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§ O. Introduction 

Let (M, g) be a compact connected Riemannian manifold of dimen­
sion n and fix a point p of M. Let r x be a geodesic emanating from p 
with the unit initial direction X E TpM. We define the cut point of p 
along r x as the last point on r x to which the geodesic minimizes the 
distance. The locus C(p) of all cut points of p is called the cut locus of p. 

By the above definition M is obtained from C(p) by attaching an 
n-cell and the cut locus contains the essential informations on the topol­
ogy of M. Now the problem of determining the structure of the cut 
locus is interesting in connection with the singularity theory. Recently 
in case of analytic Riemannian structures or in generic case much progress 
has been made by M. Buchner ([2] [3] [4]). But since their works appeal 
to the powerful general theory (Hironaka's or Mather's theory), the con­
crete structure of the cut locus is not given explicitly. 

On the other hand the above problem is answered for the 2-dimen­
sional analytic case by S.B. Myers ([8]), symmetric spaces and Berger's 
spheres by T. Sakai ([11] [12]) and M. Takeuchi ([13]). But with respect 
to an arbitrary metric, the cut locus may be very complicated, for ex­
ample, H. Gluck, D. Singer ([5]) showed that there exists a metric on any 
manifold whose cut locus is not triangurable. 

The main purpose of the present paper is to study the relation bet­
ween the cut locus and the union of all unstable manifolds of critical 
points with positive index of some Morse functions. 

Firstly in Section 1 we approximate the distance function from p by 
Morse function with respect to CO-topology and define the set Cl(p) as 
the limit set of all unstable manifolds of critical points with positive index 
of Morse functions. Then C 1(p) is contained in the cut locus of p and 
inherits the essence of the topology of M under some conditions. We call 
C 1(p) the essential cut locus. In general it seems that the structure of 
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C 1(p) is complicated, but in case of analytic surfaces C 1(p) may be deter­
mined explicitly. 

In Sections 2, 3 we consider the problem of the construction of 
Riemannian metric when its cut locus is preassigned. H. Gluck, D. Singer 
constructed a Riemannian metric so that a non triangurable set (infinitely 
many arcs sharing a common end point) becomes the cut locus in ([5]). 
See also L. Berard Bergery ([1]) when the preassigned cut locus is a sub­
manifold. Here we consider the following problem; "For a given Morse 
function with some conditions on a compact manifold construct a Rieman­
nian metric and find a point p such that C(p) coincides with the union of 
all unstable manifolds of critical points with positive index of the given 
Morse function." 

In Section 2 we will use the handle decomposition of any surface M 
under the given Morse function and introduce adequate metrics on the 
handles. Then we attach them to construct a desired metric on M with 
the aid of Weinstein's technique ([15]). 

In Section 3 we will be concerned with the following problem which 
is firstly mentioned by Rauch ([9]); "For any point p in a compact simply 
connected Riemannian manifold M, do the first conjugate locus and cut 
locus of p have a common point?" This is true for M homeomorphic to 
S2. Then A. Weinstein solved the conjecture negatively as follows; "For 
any compact manifold except for S2, there exists a Riemannian metric on 
M and a point p E M whose first conjugate locus and cut locus are dis­
joint." Although Wienstein's construction of such a metric is valid for 
an arbitrary manifold except for S2, the cut locus of the point was not 
explicitly given. In Section 3 we want to construct a metric on S8 and 
choose a point in S3 whose cut locus can be explicitly seen and disjoint 
from the first conjugate locus by the same spirit and method as in Section 
2. 

I would like to express my sincere thanks to Prof. T. Sakai for his 
kind advice. 

§ 1. The essential cut locus 

Let p be the distance function from p. Since p is not differentiable 
atp, we modify p to be smooth atp as follows; We take a normal co­
ordinate system (Xi' B,(op» around p. Then p(x)=,/Er;. Take O<e' 
<e. Now let ,;(r) be a C~-function such that 

,;(r)=g 

,;'(r)>0 
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We define a C=-function ifJ(r) by 

ifJ(r): = f: t(t)dt+e' - L ,y(t)dt. 

Note that ifJ(r)=r if r>e, and ifJ(O»O. Now we define p(y) by 

- {P(y) 
p(y)= ifJ(";~ yD 

if p(Y»e 

if p(Y)::;::e . 

31 

P is smooth at the origin, which is a critical point of index O. We have 
II grad p II = 1 outside a neighborhood of origin and the cut locus of p. 
The trajectories of grad p are geodesics from p. From now on we call this 
p the modified distance function. 

We take a sequence of positive numbers h}j~l with er-+O (as j-HX)). 
We define the erneighborhoods N j of C(p), by 

where seX) is the distance from p to the cut point along r x' We put 

Fj : ={MorsefunctiOn!On MII!-~Io<ej. } 
!=p outsIde N j 

Lemma 1.1. Fj-=/=ifJ. 

Proof Take a C=-function ifJ on M such that 

and a positive number N such that IlgradifJll<N. We first construct a 
C=-function g on M which equals p on CNj + 1 and is contained in a 
neighborhood of p with respect to CO-topology (i.e.lg- plo< Ij(8N)). For 
the construction take a C=-function ifJI on M 

with O<ifJI<1. Take a C=-function u with Ip-ulo<lj(8N). We define 
desired g as follows. 

on N j + 2 

on N j + I\Nj +2 

on CNj + l • 
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Next choose a Morse function gl on M with 

II grad gl-grad gil < 1-, 
4 

which is enough closed to gl with respect to C1-topology. We define / 
as follows; 

on CNj 

on Nj \Nj + 1 

on Nj + 1• 

It is not difficult to see that/has no critical points on Nj\Nj + 1 and/ E Fj . 
In fact on Nj \Nj +1' we have 

grad/=(I-ifJ) gradg1+ifJ grad P+(P-gl) grad ifJ 

=(l-ifJ) grad p+(I-ifJ)(grad gl- grad g) 

+ifJ grad P+(P-gl) grad ifJ· 

If grad/=O at a point on Nj \Nj +1, then 

-grad p=(I-ifJ)(grad gl-grad g)+(P-gl) grad ifJ. 

Take sufficiently large j, then 

Ilgradpll=I 

I 
II-ifJlollgradg1-gradgll <-

4 

Ip-gllollgrad ifJll<{lp-glo+lg-glloHlgrad ifJll < ~ . 

These derive a contradiction. q.e.d. 

For any j we take out a Morse function It in Fj which has the least 
number of critical points. Then we have a sequence of Morse functions 
{It} which converges to p with respect to CO-topology. 

Let ifJt be a I-parameter group of diffeomorphisms of gradlt. We 
define the union Cip) of unstable manifolds of critical points of /j with 
positive index, i.e. 

{ 
ifJ~~(x) (: = lim ifJ{(x))=a critical point Of} 

Cip): = x E M t--~ • 

It with index;;::: I 
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Lemma 1.2. Cip)CNj 

Proof. Recall that h = fJ on M\Nj. To the contrary assume that 
there exists a point x E (M\Nj) n Cip), then ifJ{(x) E M\Nj for t<O and 
ifJ{(x) is on a geodesic from p to x. Hence ifJ~oo(x) is a critical point of fJ 
in M\Nj and equals p which is a critical point of index O. This con­
tradicts the fact x E Cip). q.e.d. 

We define C\p) by 

C 1(p): = {x E M I x is a cluster point of a sequence {Yj}, Yj E Cip)}. 

From Lemma 1.2 C 1(p) is contained in C(p). Set C 2(p): = C(p)\ C 1(p). 
Let N} be the ej-neighborhood of C 1(p). 

Lemma 1.3. For any j there exists i > j such that critical points of ;; 
with index > 1 are in N}. 

Proof. Suppose not, then there is a subsequence {h(k) E Fj(d and 
critical points Xj(k) of h(k) with index > 1 such that Xj(k) E M\NJ. Since 
M is compact, we can choose a subsequence of Xj(k) which converges to 
a point Xo E M\NJ. On the other hand, Xj(k) E Cj(k)(P) and Xo E C 1(p), 
which is contradiction. q.e.d. 

Lemma 1.4. For any j there exists a continuous map F: M X 1-+ M 
such that F(x, O)=x and F(C(p), l)CN} 

Proof. For j take i in Lemma 1.3. There is a positive number i5 
such that ifJ~(M\p)= M\B,,(op)' For any point x in ME B,,(op), there 
exists a positive number T:c such that ifJ}"(x) in N}. As M\B,,(op) is 
compact, there is a positive number T such that ifJHM\B,,(op»CNj. 
Finally we define a continuous map F by F(x, s): = ifJ!T(X), q.e.d. 

Summing up we have 

Theorem 1.5. The set C 1(p) is contained in the cut locus and for any 
neighborhood N of C 1(p) there exists a continuous map F: MXI -+M such 
that F(x, O)=x and F(C(p), l)cN. 

Corollary 1.6. If there is a deformation retractable neighborhood N 
of C 1(p) such that t-+F(t, x) intersects oN transversally for x E M\N, then 
there exists a continuous map G: C(p)XI-+C(p) such that G(x,O)=x, 
G(C(p), 1)=C1(p) and G(y, s)=y for y E C 1(p), S E I. 

Proof. We take a deformation retraction R: N Xl -+ N such that 
R(x, O)=x, R(N, l)=C(p) and R(y, s)=y for y E C 1(p), S E I. For any 
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x e C(p)\N, we take s'" as the first value of t such that F(x, t) e aN. 
Then s'" is continuous and we put so: = Max",e (O(p)\N) s"'. We define a 
continuous map H: C(p)XI~M\{p} as follows; 

for x e C(p)\N 

H(x, s): = F(x, s"') 

o<s<~ - - 2so 

~<s<~ 
2so - 2 

R(F(x, s"'), 2s-1) 1 
-<s<1 2 -

for x e C(p)nN 

H(x,s): ={x 
R(x,2s-1) 

O<s<~ - -2 

~<s<1. 2 -

Next we take a continuous map ,y: M\{p}~C(p) under which x e 
M\({p} U C(p» corresponds to the cut point of the unique minimizing 
geodesic emanating from p and passing through x, and x e C(p) to itself. 
Finally we define a continuous map G: C(p)XI~C(p) by G: ='IJ!oH 
which satisfies the conclusion of Corollary 1.6. q.e.d. 

Corollary 1.7. Under the same assumption as Corollary 1.6. We have 

and 

H*(Cl(p»~H*(C(p»~H*(M) O<*<n-l. 
(~) 

(= ; when Mis orientable) 

Remark. Roughly speaking C1(p) contains topologically essential 
part of C(p), although the structure of C 1(p) is not so clear because we 
take a limit. Moreover our definition of C1(p) depends on the choice of 
N j and ft e Fj • 

But for some class of metrics, C1(p) seems to be defined intrinsically 
independent of the choice of N j andft eFj • We give an example; Let(S2,g) 
be an analytic metric on the 2-sphere. The structure of C(p) in this case 
has been studied very explicitly by S. B. Myers. Namely he showed that 
C(p) is a (finite) tree in this case. By an end point of C(p) we shall 
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mean a point x of C(p) from which there issues one and only one I-cell 
of C(p). The number of minimal geodesics joining p to a cut point x is 
called the order of the cut point x. Then the order of a cut point always 
equals its order as a vertex of the tree C(p). 

We call x E S2 a limit point of critical points of index 2 (resp. index 
1) if and only if for any neighborhood N of x there is a positive integer 
k such that for any j>k there exists Xj E N which is a critical point of h 
of index 2 (resp. index 1). We call x E (C(p)\{all end points}) a minimal 
(resp. maximal) point of plc(p) if and only if there exists a neighborhood 
U of x in C(p) such that p(y) >p(x) (resp. p(y) <p(x)) for any y E U\{x}. 

Then we get the following results. 
1. Let x be a cut point of order n (n> 2). Then among n I-cells 

which issue from x, there is at most one I-cell on which plc(p) is increas­
ing. 

2. The number of maximal points and minimal points of plc(p) is 
finite. 

3. A point x E C(p) is maximal (resp. minimal) point of plc(p) if 
and only if x E C(p) is a limit point of critical points of index 2 (resp. 
index 1). 

4. For any minimal point there issue just two branches of C(p) 
along each of which p increases till the next maximal point. Then C 1(p) 
is the union of all such branches from minimal points to the next maxi­
mal points. 

Remark. It seems that these results in this section may hold good 
for non compact complete Riemannian manifolds. 

§ 2. The construction of cut locus 

For a Morse function! on a compact manifold we denote by C, the 
union of all unstable manifolds of critical points of! with positive index. 

Let M be a surface. We fix a Riemannian metric on M. We con­
sider Morse functions! on M of distance function type, namely which 
satisfy the following condition (*) 

{
(I) There is only one critical point of index O. 

(*) (2) There is no saddle connection. 

(2) means that there is no integral curve of grad jwhich connects two 
critical points of index 1. 

Remark. There are enough many Morse functions which satisfy the 
condition (*). 
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Theorem 2.1. For any Morse functionf on M satisfying the condition 
(*), there exist a point p e M and a Riemannian metric g such that C(p) 
coincides with Cf" 

We will use the handle decomposition of M under the given Morse 
function f and introduce an adequate metric on the handles. For that 
purpose we prepare the following lemma. 

Lemma 2.2. Let a, b>O be given. Thenfor any s e [0, a), there exist 
O<d<e<1 and a COO-function F(t) on [0,1] such that 

F(t)=s (O<t<d), F'(t»O, F"(t) >0, 

F'(e)=b, p<n)(e) =0 (n>2), F(e)=(I-e).a. 

Proof First take an e with (a-s)/(a+b)<e«a-s)/a. Then since 
O<a·(I-e)-s<b.e, we can choose O<d<e and a COO-function cfi on 
[0, 1] such that 

{o (O<t<d) 
(1) cfi(t)= b (e<t<l), O<cfi(t)<b, cfi'(t) >0 

(2) J: cfi(t)dt=a·(1-e)-s. 

Finally put F(t)=s+ S: rjJ(t)dt. q.e.d. 

Let qO be the critical point of index ° and f(qO)=a. Choose a'>a 
such that ~: =f-1[a, a'] does not contain any critical points except qO. 
Then a~=f-l(a') is a circle. We put K: =M-~. Let q; (resp. qD be 
a critical point of index 1 (resp. index 2). In this section the suffixj (resp. 
i) is always corresponding to critical point qJ (resp. qD of index 1 (resp. 
index 2); j= 1,2, ... , the number of critical points of index 1 and i= 1, 
2, ... , the number of critical points of index 2. 

We put Stj : ={the stable manifold of q}} U {qO}. Stj is a circle in 
M from (*). We take a closed tubular neighborhood Nj of Stj with the 
following properties; 

(1) We put H;: =NJ n K. For any j, H; does not contain any cri­
tical points except qJ. 

(2) For any j the boundary of H; consists of the two segments in 
the circle a~ and two Coo-curves aI, at on K n aNj such that at n a~= 
{two end points}. 

(3) Each H; does not intersect each other. 
(4) The Coo-curve at (k= 1, 2) transversally intersects the integral 

curves of grad f except 2 end points and at end points at is tangent to in­
tegral curves of grad f 
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Each connected component of K\ (U j HJ) contains exactly one critical 
point q~ of index 2. Let H~ be the closure of this connected component. 
H~ is homeomorphic to a disk. For any i we denote by m(i) the number 
of integral curves of grad f connecting critical points of index 1 and q~. 
The boundary of H~ consists of m(i) C=-curves on the circle oI!d and m(i) 
C=-curves at which are determined by the Morse function! Still more 
each curve at intersects one of the above integral curves in H~. We put 
q: = Cf n H~, q: = Cf n Hi, then C~ consists of q; and the union of the 
above integral curves in H~. 

Now corresponding to each critical point qJ of index 1 we take a 
rectangle J'f} and segments at, ct(k= 1,2) as indicated in Figure 2.1. The 
length of a{ and a~ equals 2s where s is enough small. We denote by ~} 
the segment joining the middle points of at, a~. 

We take a C=-diffeomorphism ¢} from some neighborhood of J'f} 
into M such that 

¢~(~})=q, 

¢}(c{)coI!d. 

Secondly corresponding to each critical point q~ of index 2, we take 
a 2-handle J'f~ as indicated in Figure 2.2 when m(i»2, as in Figure 2.3 
when m(i) = 1. Moreover we take C=-curves Ck,k+l and segments b1, dk 
(k; mod m(i)+ 1) as indicated in the figures. Uk dk of J'f~ which cor­
responds to C~ is denoted by ~~. 

The diagram J'f~(d~, b1, d,k+l) should have the following properties; 
(1) The angle <f..(dk, d~+I) at 0 is equal to that of the corresponding 

curves at q; in q. 
(2) The end points of d~ are 0 and the middle point of the segment 

bL. For any i and k the length of bt equals 2s. 
(3) For any sufficiently small number 0>0, C~,k+l[O, 0] (resp. 

d,k+l[l- 0, 1]) is parallel to d~ (resp. d~+l)' 
(4) Rays emanating perpendicularly from points of d,k+l into Jf'~ 

minimize the distance from Uk C~,k+l just until they intersect ~~ for the 
first time. 

(5) There exists a C=-diffeomorphism ¢~ from some neighborhood 

j 
C I 

Fig. 2.1. JIi"}. 



38 

.-
"",."" , 

J. Itob 

.-
I 

" i 
I 
I 
I 
I 
I 
I 
I 
\ , , 

\ 
\ 

\ 
\ 

\ , 
" , 

' .... , ........ 
"-

Fig. 2.2. £'~ (as m(i)~2). 

Fig. 2.3. £'~ (as m(i)= 1). 

of JIt'~ into M with following properties; 
( i ) p~(JIt'D = H~, p~(~D = C~. 
(ii) For any m<m(i) there exist j and k such that p~(b:")=at, 

(pD- 1 0 PJ lai is an isometry from at. to b:". 
(iii) p~(d,k+1)ca!!d. 

This is possible from Lemma 2.2, Munkres' lemma [7, Lem. 6.1.] and 
easy consideration. 

Now we identify at. and b:" such that p~(b:")=p}(aD by the isometrry 
(p!)-10 p}: a{.-+b:". We get.Y(' which is made from JIt'~ and JIt'} by the above 
identifications and endow .Y(' with that flat metric. We put ~: =(Ui~D 
U(UJ~})' We take a C~-diffeomorphism (P:.it -+K with the following 
properties; 

(1) For sufficiently small e we put Jlt'r: =£~\{e-neighborhood of 
Uk bH and Jlt'y: =JIt'}\{e-neighborhood of (at U aD). For any i and j 
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1J1;1'=9~, 1J1;y=97' 
(2) 1J(%') = Cf • 
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This is possible from easy consideration using Munkres' lemma [7, Lem. 
6.1]. We induce a metric on K by r[J from f. 

We exchange s for s' = (9/1O)s, then we get f'( cf) by the same 
procedure. Thus %' is the cut locus of af' by the property (4) of JIf'~. 
We put K': = <p(f'). Let D be M\K' then it seems that D is an embed­
ded disk in M and the cut locus of aD in K' is Cf . 

We get a new metric on M and a point pin M whose cut locus is Cf 

from the following Proposition 2.3. 

Proposition 2.3. Let D be an n-disk embedded in a C~ manifold 
M. For any Riemannian metric on M\D, there is a Riemannian metric 
on M agreeing with the original metric on M\D such that for some point p 
in D Expp is a diffeomorphism of unit disk about the origin in TpM onto D. 

Proposition 2.3 is proved by the same method of Weinstein's pro­
position [15, Prop. C]. 

Remark. In this case the intersection of the first conjugate locus 
and cut locus of p coincides with the set of critical points of index 2. 

Remark. It seems that the similar result may hold good for the 
higher dimensional case. In this case the conditions for Morse functions 
of distance function type are following; 

(1) There is only one critical point of index O. 
(2) There is no integral curve from a critical point of index i to a 

critical point of index ::;;: i. 

§ 3. Some example on S3 

Our main result of this section is as follows. 

Theorem 3.1. There exist a Riemannian metric g on S3 and a point 
p in S3 whose first conjugate locus and cut locus are disjoint, where the cut 
locus is given in Figure 3.1. 

This figure of cut locus is slightly deformed from so called dunce hat 
in R3• 

In Section 2 for a given Morse function on a compact surface, we 
have constructed a metric and chosen a point p, so that the cut locus 
C(p) of p is nothing but the union of unstable manifolds of critical points 
with positive index. 

Here although we don't give a Morse function explicitly, our con­
struction of a metric is done by the same spirit, namely the handle body 
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Fig. 3.1. Identify the same arrows. 

decomposition. To begin with we prepare handle bodies £'(III) (3-
handle), £'(III)' J"l'(II2) (2-handles), £,(11), £'(12) (I-handles), £'(0) (0-
handle) which should correspond critical points of index 3, 2, 1 and 0 of 
a (not explicitly given) Morse function. Next we attach the 2-handles 
£'(III)' £,(II2) to the 3-handle £,(III), then the I-handles £,(11), £'(12) to 
£,(III) U £'(III) U £'(II2), at last the O-handle £'(0) to £,(III) U £,(III) U 
£'(II2) U £,(11) U £'(12)' In general when topologists construct a manifold 
from handle bodies, they firstly attach I-handles to a O-handle, etc. But 
in our case we reverse this order of attaching process (See [10]). 

At the start we will construct a 3-handle £,(III) in R3 and give the 
canonical metric on J"l'(III) induced from R3. Take a regular tetrahedron 
Ll with vertices ak, faces Hk (corresponding to ak) (k= 1, 2, 3, 4) whose 
edges are oflength 1. Let 0 be the center of Ll, hk the center of Hk and 
ek the segment connecting 0 and hk • Let L"j (i<j) be the quadrirateral 
whose vertices are 0, hi, hj and the middle point mi,j of the edge Hi n Hj. 
Let Llk be the domain of Ll bounded by Li,/s (k*i,j) and containing ak. 
We take a point a; on the segment himi,j so that hia;= 10-1 (i, j= 1,2,3, 
4). Put e;: =hia;. We take a point a;,k E Llk (k*i,j) on the straight 
line in Hi which passes the point a} orthogonally to e; so that a}a}'k= 
10-2. Let h; be the segment connecting a;,k and a;,k' (k, k' *i,j). 

We construct Coo-curves Ci,j (i<j): [0, l]-+Li,j with the following 
properties; 

(1) ci.l0)=a;, ci.lI)=a{. 
(2) ci,J 1eo,l/IOl (resp. Ct,J 1[9/10, IJ) is a segment parallel to ei (resp. eJ) 

whose length is greater than 10-2. 
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e2-h2 ______________ al 

Fig. 3.2. 

(3) ciJ 1(0.1) is contained in the interior of Li.J. 
This is possible from Lemma 2.1. Let li.J be the domain bounded by 
ci.J, ei, eJ, e; and e{. Then we get a diagram C(lII): = Ui.J li.J con­
tainedin L1 as in Figure 3.3. 

Now we construct a 3-handle £(III) by giving a body to 'i&'(III). 
For the purpose it suffices to construct the boundary surfaces (with cor­
ners) of £(IIl). 

Firstly we take domains Hi (III) in Hi respectively (i= 1,2,3,4) as 
in Figure 3.4. We take C=-curves dJ.k (j, k*i; j<k): [0, 1]-+Hi with the 
following properties; 

(1) dJ.k are congruent each other. 
(2) dJ.k(O)=aL; dJ.k(I)=aL.1 (l*i,j, k) 
(3) dJ.k Ico. I/IOJ (resp. dJ.k b/1O. IJ) is a segment parallel to e; (resp. eD 

whose length is greater than 10- 2• 

(4) Rays emanating perpendicularly from points of UJ.k*i dJ.k into 
Hk(IIl) minimize the distance from UJMi dJ.k just until they intersect 
Ui e~ for the first time. 

Secondly we take surfaces Ci •J (i <j) generated by the family of the 
straight lines such that each of them passes through a point of Ci •J or­
thogonally to L i •J• Put 



42 J. Itoh 

2 a, 

Fig. 3.3. Diagram ~(III) and surface Ss(III). 

i 
al,j 

d~,l d~,k 

Fig. 3.4. Hi(III) (i,j, k, I are different each other). 



Cut Locus of a Riemannian Manifold 43 

and define curves cL (k=/=i,j) by 

Thirdly we take Coo-surfaces Sk(III) (k= I, 2, 3, 4) with corners in the 
domains 11k with the following properties; . 

(1) Sk(IlI) are congruent each other. 
(2) The boundary of Sk(III) consists of the curves dL (i,j, l=/=k; 

i,j=/=l; i<j) and c~.li,j=/=k). 
(3) The 1O-2-neighborhood of c~.j in Sk(III) is contained in a plane 

parallel to Li,j" 
(4) The IO-2-neighborhood of dtJ in Sk(III) is isometric to dtlX 

[0, 10-2]. 

(5) Rays emanating perpendicularly from points of Uk Sk(III) into 
.?'f(III) minimize the distance from Uk Sk(III) just unit! they intersect 
'G'(III) for the first time. This is possible from Lemma 2.2 and easy con­
sideration. 

Next we take a 2-handle .?'f(II) which is the product of HllII) and 
[0, 1], where H.(III) is given in the above. We endow .?'f(1l) with the 
canonical metric induced from RS. We make two copies .?'f(IIl), £,(II2) 
of the above .?'f(II). Put 

HI (lit) : = H.(III) X {O} in .?'f (lIt) (i= 1,2) 

H 2(IIt): = H.(III) X {I} in .?'f (lIt) 

1/,1: =ejx{O} in .n"(IIt) (j=I, 2,3) 

I/,z: =ejX{I} in .?'f (IIi) 
a 

C(IIi): =U ejX[O, I] in .?'f(IIi) 
j-l 

BiIIi): =bjX[O, 1] in .?'f(IIi)' 

Finallywetake.?'f(I): =D2X[-IO-2, IO-Z] as a I-handle, whereDz 

is a 2-disk, and denote by 'G'(I) the subset DZ X {O} in .?'f(I). We prepare 
two copies .?'f(Il), .?'f(lz) (resp. 'G'(Il), 'G'(lz» of .?'f(I) (resp. 'G'(I». . 

In the following we shall get DS from previously constructed handles 
.?'f(ll), .?'f(Iz), .?'f(Ill), .?'f(IIz), .?'f(III) by considering adequate attachments. 
Now we take isometric mappings 

WI: Hl(IIz)----+Hl(III), 

Ws: Hz(IIl)----+H3(III), 

WZ: Hl(IIl)----+Hz(III) 

W.: Hz(IIz)----+ H.(III) 
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such that 

(/)l(ftl) = e~, (/)l(ftl) = e~, (/)l(f:,l) = e! 

(/)2(f})=e:, (/)2(ftl)=e:, (/)2(f~)=e~ 

(/)a(fL2) = e!, (/)a(n,2)=e~, (/)a(f~,2) = e~ 
(/)4(ft2)=et, (/)In,2)=e~, (/)4(n,2) = e:. 

We attach Jft'(IIl), Jft'(II2) to Jft'(III) by (/)1> (/)Z, (/)a, (/)4 and get a diagram 
JIC'(II III). We denote '6'(IIl) U '6'(IIz) U '6'(III) by '6'(II III). Then the 
metric of Jft'(IIl), Jft'(IIz) and Jft'(III) are smoothly connected by the attach­
ing process and induce the metric on JIC'(II III). Put 

f!lJl: = Cz,a(III) U Bz(IIl) 

f!lJz: = Cl,lIII) U Bl(IIz) U Cl,2(III) U Ba(IIl) U Cl,a(IIJ) U Bz(IIz) 

U Cz,4(III) U Bl(IIl) U CajIIJ) U Ba(IIz), 

which are annuli and contained in the boundary of Jft'(II III). The lO-z_ 
neighborhood N of f!lJl (resp. f!lJ2) in Jft'(II III) is a product of the lO-z_ 
neighborhood A of a circle f!lJl n '6'(II III) (resp. f!lJz n '6'(II III» in '6'(II III) 
and an interval [-10-Z, 10-Z], and the induced metric on N is a product 
metric of the induced metric on A and the canonical metric on [-10-Z, 
lO-Z]. 

Next take any Coo-diffeomorphism t: aD2~Sl and define 1f!i: aDz X 
[_lO-Z, lO-Z] cJft'(Ii)~f!lJi(:::: Sl X [lO- Z, 10-2])cJft'(II III) by 1f!tCx, t): = 
(t(x), t) (i= 1,2). We attach Jft'(Il) to Jft'(II III) by 1f!1 and denote the 
diagram by Jft'(Il II III). We attach Jft'(I2) to Jft'(Il II III) by 1f!2 and 
denote the diagram by Jft'(I II III). We introduce a Riemannian metric 
on '6'(Ii): =DZ X {O} by Proposition 2.3 which is smoothly connected to 
the metric on '6'(II III). On Jft'(Ii) we introduce the product metric of 
its metric on '6'(Ii) and the canonical one on [_lO- Z, lO- Z], then this metric 
is smoothly connected to the metric on Jft'(II III). 

Jft'(I II III) is diffeomorphic to DB. It is trivial that (Jft'(Il), Jft'(IIl» 
is a cancelling pair. Moreover (Jft'(Iz», Jft'(II2» is a cancelling pair, too. 
In fact Jft'(Il II III) and the attaching circle (aDZ X {O}) of Jft'(I2) are as in 
Figure 3.5. This attaching circle is isotopic to a circle which intersects a 
circle BHl(II2) in aJft'(IIz) transversally at a single point (see Figure 3.5). 
Thus (Jft'(Iz), Jft'(IIz» is a cancelling pair by the first cancellation theorem 
in [6]. 

The cut locus of the boundary of Jft'(I II III) is '6'(I II III): = '6'{ll) U 
'6'(lz) U '6'(II III) with respect to the previously introduced metric and the 
diagram '6'(1 II III) is as Figure 3.1. 
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We attach a new 3-dimensional disk .1C'(O) to .1C'(I II III) by an 
arbitrary diffeomorphism from O.1C'(O) to o.1C'(I II III) and get S3. We 
apply Proposition 2.3 and get a new metric on S3 and a point p in sa 

Fig. 3.6. 
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whose cut locus is 'G'(I II III). From the construction of the metric there 
is no conjugate point of p in a neighborhood of the cut locus of p. 
'G'(I II III) is nothing but Figure 3.1 if we carefully check the identification 
under the above attaching procedure. Hence the metric satisfies our con­
ditions and Theorem 3.1 is proved. 

We don't give explicitly a Morse function corresponding to the 
above handle body decomposition, but we show the position of its critical 
points. The critical point of index 0 is the previously defined point p. 
The critical points with positive index exist on the cut locus of p as in 
Figure 3.6. 
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