$
.

Since $A \in o(n+1, \mathbb{R})$, U is contained in $SO(n+1, \mathbb{R})$. Since $\begin{pmatrix} 0 & I \\ P^* & 0 \end{pmatrix}$ $\in \mathfrak{Sp}(n+1, \mathbb{R}), V \in Sp(n+1, \mathbb{R})$. Thus W is contained in $Sp(n+1, \mathbb{R})$. By the projection μ : $Sp(n+1, \mathbb{R}) \rightarrow Q = H \setminus Sp(n+1, \mathbb{R}) = SO(n+1) \setminus U(n+1)$, U is mapped trivially. Since W(0) = W(1) = e, we have $\mu V(0) = \mu V(1) = p_0$. Thus μV can be regarded as a map $: X \rightarrow \Omega Q$. For $W^{-1} = U^{-1}V^{-1}$, we have $\mu(W^{-1}) = \mu(V^{-1})$. Since dim X = 2n-2, the set of homotopy classes

 $[X, \Omega Sp(n+1, \mathbf{R})]$ and $[X, \Omega Q]$ are abelian groups and μ induces a homomorphism. As elements in $[x, \Omega Q]$,

$$\{\mu v\} = -\{\mu(V^{-1})\} = -\{\mu(W^{-1})\} = \{\mu W\}.$$

Note that μV belongs to $\Omega^+(Q)$.

Using the fact that the index of geodesics of a C_i -metric of S^n is equal to n-1 (Bott [3]), we obtain

Lemma. The degree of the (+)-loop μV is equal to n+1.

From Section 8, it follows that the homotopy class of μV is trivial. The trivial homotopy class gives the bundle $(n+1)\gamma^*$.

The proof of the main theorem is given as follows. From Section 10, we see that the equation (8) gives the projecting isomorphism Φ such that

 $\hat{E} = TX \oplus 2\gamma^*$.

Let $i: [X, \Omega GL(\mathbf{R}, \infty)] \rightarrow K(X) = [X, \Omega GL(\mathbf{C}, \infty)]$ be the natural homomorphism. The difference between $\Phi(\hat{E})$ and the trivial class lies in the image of $[X, \Omega GL(\mathbf{R}, \infty)]$. By Corollary of Section 3, we obtain

 $\hat{E} - (n+1)\gamma^* = (1-\gamma)i(\varepsilon),$

for some $\varepsilon \in [X, \Omega GL(\mathbf{R}, \infty)]$. Thus

$$TX + 2\gamma^* = (n+1)\gamma^* + (1-\gamma)i(\varepsilon).$$

Write τ for TX. Tensoring γ to both sides, we obtain

$$\tau \otimes \tilde{\gamma} = (n-1) + (1-\tilde{\gamma})\tilde{\gamma}i(\varepsilon).$$

Since $(1-\tilde{\tau})\tilde{\tau} = (1-\tilde{\tau}^2) - (1-\tilde{\tau})$, by Corollary in Section 3, we have real vector bundles ξ_1 and ξ_2 such that

$$(1-\tilde{\tau})\tilde{\tau}i(\varepsilon) = \xi_1 \bigotimes_R C - \xi_2 \bigotimes_R C.$$

Thus we have

$$(\tau\otimes \widetilde{\tau})^{st} = \xi \bigotimes_{R} C,$$

for some real vector bundle ξ over X, which is the concluson of Theorem.

Acknowledgement. The author thanks to Takashi Sakai for helpful remarks.

H. Sato

References

- [1] M. F. Atiyah, K-theory, Benjamin, 1967.
- [2] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 93 (1978), Springer.
- [3] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60 (1954), 375-382.
- [4] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
- [5] V. Guillemin, The Radon transform on Zoll surface, Adv. in Math., 22 (1976), 85-119.
- [6] J. Milnor, Morse theory, Ann. of Math. Studies, 51, Princeton University Press (1962).
- [7] A. Weinstein, Fourier integral operators, quantization, and the spectra of Riemannian manifolds, Géométrie symplectique et physique mathématique, Colloq. Intern. C.N.R.S., 237 (1976), 289-298.
- [8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
- [9] C. T. C. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom., 15 (1980), 91-96.
- [10] O. Zoll, Über Flächen mit Scharen Geschlossener Geodätischer Linien, Math. Ann., 57 (1903), 108–133.

Department of Mathematics Tôhoku University Sendai 980 Japan