On the Manifolds of Periodic Geodesics

Hajime Sato

Let S^{n} be the n-dimensional sphere with a Riemannian metric g. If all geodesics are periodic with the same period l, we say that the Riemannian manifold (S^{n}, g) is a C_{l}-manifold, or g is a C_{l}-metric on S^{n}. (For detail see Besse [2]). Let g_{0} be the canonical metric of S^{n}. Then (S^{n}, g_{0}) is a $C_{2 \pi}$-manifold. There are some examples of C_{l}-metric on S^{n} (Zoll [10], Weinstein [2], Guillemin [5]) other than the canonical metric. These examples are all obtained from deformations of g_{0} in the space of C_{l}-metrics.

Let $T_{1}\left(S^{n}, g\right)=T_{1}\left(S^{n}\right)$ denote the tangent sphere bundle of radius 1 of a C_{l}-manifold $\left(S^{n}, g\right)$. Then the geodesic flow induces a free S^{1}-action on $T_{1} S^{n}$. Since the geodesic flow vector field is a contact vector field on $T_{1} S^{n}$, the quotient space $T_{1} S^{n} / S^{1}$ is a ($2 n$-2)-dimensional symplectic manifold. We call $T_{1} S^{n} / S^{1}$ the manifold of geodesics and denote by Geod $\left(S^{n}, g\right)$. The manifold Geod $\left(S_{n}, g_{0}\right)$ is symplectically diffeomorphic to the Kähler manifold Q^{n-1}, called hyperquadric and defined by the equation

$$
Z_{0}^{2}+Z_{1}^{2}+\cdots+Z_{n}^{2}=0
$$

in $C P^{n}$. Since every known example of C_{l}-manifold $\left(S^{n}, g\right)$ is a deformation of $\left(S^{n}, g_{0}\right)$, the manifold of geodesics Geod $\left(S^{n}, g\right)$ for such manifold is symplectically diffeomorphic to Q^{n-1}.

A result of Weinstein [7] says that, if Geod $\left(S^{n}, g_{1}\right)$ and $\operatorname{Geod}\left(S^{n}, g_{2}\right)$ are symplectically diffeomorphic, then the eigenvalues of the Laplacian on two C_{l}-manifolds (S^{n}, g_{1}) and (S^{n}, g_{2}) are asymptotically similar.

Our problem is as follows. For any C_{l}-metric g on S^{n}, is $\operatorname{Geod}\left(S^{n}, g\right)$ diffeomorphic to Q^{n-1} ? In this paper we study the tangent bundle of Geod (S^{n}, g) and its characteristic classes.

Since $S p(n-1, R)$ is homotopy equivalent to $U(n-1)$, the symplectic manifold Geod $\left(S^{n}, g\right)$ has the unique almost complex structure up to homotopy.

Let γ denote the complex line bundle associated to the S^{1}-principal

[^0]bundle $T_{1} S^{n} \rightarrow \operatorname{Geod}\left(S^{n}, g\right)$. Recall the structure of the tangent bundle τ_{0} of $\operatorname{Geod}\left(S^{n}, g_{0}\right)=Q^{n-1}$. We have
$$
\tau_{0} \otimes \gamma \oplus \gamma \oplus \gamma^{*}=\varepsilon^{n+1}
$$
where γ^{*} is the dual of γ and ε^{n+1} is the trivial $(n+1)$-dimensional complex vector bundle over Q^{n-1}. Let $g \in H^{2}\left(\operatorname{Geod}\left(S^{n}, g\right) ; Z\right)$ be the class represented by the symplectic form. For the Chern class C_{i} of $\tau_{0} \otimes \gamma$, we have
\[

C_{i}\left(\tau_{0} \otimes \gamma\right)= $$
\begin{cases}0 & i: \text { odd } \\ g^{i} & i: \text { even }\end{cases}
$$
\]

The characterictic class of $\operatorname{Geod}\left(S^{n}, g_{0}\right)$ is determined by this equation. The bundle $\gamma \oplus \gamma^{*}$ is isomorphic to $\gamma_{R} \bigotimes_{R} C$, where γ_{R} denote the underlying real vector bundle of γ.

By a stable class of a bundle η, we mean the Whitney sum of η with a trivial bundle of sufficient dimension. We write $\eta^{s t}$ for the stable class of η.

Our main result is as follows.
Theorem. Let $\left(S^{n}, g\right)$ be a C_{l}-manifold and let τ be the tangent bundle of $\operatorname{Geod}\left(S^{n}, g\right)$. Then there exists a real vector bundle ξ over $\operatorname{Geod}\left(S^{n}, g\right)$ such that

$$
(\tau \otimes \gamma)^{s t}=\underset{R}{\xi} \underset{R}{ } C
$$

Remark that there are many examples of free S^{1}-action on $T_{1} S^{n}$, not coming from a geodesic vector field, such that the tangent bundle of the orbit space does not satisfy the relation in Theorem.

The cohomology ring $H^{*}\left(\operatorname{Geod}\left(S^{n}, g\right) ; Z\right)$ is known to be isomorphic to $H^{*}\left(Q^{n-1} ; Z\right)$ which has no torsion (Yang [9]).

Corollary 1. Every odd dimensional Chern class of the bundle $\tau \otimes \gamma$ vanishes.

If $n \leq 4$, then the non-zero Chern class of $\tau \otimes \gamma$ is only $C_{2}(\tau \otimes \gamma) \in$ $H^{4}\left(\operatorname{Geod}\left(S^{n}, g\right) ; Z\right)$. The $(n-1)$-dimensional Chern class $C_{n-1}(\tau)$ of τ is representable by $C_{2}(\tau \otimes \gamma)$, which must be equal to the Euler class.

By identifying the isomorphic cohomology rings $H^{*}\left(\operatorname{Geod}\left(S^{n}, g\right) ; Z\right)$ and $H^{*}\left(Q^{n-1} ; Z\right)$, we have the following.

Corollary 2. If $n \leq 4$, then the Chern classes of the manifold $\operatorname{Geod}\left(S^{n}, g\right)$ are equal to that of $\operatorname{Geod}\left(S^{n}, g_{0}\right)$.
S. Sasao has shown the author the following result.

Proposition. Let M be a simply connected 6-dimensional closed manifold with cohomology ring $H^{*}(M ; Z)$ isomorphic to $H^{*}\left(Q^{3} ; Z\right)$. If the second Stiefel class $w_{2}(M) \neq 0$, then M is homotopy equivalent to Q^{3}.

By using the Browder-Novikov's surgery technique, we obtain
Corollary 3. For any C_{l}-metric g on S^{4}, the manifold $\operatorname{Geod}\left(S^{4}, g\right)$ is diffeomorphic to Q^{3}.

For the proof of Theorem, we need an inverse of Thom isomorphism in K-theory, a global Jacobi equation written in terms of the horizontal lift of connections and a topological study of Sturm-Liouville equations by means of Morse theory.

We outline our argument. Detailed proof will appear elsewhere.

I. Topological Preliminaries

1. Projectable bundles

Let X be a smooth manifold and let $\pi: L \rightarrow X$ be the projection of an S^{1}-principal bundle.

Definition. A vector bundle $p: E \rightarrow L$ over L is projectable onto X, if there exists a vector bundle $\hat{P}: \hat{E} \rightarrow X$ over X such that $\pi^{*} \hat{E}=E$. The map π induces the bundle map $\pi_{!}: E \rightarrow \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X. For any $a, b \in \pi^{-1}(x)=S^{1}$, we have a linear isomorphism

$$
\Phi_{a b}: p^{-1}(a) \longrightarrow p^{-1}(b)
$$

of vector spaces defined by $\Phi_{a b}(u)=v$, where $\pi_{!}(u)=\pi!(v)$. Then we have, for $a, b, c \in \pi^{-1}(x)$,

$$
\begin{equation*}
\Phi_{b c} \Phi_{a b}=\Phi_{a c} . \tag{1}
\end{equation*}
$$

Let $\pi^{*} L=\{(a, b) \in L \times L, \pi(a)=\pi(b)\}$ be the induced S^{1}-bundle over L from L. We have two projections $\pi_{1}, \pi_{2}: \pi^{*} L \rightarrow L$ defined by $\pi_{1}(a, b)=a$ and $\pi_{2}(a, b)=b$. Let $\pi_{i}^{*} E(i=1,2)$ be the induced vector bundle. The map $\Phi: \pi^{*} L \rightarrow \operatorname{Iso}\left(\pi_{1}^{*} E, \pi_{2}^{*} E\right)$ defined by $\Phi(a, b)=\Phi_{a b}$ is a continuous cross section of the bundle Iso $\left(\pi_{1}^{*} E, \pi_{2}^{*} E\right)$ over $\pi^{*} L$.

We call Φ the projecting isomorphism associated with the projectable bundle E. Given a cross section Φ satisfying (1) and a vector bundle E
over L, we can regard E as a projectable bundle with Φ as the projecting isomorphism.

Assume that the vector bundle $p: E \rightarrow L$ is isomorphic to the trivial bundle. Then we may regard $\Phi_{a b}$ as an element of the general linear group $G L$. The bundle Iso $\left(\pi_{1}^{*} E, \pi_{2}^{*} E\right)$ is isomorphic to the trivial bundle $G L \times \pi^{*} L$ over $\pi^{*} L$. The space $\pi^{*} L$ is naturally homeomorphic to $S^{1} \times L$. Let G be a subgroup of $G L$ such that $\Phi_{a b}$ is contained in G for any (a, b) $\in \pi^{*} L$. Then Φ is a map from $S^{1} \times L$ to G. Define a map $\tilde{\Phi}: L \rightarrow L \times$ ΩG by $\tilde{\Phi}(a)=(a, \Phi(\cdot, a))$. We have the action of S^{1} on L. On the loop space ΩG, the group S^{1} acts by $(t \omega)(s)=\omega(t+s) \cdot \omega(t)^{-1}$, where $t, s \in S^{1}$, $\omega \in \Omega G$, and \cdot denote the composition of G. Thus we have the product action of S^{1} on $L \times \Omega G$. Using (1), we can easily see that $\tilde{\Phi}$ is S^{1}-equivariant. The factor space $L \times{ }_{S^{1}} \Omega G$ is the total space of a fiber bundle over $X=L / S^{1}$. Thus $\tilde{\Phi}$ is a cross section of the bundle $L \times_{S_{1}} \Omega G$, i.e. $\tilde{\Phi} \in \Gamma\left(X, L \times{ }_{S 1} \Omega G\right)$.

2. Homotopy theorem

Let Λ denote the complex line bundle over X associated to L and let X^{4} denote the Thom space of Λ. Let $\operatorname{Vect}\left(X^{\Lambda}\right)$ denote the set of isomorphism classes of vector bundles over X. Let $\Pi \Gamma\left(X, L \times{ }_{S_{1}} \Omega G\right)$ denote the set of homotopy classes of $\Gamma\left(X, L \times{ }_{S^{1}} \Omega G\right)$. By taking the homotopy classes of $\tilde{\Phi}$, we have the set map

$$
\Phi: \operatorname{Vect}\left(X^{\Lambda}\right) \longrightarrow \Pi \Gamma\left(X, L \underset{S^{1}}{\times} \Omega G\right)
$$

Now suppose that we are given an element f in $\Gamma\left(X, L \times{ }_{S_{1}} \Omega G\right)$. Let E be a trivial bundle over L. Then we naturally obtain a projecting isomorphism Ψ_{f} of E which satisfy (1). We write $\Psi_{f}(E)$ for the projected bundle over X.

Proposition. If f_{1}, f_{2} in $\Gamma\left(X, L \times_{S^{1}} \Omega G\right)$ are homotopic, then $\Psi_{f_{1}}(E)$ and $\Psi_{f_{2}}(E)$ are isomorphic vector bundles over X.

3. Stable case

Suppose that the dimension of the fiber of the trivial bundle E is sufficiently large. Let $G=G L(\boldsymbol{R}, \infty), G L(\boldsymbol{C}, \infty)$ or $G L(\boldsymbol{H}, \infty)$. According to Bott [4], the space ΩG is homotopy equivalent to the space of minimal geodesics, on which S^{1} acts trivially.

Proposition. The fiber bundle $L \times_{S^{1}} \Omega G$ is homotopy equivalent to the trivial bundle $X \times \Omega G$.

If $G=G L(C, \infty)$, then $\Gamma \Pi\left(X, L \times{ }_{S_{1}} \Omega G\right)=K(X)$. The map Φ in Section 2 may be regarded as a map

$$
\Phi: \widetilde{K}\left(X^{\Lambda}\right) \longrightarrow K(X) .
$$

Let $\tau: K(X) \rightarrow \tilde{K}\left(X^{\Lambda}\right)$ be the Thom isomorphism defined by $\tau(x)=$ $\lambda_{A} x$, where $\lambda_{A} \in \widetilde{K}\left(X^{\Lambda}\right)$ is defined by the exterior algebra of Λ ([1]).

Proposition. The map Φ is the inverse of τ.
Corollary. For $f \in \Gamma\left(X, L \times{ }_{S^{1}} \Omega G L(C, \infty)\right)$,

$$
\left\{\psi_{f}(E)\right\}=(1-[\Lambda])\{f\} \in \tilde{K}(X) .
$$

If $G=G L(R, \infty)$, then the projected bundle is isomorphic to the complexification of a real vector bundle. Let $i:[X, \Omega G L(\boldsymbol{R}, \infty)] \rightarrow$ [$X, \Omega G L(C, \infty)]$ be the natural homomorphism.

Corollary. For any $\gamma \in K(X)$ represented by a line bundle over X, and for any $\varepsilon \in[X, \Omega G L(\boldsymbol{R}, \infty)]$, there exists a real vector bundle β on X, such that

$$
(1-\gamma) i(\varepsilon)=\beta_{\boldsymbol{C}} \in \tilde{K}(X)
$$

where β_{C} is the complexification $\beta \otimes_{\boldsymbol{R}} C$.

II. The Manifold of Geodesics

4. Global Jacobi differential equation

Let ∇ be a connection on the tangent bundle $T M$ of a smooth manifold M, and let V^{H} be the horizontal lift of V (Yano-Ishihara [8]). Then V^{H} is a connection on the tangent bundle $T T M$ of $T M$. We decompose the tangent space $T_{v} T M, v \in T M$, as the sum of the horizontal part and the vertical part

$$
T_{v} T M=H_{v} T M+V_{v} T M .
$$

We write $X=\binom{x_{1}}{x_{2}}$ for $X=x_{1}^{H}+x_{2}^{V} \in T_{v} T M$, where $x_{1}, x_{2} \in T_{\pi(v)} M, x_{1}^{H}$ and x_{2}^{V} are horizontal and vertical lifts, π is the projection $T M \rightarrow M$. For a vector field X on M, by definition, we have

$$
\nabla_{X^{V}}^{H}\binom{Y_{1}}{Y_{2}}=0, \quad \nabla_{X}^{H}\binom{Y_{1}}{Y_{2}}=\binom{\nabla_{X} Y_{1}}{\nabla_{X} Y_{2}} .
$$

Let g be a Riemannian metric on M. For $v \in T_{x} M$, we define a linear symmetric transformation R_{v} of $T_{x} M$ by

$$
R_{v} w=R(w, v) v
$$

where $w \in T_{x} M$ and R is the curvature tensor of (M, g). To each $v \in$ $T_{x} M$, we define a linear endomorphism P_{v} of $T_{v} T M$ by

$$
P_{v}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0 & I \\
-R_{v} & 0
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

This defines a smooth cross section P of the bundle Hom (TTM, TTM) over $T M$. Let Z be the geodesic flow vector field. Then we have $Z(v)=$ $\binom{v}{0}$ for $v \in T M$. We define a linear differential equation on $T M$ by

$$
\begin{equation*}
\nabla_{Z}^{H} Y=P Y \tag{2}
\end{equation*}
$$

where $Y=\binom{y_{1}}{y_{2}}$ is a time dependent smooth cross section of the bundle $T T M$ over $T M$. We call (2) the global Jacobi differential equation. It is a second order differential equation.

5. The tangent bundle of the manifold of geodesics

Let (M, g) be a C_{l}-manifold. Then the geodesic flow is periodic and defines a free S^{1}-action on the unit tangent sphere bundle $T_{1} M$. The manifold of geodesics Geod (M, g) is the quotient space $T_{1} M / S^{1}$. We give the canonical metric on $T M$. Let \widetilde{F} be the subbundle of $T T M$ consisting of vectors orthogonal to X^{H} and x^{V} at $x \in T M$. Let F be the restriction of \tilde{F} on $T_{1} M$. Then the global Jacobi equation (2) can be restricted on F and it defines a projecting isomorphism on F. Since the solution of the Jacobi equation is the integral curve of the complete lift ([8]) of the geodesic flow vector field, we obtain

Proposition. The projected bundle \hat{F} defined by the global Jacobi differential equation is isomorphic to the tangent bundle $T \operatorname{Geod}(M, g)$ of $\operatorname{Geod}(M, g)$.

III. Differential Equation and Morse Theory

6. Sturm-Liouville equation and a symmetric space

We want to study geometrically families of curves defined by vectorvalued Sturm-Liouville equations

$$
\begin{equation*}
y^{\prime \prime}-q_{x}(t) y=0 \tag{3}
\end{equation*}
$$

where $y^{\prime \prime}$ means $d^{2} y / d t^{2}$ and $q_{x}(t)$ is a symmetric matrix-valued continuous function on $t \in \boldsymbol{R}$ parameterized by a point x in a smooth manifold X. Put $z=\binom{y}{y^{\prime}}$ and we obtain

$$
z^{\prime}-\left(\begin{array}{cc}
0 & I \tag{4}\\
q_{x} & 0
\end{array}\right) z=0
$$

Since $\left(\begin{array}{rr}0 & I \\ q_{x} & 0\end{array}\right)$ is contained in the Lie algebra $\mathfrak{Z p}(m, \boldsymbol{R})$, the fundamental solution $W_{x}(t)$ with $W_{x}(0)=I$ is contained in the Lie group $S p(m, \boldsymbol{R})$.

We embed $G L^{+}(m, \boldsymbol{R})$ in $S p(m, \boldsymbol{R})$ by regarding $x \in G L^{+}(m, \boldsymbol{R})$ as $\left(\begin{array}{cc}x & 0 \\ 0 & { }^{t} x^{-1}\end{array}\right)$ in $S p(m, \boldsymbol{R})$. Let N be the subgroup of $S p(m, \boldsymbol{R})$ defined by

$$
N=\left\{\left(\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right) ;{ }^{t} C=C\right\} .
$$

Then $N \cap G L^{+}(m, \boldsymbol{R})=I$ and $x N x^{-1}=N$ for all $x \in G L^{+}(m, \boldsymbol{R})$. Thus $N \cdot G L^{+}(m, \boldsymbol{R})=G L^{+}(m, \boldsymbol{R}) \cdot N$, which we denote by H. Let Q be the space of right cosets $H \backslash S p(m, \boldsymbol{R})$ and let

$$
\mu: S p(m, \boldsymbol{R}) \longrightarrow Q=N \cdot G L^{+}(m, \boldsymbol{R}) \backslash S p(m, \boldsymbol{R})
$$

be the natural projection. Since $U(m) \cap H=S O(m)$, we have $S O(m) \backslash U(m)$ $=H \backslash S p(m, \boldsymbol{R})=Q$. We also denote by μ the projection $U(m) \rightarrow Q$. Let \mathfrak{G} be the Lie algebra of H and let \mathfrak{M} be the subspace of $\mathfrak{u}(m) \subset \mathfrak{j p}(M, \boldsymbol{R})$ defined by

$$
\mathfrak{M}=\left\{\left(\begin{array}{rr}
0 & B \\
-B & 0
\end{array}\right) ;{ }^{t} B=B\right\} .
$$

Then we have

$$
\begin{array}{ll}
\mathfrak{g p}(m, \boldsymbol{R})=\mathfrak{M}+\mathfrak{h}, & \mathfrak{u}(m)=\mathfrak{M}+\mathfrak{B o}(m), \\
{[\mathfrak{M}, \mathfrak{B n}(m)] \subset \mathfrak{M},} & {[\mathfrak{M}, \mathfrak{M}] \subset \mathfrak{B o}(m) .}
\end{array}
$$

The space Q has a $U(m)$-invariant metric such that Q is a Riemannian symmetric space.

7. Sturm-Liouville curve

We identify $\mathfrak{j p}(m, \boldsymbol{R})$ with the right invariant vector field on $S p(m, \boldsymbol{R})$. Define a subspace $\operatorname{stl}(m)$ of $\mathfrak{g p}(m, \boldsymbol{R})$ by

$$
\operatorname{stl}(m)=\left\{\left(\begin{array}{ll}
0 & I \\
C & 0
\end{array}\right) ;{ }^{t} C=C\right\}
$$

We say that a smooth curve $c:[0,1] \rightarrow S p(m, \boldsymbol{R})$ is a Sturm-Liouville curve (abbrev. SL-curve) if $d c / d t$ is contained in the set $\operatorname{stl}(m)$ for all $t \in[0,1]$. Let \mathfrak{M}^{+}be the subspace of \mathfrak{M} defined by

$$
\mathfrak{M}^{+}=\left\{\left(\begin{array}{rr}
0 & B \\
-B & 0
\end{array}\right) ;{ }^{t} B=B>0\right\} .
$$

For $x \in S p(m, \boldsymbol{R})$, we write \mathfrak{M}_{x}^{+}for the subspace of $T_{x} S p(m, \boldsymbol{R})$ corresponding to \mathfrak{M}^{+}. If $\mu\left(x_{1}\right)=\mu\left(x_{2}\right)$ for $x_{1}, x_{2} \in \operatorname{Sp}(m, \boldsymbol{R})$, then

$$
\mu_{*}\left(\mathfrak{M}_{x_{1}}^{+}\right)=\mu_{*}\left(\mathfrak{M}_{x_{2}}^{+}\right) .
$$

For $q \in Q$, we define a subspace $\mu_{*}\left(\mathfrak{M}^{+}\right)$of $T_{q} Q$ by $\mu_{*}\left(\mathfrak{M}_{x}^{+}\right)$for some $x \in$ $S p(m, \boldsymbol{R}), \mu(x)=q$.

A smooth curve $c ;[0,1] \rightarrow Q$ is called a positive curve (abbrev. (+)curve) if $d c / d t$ is contained in $\mu_{*}\left(\mathfrak{M}^{+}\right)$for all $t \in[0,1]$. The image $\hat{c}=$ $\mu c:[0,1] \rightarrow Q$ of a SL-curve $c:[0,1] \rightarrow \operatorname{Sp}(m, \boldsymbol{R})$ is a (+)-curve. Let us define a space $\Omega^{+}(Q)$ by the set of all piecewise smooth $(+)$-curves $c:[0,1]$ $\rightarrow Q$ with $c(0)=c(1)=p_{0}$, where $p_{0}=\{H\} \in Q$. An element in $\Omega^{+}(Q)$ is called a (+)-loop. We give a topology on $\Omega^{+}(Q)$ as the subspace of the loop space $\Omega(Q)$. The energy function E is given by $E(\omega)=\int_{0}^{1}\left\|\frac{d \omega}{d t}\right\|^{2} d t$ for $\omega \in \Omega^{+}(Q) . \quad \mathrm{A}(+)$-loop ω in $\Omega^{+}(Q)$ is a critical point for the function E if and only if ω is a geodesic $(+)$-loop. Remark that a geodesic of Q emanating from p_{0} is given by

$$
\gamma_{X}(t)=p_{0} \exp t X
$$

for $X \in \mathfrak{M}$.
Remark that we can define the space of (+)-curves in $\Omega(U(m))$ to be the inverse image of $\Omega^{+}(Q)$ by the natural projection $\Omega(U(m)) \rightarrow \Omega(Q)$. The following arguments are also valid. But for our purpose, the definition is sufficient.

8. Morse theory on $\Omega^{+}(Q)$

We study the weak homotopy type of the space $\Omega^{+}(Q)$ by using the Morse theory, where $Q=S O(m) \backslash U(m)$. On $\Omega=\Omega(Q)$, we have the energy function E defined by

$$
E(\omega)=\int_{0}^{1}\left\|\frac{d \omega}{d t}\right\|^{2} d t
$$

for $\omega \in \Omega(Q)$. Given $c>0$, let $\Omega_{c}=\Omega_{c}(Q)$ denote the closed subset $E^{-1}([0, c]) \subset \Omega(Q)$ and let Int Ω_{c} denote the open subset $E^{-1}([0, c])$. Put $\Omega_{c}^{+}=\Omega_{c} \cap \Omega^{+}(Q)$ and Int $\Omega_{c}^{+}=\operatorname{Int} \Omega_{c} \cap \Omega^{+}(Q)$. Regard S^{1} as $[0,1] /\{0\} \sim$ $\{1\}$. We can choose a subdivision $0=t_{0}<t_{1}<\cdots<t_{k}=1$ of $[0,1]$ so that, for any $\omega \in \Omega_{c}$, the geodesic connecting $\omega\left(t_{i-1}\right)$ and $\omega\left(t_{i}\right)$ is uniquely and differentiably determined by the two end points, for each $i=1,2, \cdots, k$ (cf. [6, § 16]). For any $j \in N$, let $0=t_{0}<t_{1}<\cdots<t_{2 j-1_{k}}=1$ be the vertexes of the $(j-1)$-th barycentric subdivision of the polyhedron $[0,1]$ with the vertexes $t_{0}, t_{1}, \cdots, t_{k}$. We define ${ }^{j} \Omega_{c}$ to be the subspace of Ω_{c} consisting of loops $\omega \in \Omega_{c}$ such that $\left.\omega\right|_{\left[t_{i-1}, t_{i}\right]}$ is the geodesic for each $i=1,2, \cdots$, $2^{j-1} k$. Put ${ }^{j} \Omega_{c}^{+}={ }^{j} \Omega_{c} \cap \Omega^{+}$, and Int $\Omega_{c}^{+}=\operatorname{Int}{ }^{j} \Omega_{c} \cap \Omega^{+}$. We have the natural inclusions

$$
{ }^{1} \Omega_{c}^{+} \subset^{2} \Omega_{c}^{+} \subset \cdots \subset^{j} \Omega_{c}^{+} \subset \cdots .
$$

We study the homotopy type of ${ }^{j} \Omega_{c}^{+}$and show that the inclusions are homotopy equivalences. Note that Int ${ }^{j} \Omega_{c}$ has the structure of a smooth finite dimensional manifold, and Int ${ }^{j} \Omega_{c}^{+}$is an open submanifold of Int ${ }^{j} \Omega_{c}$. Choose a Riemannian metric on Int ${ }^{j} \Omega_{c}$, and consider the gradient vector field $\operatorname{grad}(-E)=-\operatorname{grad} E$. Let ϕ_{s} be the associated local one-parameter group of transformations. The main result of this section is the following

Proposition. For any $\omega \in \operatorname{Int}{ }^{j} \Omega_{c}^{+}$, the maximal integral curve $\phi_{s}(\omega)$ for $s \geq 0$ of $-\operatorname{grad} E$ in Int ${ }^{j} \Omega_{c}$ is contained in Int ${ }^{j} \Omega_{c}^{+}$.

For the proof, we need the following. For a real symmetric $(m \times m)$ matrix A, we associate a real number $\sigma(A)$ defined by

$$
\sigma(A)=\min _{\|a\|=1}\langle A a, a\rangle,
$$

where $a \in \boldsymbol{R}^{m}$, and $\langle\quad\rangle$ is the usual inner product in \boldsymbol{R}^{m}.
Obviously we have
Lemma. For any two real symmetric $(m \times m)$-matrices A and B, we have

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)
$$

Let p be a point in Q. We can express p by $p=S O(m) g$ for some g in $U(m)$. We identify $T_{p} Q$ with $\mathfrak{M}=T_{p_{0}} Q$ by the right translation $\left(R_{g}\right)_{*}$. Thus a vector $X \in T_{p} Q$ is identified with $A \in \mathfrak{M}$, where $X=\left(R_{g}\right)_{*} A$. The space \mathfrak{M} is naturally identified with the set of real symmetric ($m \times m$)matrices. We define a real number $\sigma(X)$ by

$$
\sigma(X)=\sigma(A)
$$

Lemma. The value $\sigma(X)$ is independent of the choice of g in $U(m)$.
Thus σ is a well-defined function on $T_{p}(Q)$. Let h be an element of $U(m)$. For any $p \in Q$ and $X \in T_{p} Q$, we have

$$
\sigma\left(\left(R_{h}\right)_{*} X\right)=\sigma(X)
$$

Now let ω be an element in Int ${ }^{j} \Omega_{c}$. Then ω is a broken geodesic with $E(\omega)<c$. Put $V_{t}=d \omega / d t$, and $\Delta_{t} V=V_{t+}-V_{t-}=$ discontinuity in the velocity vector at t, where $0<t<1$.

Then $\Delta_{t} V=0$ except for $t=t_{1}, t_{2}, \cdots, t_{2 j-1_{k-1}}$. We define a real number $\sigma(\omega)$ by

$$
\sigma(\omega)=\min _{i=0,1, \ldots, 2^{j-1} k_{-1}} \sigma\left(V_{t_{i}^{+}}\right) .
$$

Remark that $\sigma\left(V_{t_{i}+}\right)=\sigma\left(V_{t_{i+1}-}\right)=\sigma\left(V_{t}\right)$ for $t_{i}<t<t_{i+1}$. Obviously σ is a continuous function on the manifold Int ${ }^{1} \Omega_{c}$. More precisely, we have the following

Lemma. For any smooth curve $\psi: \boldsymbol{R} \rightarrow \operatorname{Int}^{j} \Omega_{c}$, the function $\psi^{*} \sigma$ is a piecewise smooth function on \boldsymbol{R}.

Remark that $\omega \in \operatorname{Int}{ }^{j} \Omega_{c}$ is contained in Int ${ }^{j} \Omega_{c}^{+}$if and only if $\sigma(\omega)>0$.
Let ω be an element in Int ${ }^{j} \Omega_{c}^{+}$, and let $\phi:(-\varepsilon, \varepsilon) \rightarrow$ Int ${ }^{j} \Omega_{c}^{+}$be the integral curve of the vector field $-\operatorname{grad} E$ with $\phi(0)=\omega$.

Lemma. Suppose that $\phi^{*} \sigma$ is smooth at 0 . Then we have

$$
(-\operatorname{grad} E)_{\omega}(\sigma) \geq 0
$$

The proof is given as follows. By the first variational formula, we have

$$
(-\operatorname{grad} E)_{\omega}=\sum_{i} \Delta_{t_{i}} V
$$

We show that, for each $i,\left(U_{t_{i}} V\right)(\sigma) \geq 0$. The integral curve $\omega(s)(t)=\omega^{s}(t)$ of $\Delta_{t_{i}} V$ with $\omega^{0}(t)=\omega(t)$ in Int ${ }^{j} \Omega_{c}^{+}$for $-\varepsilon<s<\varepsilon, \varepsilon$ small, is given as follows. Let $\eta(t), 0 \leq t$, be the geodesic with $\eta(0)=\omega\left(t_{i}\right)$ such that $d \eta / d t(0)$ $=\Delta_{t^{i}} V$. We define the loop ω^{s} by
$\omega^{s}(t)= \begin{cases}\omega(t) \quad \text { for } 0 \leq t \leq t_{i-1} \text { and } t_{i+1} \leq t \leq 1, & \\ \text { geodesic connecting } \omega\left(t_{i-1}\right) \text { and } \eta(s) & \text { for } t_{i-1} \leq t \leq t_{i}, \\ \text { geodesic connecting } \eta(s) \text { and } \omega\left(t_{i+1}\right) & \text { for } t_{i} \leq t \leq t_{i+1} .\end{cases}$

Put $V_{t}^{s}=d \omega^{s} / d t$. By the definition of $\sigma(\omega)$, it is sufficient to show that $\lim _{s \rightarrow 0} 1 / s\left(\sigma\left(V_{t_{i}-}^{s}\right)-\sigma\left(V_{t_{-}-}\right)\right) \geq 0$ and $\lim _{s \rightarrow 0} 1 / s\left(\sigma\left(V_{t_{i_{+}}}^{s}\right)-\sigma\left(V_{t_{i}+}\right)\right) \geq 0$. For fixed s, let $\alpha^{s}(t)(0 \leq t \leq s)$ denote the geodesic such that $\alpha^{s}(0)=\omega\left(t_{i}-s\right)$ and $\alpha^{s}(s)=\eta(s)$. Let exp: $\mathfrak{u}(m) \rightarrow U(m)$ be the exponential mapping of the group $U(m)$. Fix an identification of $T_{\omega\left(t_{i}-s\right)} Q$ with $M \mathcal{M}$ and identify $T_{\omega\left(t_{i}\right)} Q$ with $T_{\omega\left(t_{i}-s\right)} Q$ by the action of $\exp \left(V_{t_{i}-}\right)$. Then the velocity vector $d \alpha^{s} / d t(0)$ is given by $\mu_{*}\left\{\exp ^{-1}\left(\exp \left(s \Delta_{t_{i}} V\right) \exp \left(s V_{t_{i}-s}\right)\right)\right\}$, where $\mu_{*}: \mathfrak{t}(m) \rightarrow \mathfrak{M}$ is the projection. Since $V_{t_{i-s}}=V_{t_{i}-}$ by the identification, we have $\Delta_{t_{i}} V+V_{t_{i}-s}=V_{t_{i}+}$. Consequently we have

$$
\frac{d \alpha^{s}}{d t}(0)=\mu_{*}\left\{s V_{t_{i}+}+\frac{s^{2}}{2}\left[\Delta_{t_{i}} V, V_{t_{i}-}\right]+o\left(s^{3}\right)\right\}
$$

where $o\left(s^{3}\right)$ denote a $\mathfrak{a}(m)$-valued function of order s^{3}. Since $\sigma\left(V_{t_{i}+}\right)>0$, we have $\left(\left(d \alpha^{s} / d t\right)(0)\right)>0$ for small $s>0$. Let $\operatorname{Exp}=\operatorname{Exp}_{\eta(s)}: T_{\eta(s)} Q \rightarrow Q$ be the exponential mapping of the symmetric space Q. In the vector space $T_{\eta(s)} Q$, we have equalities

$$
\operatorname{Exp}^{-1}\left(\omega\left(t_{i}-s\right)\right)=-\frac{d \alpha^{s}}{d t}(s), \quad \operatorname{Exp}^{-1}\left(\omega\left(t_{i-1}\right)\right)=-V_{t_{i}--}^{s}
$$

Since

$$
\left\{\operatorname{Exp}^{-1}\left(\omega\left(t_{i}-s\right)-\operatorname{Exp}^{-1}\left(\omega\left(t_{i-1}\right)\right)\right\}+\left\{-\operatorname{Exp}^{-1}\left(\omega\left(t_{i}-s\right)\right)\right\}=-\operatorname{Exp}^{-1}\left(\omega\left(t_{i-1}\right)\right)\right.
$$

we have

$$
\sigma\left(\operatorname{Exp}^{-1}\left(\omega\left(t_{i}-s\right)\right)-\operatorname{Exp}^{-1}\left(\omega\left(t_{i-1}\right)\right)\right)+\sigma\left(\frac{d \alpha^{s}}{d t}(s)\right) \leq \sigma\left(V_{t_{i}-}^{s}\right)
$$

Note that

$$
\lim _{s \rightarrow 0}\left\{\operatorname{Exp}^{-1}\left(\omega\left(t_{i}-s\right)\right)-\operatorname{Exp}^{-1}\left(\omega\left(t_{i-1}\right)\right)\right\}=V_{t_{i}-} \in T_{\omega\left(t_{i}\right)} Q
$$

and

$$
\sigma\left(\frac{d \alpha^{s}}{d t}(s)\right)=\sigma\left(\frac{d \alpha^{s}}{d t}(0)\right)
$$

Consequently we have

$$
\lim _{s \rightarrow 0+}\left\{\sigma\left(V_{t_{i}-}^{s}\right)-\sigma\left(V_{t_{i}-}\right)\right\} \geq 0
$$

and

$$
\lim _{s \rightarrow 0} \frac{1}{s}\left\{\sigma\left(V_{t_{i}-}^{s}\right)-\sigma\left(V_{t_{i-}}\right)\right\} \geq 0
$$

if it exists. The proof that

$$
\lim _{s \rightarrow 0} \frac{1}{S}\left\{\sigma\left(V_{t_{i}+}^{s}\right)-\sigma\left(V_{t_{i}+}\right)\right\} \geq 0
$$

is quite similar.
Let $W_{i}(i=1,2, \cdots, p)$ be the collection of critical manifolds in Int ${ }^{j} \Omega_{c}^{+}$(Bott [4]). Remark that these collections are equal for every $j=1,2, \cdots$. Let ξ_{i} be the negative bundle of W_{i} ([4]).

Corollary. For any $j \geq 1$, the space ${ }^{j} \Omega_{c}$ is homotopy equivalent to the CW-complex

$$
K=\xi_{1} \cup \xi_{2} \cup \cdots \cup \xi_{p}
$$

Corollary. The inclusions

$$
{ }^{1} \Omega_{c}^{+} \subset^{2} \Omega_{c}^{+} \subset \cdots \subset^{1} \Omega_{c}^{+} \subset \cdots
$$

are homotopy equivalences.
Put ${ }^{\text {pf }} \Omega_{c}^{+}=\underline{\lim _{j}}{ }^{j} \Omega_{c}^{+} . \quad$ Then ${ }^{p f} \Omega_{c}^{+}$is homotopy equivalent to ${ }^{j} \Omega_{c}^{+}$for any $j \geq 1$.

The following is easy to see.
Proposition. For any compact topological space X, the inclusion $i:{ }^{p f} \Omega_{c}^{+} \longrightarrow \Omega_{c}^{+}$induces an isomorphism

$$
i_{*}:\left[X,{ }^{p f} \Omega_{c}^{+}\right] \cong\left[X, \Omega_{c}^{+}\right] .
$$

9. Degree and index of $(+)$-loops

For $x \in Q=S O(m) \backslash U(m)$, we have the $\operatorname{determinant} \operatorname{det}(x) \in S^{1}=$ $\{z \in C ;\|z\|=1\}$. For a map $\omega: S^{1} \rightarrow Q$, the degree $d(\omega)$ is defined to be the winding number of the composition det $\cdot \omega: S^{1} \rightarrow S^{1}$. Two elements ω_{1} and ω_{2} in $\Omega(Q)$ are contained in the same connected component if and only if $d\left(\omega_{1}\right)=d\left(\omega_{2}\right)$. For $k \in Z$, put ${ }_{k} \Omega(Q)=\{\omega \in \Omega(Q) ; d(\omega)=k\}$ and ${ }_{k} \Omega^{+}(Q)=\Omega^{+}(Q) \cap_{k} \Omega(Q)$.

The following follows from results of Section 8.
Proposition. Every $(+)$-loop ω is homotopic in $\Omega^{+}(Q)$ to a geodesic loop.

Each geodesic issuing from $p_{0}=\{S O(m)\}$ is written as $p_{0} \exp t A$ for some $A \in \mathfrak{M}$. Diagonalize A, and we obtain

Proposition. For $Q=S O(m) \backslash U(m),{ }_{k} \Omega^{+}(Q)$ is non-vacuous if and only if $k \geq m$.

The critical manifold in ${ }_{m} \Omega^{+}(Q)$ consists of one point γ_{0} defined by $p_{0} \exp \frac{t}{2 \pi}\left(\begin{array}{rr}0 & I \\ -I & 0\end{array}\right)$.

Proposition. The space ${ }_{m} \Omega^{+}(S O(m) \backslash U(m))$ is contractible (up to weak homotopy type).

Now to each $(+)$-loop $\omega \in \Omega^{+}(Q)$, we will associate a non-negative integer $i(\omega)$ called the index of ω. Let $\Pi: \mathfrak{Z p}(m, \boldsymbol{R})=\mathfrak{M}+\mathfrak{h} \rightarrow \mathfrak{M}$ be the projection. A $(+)$-loop $\omega \in \Omega^{+}(Q)$ is the image by μ of a piecewise smooth curve $\zeta:[0,1] \rightarrow S p(m, R)$ satisfying the relations

$$
\begin{aligned}
& \zeta(0)=I, \quad \zeta(1) \subset H, \\
& \Pi\left(\frac{d \zeta}{d t}(t) \zeta^{-1}(t)\right) \subset \mathfrak{M}^{+} \quad \text { for all } t \in[0,1] .
\end{aligned}
$$

We say that ζ is a lifting of ω. Express the $\mathfrak{Z p}(m, \boldsymbol{R})$-valued function $d \zeta / d t \cdot \zeta^{-1}$ on $[0,1]$ as

$$
\frac{d \zeta}{d t}=\left(\begin{array}{rr}
A & B \\
C & -{ }^{t} A
\end{array}\right) \zeta .
$$

Then $\Pi\left(d \zeta / d t \cdot \zeta^{-1}\right) \subset \mathfrak{M}^{+}$if and only if $B>0$. The curve

$$
\zeta(t)=\left(\begin{array}{ll}
X(t) & Y(t) \\
Z(t) & W(t)
\end{array}\right)
$$

is the fundamental matrix of the differential equation

$$
\binom{U}{V}^{\prime}=\left(\begin{array}{rr}
A & B \tag{5}\\
C & -{ }^{t} A
\end{array}\right)\binom{U}{V} .
$$

We say that $0<t \leq 1$ is conjugate to 0 if there exists a non-zero solution $\binom{U}{V}$ of (5) such that

$$
\begin{equation*}
U(0)=U(t)=0 . \tag{6}
\end{equation*}
$$

Thus t with $0<t \leq 1$ is conjugate to 0 if and only if det $Y(t)=0$. The multiplicity of the conjugate point t is defined to be the dimension of the solutions $\binom{U}{V}$ of (5) which satisfy (6). We define the k-th conjugate point by counting multiplicities. The index of the curve $\zeta:[0,1] \rightarrow$ $S p(m, R)$ is defined to be the number of conjugate points in $(0,1)$ counted with their multiplicities.

By a $(+)$-variation of the curve $\zeta(t)=\zeta_{0}(t)$, we mean a continuous mapping

$$
\zeta:(-\varepsilon, \varepsilon) \times[0,1] \longrightarrow S p(m, \boldsymbol{R})
$$

for some $\varepsilon>0$, such that
*) ζ_{s} is piecewise smooth,
**) $\quad \Pi\left(\left(d \zeta_{s} / d t\right)(t)\right) \in \mathfrak{M}^{+}$for all $s \in(-\varepsilon, \varepsilon)$ and $t \in[0,1]$, where we put $\zeta_{s}(t)=\zeta(s, t)$.

By the classical method in the calculus of variations, we obtain
Proposition. For a (+)-variation, the k-th conjugate points vary continuously for all $k \in N$.

Suppose that ζ_{s} is a $(+)$-variation of ζ, such that $\zeta_{s}(0)=e$, and $\zeta_{s}(1)$ ϵH for all $s \in(-\varepsilon, \varepsilon)$. Then the point 1 is conjugate to 0 with multiplicity equal to m. Since m is the maximum of possible multiplicities, conjugate points do not cross the point 1.

Proposition. Suppose that a $(+)$-variation ζ_{s} satisfies the relation $\zeta_{s}(0)$ $=e, \zeta_{s}(1) \in H$ for all $s \in(-\varepsilon, \varepsilon)$. Then, for any $s \in(-\varepsilon, \varepsilon)$, the index of ζ_{s} is equal to the index of ζ_{0}.

For an element $\omega \in \Omega^{+}(Q)$, we define the index $i(\omega)$ to be the index of a lifting ζ. Obviously we have

Lemma. If ω_{0} and ω_{1} lie in the same arcwise connected component of $\Omega^{+}(Q)$, then $i\left(\omega_{0}\right)=i\left(\omega_{1}\right)$.

The sum of conjugate points in $(0,1]$ of a geodesic loop $\gamma \in \Omega(Q)$ is equal to $2 \mathrm{~d}(\gamma)$.

Lemma. For a geodesic loop $\gamma \in \Omega^{+}(Q)$, we have

$$
i(\gamma)=2 d(\gamma)-m .
$$

Combining lemmas, we obtain
Proposition. For $a(+)$-loop $\omega \in \Omega^{+}(Q)$,

$$
i(\omega)=2 d(\omega)-m .
$$

IV. C_{l}-metrics on S^{n}

10. A stable bundle

Let g be a C_{l}-metric on S^{n}. We may assume that $l=1$. We embed
S^{n} in R^{n+1} as the unit sphere. We give a Riemannian metric h on \boldsymbol{R}^{n+1} such that h is equal to the product $g \times g_{0}$ on a tubular neighborhood of S^{n} in R^{n+1}, where g_{0} is the standard metric on $(-1,1)$. The metric h naturally induces the Riemannian metric h on $T R^{n+1}$.

Let $L=T_{1} S^{n}$ be the unit tangent sphere bundle of S^{n}. Define a $(2 n+2)$-dimensional vector bundle E over L by $E=T T R^{n+1} \mid L$. Of course E is isomorphic to the trivial bundle. The geodesic flow defines a free S^{1-} action on L such that the base space X is equal to $\operatorname{Geod}\left(S^{n}, g\right)$. We give a projecting isomorphism Φ on E as follows. Let B be the (2n-2)dimensional subbundle of E consisting of tangent vectors of L orthogonal to the geodesic flow vector. Thus we have the orthogonal decomposition

$$
E=A \oplus B,
$$

where A is the real 4-dimensional vector bundle isomorphic to the trivial bundle. Consider the following differential equation on E,

$$
\begin{equation*}
\nabla_{\dot{r}}^{H}\binom{Y_{1}}{Y_{2}}=\tilde{P}\binom{Y_{1}}{Y_{2}}, \tag{7}
\end{equation*}
$$

where $\dot{\gamma}$ is the geodesic flow vector, and \widetilde{P} is the linear endomorphism of E defined by,

$$
\widetilde{P}_{v}=\left\{\begin{array}{c}
\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right) \quad \text { on } A \\
P_{v}=\left(\begin{array}{cc}
0 & I \\
-R_{v} & 0
\end{array}\right) \quad \text { on } B,
\end{array}\right.
$$

where $v \in L \subset T R^{n+1}$ and R is the curvature tensor of $\left(R^{n+1}, h\right)$. We write $\widetilde{P}_{v}=\left(\begin{array}{ll}0 & I \\ P^{*} & 0\end{array}\right)$ on E. Then all the solutions of (7) are periodic and it defines a projecting isomorphism Φ on E. Remark that Φ can be restricted to subbundles A and B. Let \hat{A} and \hat{B} be the projected bundle. Then the projected bundle \hat{E} is isomorphic to the Whitney sum $\hat{A} \oplus \hat{B}$. The natural complex structure of the bundle $\boldsymbol{T} T \boldsymbol{R}^{n+1}$ induces the complex structure on \hat{E} such that \hat{A} and \hat{B} are complex subbundles. By the result of Section $5, \hat{B}$ is isomorphic to the tangent bundle $T X$.

Let γ denote the complex line bundle associated to the S^{1}-principal bundle $T_{1} S^{n} \rightarrow X$, and γ^{*} be the dual bundle.

Proposition. The complex bundle A is isomorphic to the bundle $2 \gamma^{*}$ $=\gamma^{*} \oplus \gamma^{*}$.

11. Proof of Theorem

Let $Z_{1}, Z_{2}, \cdots, Z_{n+1}$ be a global orthonormal frame of $\left(\boldsymbol{R}^{n+1}, h\right)$. We have the horizontal and the vertical lifts

$$
\begin{aligned}
& Z_{1}^{H}, Z_{2}^{H}, \cdots, Z_{n+1}^{H} \\
& Z_{1}^{V}, Z_{2}^{V}, \cdots, Z_{n+1}^{V}
\end{aligned}
$$

on the manifold $T \boldsymbol{R}^{n+1}$. Define an $(n+1) \times(n+1)$-matrix valued function $A=\left(a_{i j}\right)$ on $L=T_{1} S^{n}$ by

$$
\nabla_{i} Z_{j}=\sum_{k=1}^{n+1} a_{i k} Z_{k}
$$

where $\dot{\gamma}$ is the geodesic flow vector field. Remark that $a_{i j}=-a_{j i}$. For unknown vectors Y_{1} and Y_{2}, write

$$
\begin{aligned}
& Y_{1}^{i}=\sum_{j} f_{i j} Z_{j} \\
& Y_{2}^{i}=\sum_{j} g_{i j} Z_{j}
\end{aligned}
$$

The vector $Y=\binom{Y_{1}}{Y_{2}}$ is represented by $(2 n+2, n+1)$-matrix $\binom{F}{G}$, where $F=\left(f_{i j}\right)$ and $G=\left(g_{i j}\right) . \quad$ Consider the following differential equation,

$$
(Y, Z)^{\prime}=(Y, Z)\left(\begin{array}{rr}
-A & 0 \tag{8}\\
0 & -A
\end{array}\right)+\left(\begin{array}{ll}
0 & I \\
P^{*} & 0
\end{array}\right)(Y, Z)
$$

where Y and Z are ($2 n+2, n+1$)-matrices and means $d / d t$. The solutions Y and Z of (8) give the solutions of (7). Let U and V be the fundamental matrix of the differential equations

$$
U^{\prime}=U\left(\begin{array}{rr}
-A & 0 \\
0 & -A
\end{array}\right), \quad V^{\prime}=\left(\begin{array}{ll}
0 & I \\
P^{*} & 0
\end{array}\right) V
$$

Then the matrix equation W of (8) is given by

$$
W=V U
$$

Since $A \in \mathfrak{o}(n+1, \boldsymbol{R}), U$ is contained in $S O(n+1, \boldsymbol{R})$. Since $\left(\begin{array}{ll}0 & I \\ P^{*} & 0\end{array}\right)$ $\in \mathfrak{B p}(n+1, \boldsymbol{R}), V \in S p(n+1, \boldsymbol{R})$. Thus W is contained in $S p(n+1, \boldsymbol{R}) . \quad$ By the projection $\mu: S p(n+1, R) \rightarrow Q=H \backslash S p(n+1, R)=S O(n+1) \backslash U(n+1)$, U is mapped trivially. Since $W(0)=W(1)=e$, we have $\mu V(0)=\mu V(1)=p_{0}$. Thus μV can be regarded as a map : $X \rightarrow \Omega Q$. For $W^{-1}=U^{-1} V^{-1}$, we have $\mu\left(W^{-1}\right)=\mu\left(V^{-1}\right)$. Since $\operatorname{dim} X=2 n-2$, the set of homotopy classes
[$X, \Omega S p(n+1, R)]$ and $[X, \Omega Q]$ are abelian groups and μ induces a homomorphism. As elements in $[x, \Omega Q]$,

$$
\{\mu v\}=-\left\{\mu\left(V^{-1}\right)\right\}=-\left\{\mu\left(W^{-1}\right)\right\}=\{\mu W\} .
$$

Note that μV belongs to $\Omega^{+}(Q)$.
Using the fact that the index of geodesics of a C_{l}-metric of S^{n} is equal to $n-1$ (Bott [3]), we obtain

Lemma. The degree of the $(+)$-loop μV is equal to $n+1$.
From Section 8, it follows that the homotopy class of μV is trivial. The trivial homotopy class gives the bundle $(n+1) r^{*}$.

The proof of the main theorem is given as follows. From Section 10 , we see that the equation (8) gives the projecting isomorphism Φ such that

$$
\hat{E}=T X \oplus 2 \gamma^{*}
$$

Let $i:[X, \Omega G L(\boldsymbol{R}, \infty)] \rightarrow K(X)=[X, \Omega G L(C, \infty)]$ be the natural homomorphism. The difference between $\Phi(\hat{E})$ and the trivial class lies in the image of $[X, \Omega G L(R, \infty)]$. By Corollary of Section 3, we obtain

$$
\hat{E}-(n+1) \gamma^{*}=(1-\gamma) i(\varepsilon),
$$

for some $\varepsilon \in[X, \Omega G L(R, \infty)]$. Thus

$$
T X+2 \gamma^{*}=(n+1) \gamma^{*}+(1-\gamma) i(\varepsilon)
$$

Write τ for $T X$. Tensoring γ to both sides, we obtain

$$
\tau \otimes \gamma=(n-1)+(1-\gamma) \gamma i(\varepsilon) .
$$

Since $(1-\gamma) \gamma=\left(1-\gamma^{2}\right)-(1-\gamma)$, by Corollary in Section 3, we have real vector bundles ξ_{1} and ξ_{2} such that

$$
(1-\gamma) \gamma i(\varepsilon)=\xi_{1} \underset{\boldsymbol{R}}{\otimes} C-\xi_{2} \underset{\boldsymbol{R}}{\otimes} \boldsymbol{C} .
$$

Thus we have

$$
(\tau \otimes \gamma)^{s t}=\underset{\boldsymbol{R}}{\underset{\sim}{\otimes}} \boldsymbol{C},
$$

for some real vector bundle ξ over X, which is the concluson of Theorem.
Acknowledgement. The author thanks to Takashi Sakai for helpful remarks.

References

[1] M. F. Atiyah, K-theory, Benjamin, 1967.
[2] A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 93 (1978), Springer.
[3] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60 (1954), 375-382.
[4] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
[5] V. Guillemin, The Radon transform on Zoll surface, Adv. in Math., 22 (1976), 85-119.
[6] J. Milnor, Morse theory, Ann. of Math. Studies, 51, Princeton University Press (1962).
[7] A. Weinstein, Fourier integral operators, quantization, and the spectra of Riemannian manifolds, Géométrie symplectique et physique mathématique, Colloq. Intern. C.N.R.S., 237 (1976), 289-298.
[8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.
[9] C. T. C. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom., 15 (1980), 91-96.
[10] O. Zoll, Uber Flächen mit Scharen Geschlossener Geodätischer Linien, Math. Ann., 57 (1903), 108-133.

Department of Mathematics
Tôhoku University
Sendai 980
Japan

[^0]: Received January 8, 1983.
 Revised May 18, 1983.

