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Notes on Metaplectic Automorphic Functions 
and Zeta Functions 

Tomio Kubota 

The purpose of the present notes it to state, without detailed proofs, 
several miscellaneous facts which may slightly help to imagine properties 
of zeros of various L-functions including Riemann's zeta function. 

Basic facts in our arguments in the sequel are that the Mobius func­
tion is connected with Gauss sums through the relation (28), and that 
fairly precise properties of Gauss sums can be derived by means of certain 
generalized theta functions which may be regarded as automorphic func­
tions on a metaplectic group, that is, an n-fold covering group of the 
adelized . SL(2) over an algebraic number field F. Here, n is a natural 
number with n> 2, but only odd n are really useful for our purpose. 

In Section 1 and Section 2, we will investigate usual real analytic 
Eisenstein series on the upper half plane to explain the main way of think­
ing, and in Section 3 we will turn to the three dimensional upper half 
space to consider cases of actual meaning. 

§ 1. Fourier coefficients of Eisenstein series 

Throughout the present notes, (a, b; c, d) will denote a 2 X 2 matrix 
with the first line a, b and the second line c, d, and an expression like 1 + 
alb or alb + 1 means exclusively 1 +ab- I or ab- I + 1, and never (l +a)b- I 

or a(b+ 1)-1. 
Let H={z=x+iylx E R, y>O} be the upper half plane, and let r 

be a subgroup of SL(2, R) acting on H discontinuously. We assume that 
r does not contain (-1, 0; 0, -1), that r\H is of a finite volume, and 
that the stabilizer roo ={O' E r I 0'00 = oo} of 00 in r contains the group of 
translations by Z. 

For a complex number So with Re so> 1, a real analytic Eisenstein 
series E(z, so), (z E H), is defined by 

(1) E(z, so) = L: y solcz+dl- 2SO 

c,d 

where the sum ranges over all pairs c, d such that there exists an element 
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a in T of the form (*, *; c, d). As is known in the general theory, (1) 
has the Fourier expansion 

(2) E(z, so)=y'o+ L: yt-socpm(so)k(my, so)e(mx), (m E Z), 
m 

where e(x)=exp 2",ix for x E R, 

(3) 

and 

(4) (l' E R). 

Let IC be a cusp of T which is not equivalent to 00, and let a' be an 
element of SL(2, R) such that a' 00 = IC. This a' is uniquely determined up 
to a triangular matrix. We choose the triangular factor so that a'-IT'a' 
contains the group of translations by Z, where T' denotes the stabilizer 
of IC in T. The matrix a' has the form a'=(d', -b'; -c', a') with IC= 
-d'/c'. The Fourier expansion of E(z, so) at the cusp IC is then given by 

(5) E(a'z, so) = L:yl-SoCPK.m(so)k(my, so)e(mx), (m E Z), 
m 

where 

If we put x=a'/c' in (5), then we have a'z=IC+ic'-2y l and 

E(IC+ic'-2y \ so) = L: yt-soCPK,m(so)k(my, so)e(ma'/c') 
m 

or equivalently 

(6) E(IC+ic'-2y, so) = L: yl+SoCPK,m(so)k(my\ so)e(ma'/c'). 
m 

Let us now consider the Dirichlet series corresponding to E(z, so) in 
(2), which is given by usual Mellin transformation as follows: 

(7) 
f (E(iy, so)-(yso+yt-sok(O, so»)yS-Idy 

= L: CPm(so)lml-s-l+so.M(k(*, so), s+l- so)=A(s, so), 
moloO 

where M means the Mellin transformation and the variable of the trans­
formed function is shown by *; namely 



Automorphic Functions and Zeta Functions 3 

(8) M(f(*), s)= f f(y)y·-1dy. 

Since our discontinuous group r does not contain the transformation z-,», 
_Z-1, functional equation of A(s, so) in a simple form is;,hot<expected. 
But, if anyway 0 is a cusp, (2) and (6) are enough to prove the analytic 
continuation of A(s, so) to the whole s-plane, and to determine singularities 
of A(s, so) which are only poles at -so, -so+ 1, and so-I, provided that 
o is not equivalent to 00. In case 0 is equivalent to 00, one more term 
of the form (ay)-'o, (a>O), is necessary in (6), and there is one more pole 
of A(s, so) at so. 

These arguments are valid in some variations. If we wish to investi­
gate a Dirichlet series of the same form as in (7) in which, however, m is 
restricted to an arithmetic progression, say, by the condition m = 1 
(mod N), N being a natural number, we have only to consider the linear 
combination L,j e( -j/N)E(z+j/N, s), (j=O, 1, .. " N-l), provided that 
j/N are all cusps. 

On the other hand, we know by the general theory that E(z, so) has, 
as a function of so, a meromorphic analytic continuation to the whole 
complex plane, and has a finite number of poles of first order on the 
interval (1/2, 1]. Let ao be one such pole; then limh _ o hE(z, ao+h) is an 
automorphic function called "residual form". Let Pm be the residue of 
CPm in (3) at the same pole; then going over to residues in every formula, 
we can obtain the analytic continuation of the Dirichlet series 
L,m*O Pm Iml-8-1+ao as well as the determination of its poles. 

Moreover it is possible to generalize these results to the case of 
Eisenstein series containing a character X of the discontinuous group r. 
For our purpose, it is enough to assume that (r: ker X)< 00. Under this 
assumption, no essential change takes place; the only difference is that 
one has to take q' so that a'-1 (r' n ker X)a' contains the group of trans­
lations by Z. To explain the situation more precisely, assume that X is 
trivial on r~, and start with the Eisenstein series 

E(z, so, X)= L, X(e, d)y8olez+dl-2.o, 
c.d 

where X(e, d)=X(a) for a=(*, *; e, d) e r, and other notations are as in 
(1). Then, we have only to replace CPm(so) in (2) by 

CPm(SO, X)= L, I el- 280( L: X(e, d)e(md/e », 
c*O d mod c 

and CP.,m(so) in (5) and (6) by 

CP.,m(so, X)= L: lel-280( L: X.(e, d)e(md/e», 
c*,o d mod c 
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where X.(c, d)=X«*, *; c, d)a'-l) for an element C*, *; c, d) in ra'. 

§ 2. So~e tentative investigations on the powers of the Fourier coefficients 

In Section 1, we investigated Dirichlet series of the form 
1::",*0 SO",(so) 1m I-S-IHO as appeared in (7). The aim of this section is to 
give some comments on Dirichlet series whose coefficients are n-th powers 
~",(so)n with a natural number n. 

Define An(s, so) by 

(9) = 1:: SO",(so)nlml-s-n+nsoM(k(*, so)n, s+n-nso) 
",*0 

(m e Z). 

Then, key, so) is rapidly decreasing as y~+ 00, so the analytic properties 
of An(s, so) depends mainly on the behavior of the series 

as y~o. This is very difficult to study, because it concerns the n-fold 
convolution of E(z, so) as a function of x with period 1. Accordingly we 
can give here merely rough comments about it. 

Suppose first n=2, and, for the sake of simplicity, SO",(so)=SO-",(so) 
for all m e Z. In this case, it is possible to handle An(s, so) directly by 
means of Rankin's method. Since the general idea seems to be well­
known, let us recall only a special case where the cusps of our discon­
tinuous group r are all equivalent to 00. Furthermore, we consider, 
again for the simplicity, a residual form 

(10) r(z) = 1:: i-aop",k(my, ao)e(mx), (m E Z), 
m 

instead of E(z, so); ao is therefore supposed to be a constant at which the 
residual form is derived. 

Denote by (1, Z; 0,1) the group of all matrices of the form (1, b; 0,1), 
(b e Z), and let S be a set of representatives of (1, Z; 0, l)\r. Then, 
there exists a connected domain D such that i) D is contained in the strip 
O<Rez<l, ii) D contains the strip Di={z e CIO<Rez<l, Imz> Y} 
for a positive constant Y, and iii) if Coo denotes the index (roo: (1, Z; 0, 1», 
then UaesaD fills up the strip {zeHIO<Rez<l} coo-times modulo 
(1, Z; 0, 1); D is a finite sum of fundamental domains of r, and does not 
touch the real axis by the assumption. D may be supposed to be open, 
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but the discussion of the boundary of D is not necessary for our purpose. 
Write Dy=D-D'y, and put 

and 

EY(z, S)={E(Z, s) s 

E(z, s)-y, 

(Z E Dy), 

(zED'y), 

_ {E(Z, s), 
EY(z, s)= 

E(z, s)-(y'+y'-s<po(s)k(O, s», 

(Z E Dy), 

(z E D'y), 

(z=x+iy). Then, since 

f = fl f(z)df-l(z) = C;:;I f ~ f(az)df-l(z) 
o 0 D aES 

with the invariant measure df-l(z) = y-2dxdy holds for any functionj' of 
period 1 on H, we have 

~ p;'lml-(S+2-2aO)M(k(*, ao)2, s+2-2ao) 
m*O 

= [ f: (r(z)2- y2- 2uol)ys+ldf-l(z) 

=f (r(z)2- y2- 2uOp2)ys+ldf-l(z) 
D;' 

-I- In (r(z)2E Y (z, s+ 1)-p2EY(z, s+3- 2ao)df-l(z) 

=f (r(z)2- y2- 2U Op2)yS+ldf-lCz) 
D;' 

+f (r(z)2EY(z, s+ 1)-p2EY(z, s+3-2ao»df-l(z) 
Dy 

with p = Pok(O, ao) and <pCs) = <pb )k(O, s), and consequently 

~ Pmlml-(S+2-2aO)M(k(*, ao)2, s+2- 2ao) 
m*O 

=f (r(z)2- y2-2aop2)ys+ldf-l(z) 
D;' 

(11) +f (r(z)2EY(z, s+1)-p2EY(z, s+3-2ao»df-l(z) 
Dy 
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+f ' r(z)2EY(z, s+ I)dJ1(z) 
Dr 

+ f Dr (r(z)2-y2- 2aOp2)so(s+ I)y- SdJ1(z) 

+ p2soCs+ l)Y-S+1-2ao/(s_I +2ao) 

- p2soCs+ 3 - 2ao) y-s-3+2ao/(s+ 3 - 2ao). 

This formula, obtained under the assumptions Re (s+2ao» 1 and Re (s+ 
4-2ao» 1, now provides a meromorphic, analytic continuation of the 
Dirichlet series .L:m*o p;'lml-(s+2-2ao), a residual version of the Dirichlet 
series in (9), to the whole s-plane, and supplies many important properties 
of it. 

We now propose to investigate the same problem from another point 
of view which is somewhat similar to the circle method. Let, in general, 
fez) be an automorphic COO-function for our group r whose Fourier ex­
pansion is of the form 

f(z) = .L: am(y)e(mx), (m E Z), 
m 

and assume that ao(y)-yto is rapidly decreasing as y-+oo for a to E R with 
to> 1/2, and that am(y) is, as a function of y and m, rapidly decreasing as 
Imly-+oo. Define a neighborhood Uoo of 00 by 

Uoo=U (1, b; 0, I)D, (b E Z), 
b 

where D is determined as above by the conditions i), ii) and iii), and put 
UK=aUOO for a CUSPK= -d/cwith aa=(d, -b; -c, a) E r. Then, {R+iy} 
nD=cjJ suffices for 

(12) f lf(Z)dX=.L: f f(z)dx, 
o K ~) 

where (K) means the integral restricted on UK' Furthermore, if we denote 
by C(x, y) the circle in the upper half plane H with diameter y-l touching 
the real axis at x, and by dl' the invariant distance y'-I(dx'2+dy'2)1/2, then 

(13) f f(z)dx=C-2f c2yf(x'+iy')dl', 
(K) (a/c, cOy) 

where (a/c, c2y) means that the integral should be taken on the inter­
section of Uoo and the circle C(a/c, c2y), but, if K=O or 1, the integral on 

the left hand side should be replaced by f +f . 
(0) (I) 

We consider the integral 
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(14) f yf(x'+iy')dl'=F(x,y) 
(X,y) 

which is a function of x+iy e H having period 1 with respect to x, and 
therefore allows a Fourier expansion: 

(15) F(x, y)= L.: Am(y)e(mx), (m e Z). 
m 

Denoting by UooCz) the characteristic function of Uoo with its Fourier ex­
pansion 

Uoo(z) = L.: Dm(y)e(mx), 
m 

we have 

Am(Y)=y fl f f(x' + iy') Uoo(x' +iy')dl'. e( -mx)dx 
o C(X,y) 

=yfl f f(x+x' + iy') Uoo(x+ x' +iy')dl'. e( -m(x+x'»e(mx')dx. 
o C(x,y) 

(m E Z). So, 

(16) Am(Y) =yf e(mx') L.: am,(y')Dm_m,(y')dl'. 
C(O,y) m' 

If y' < Yo, where Yo is a positive constant such that y' < Yo implies {R + iy'} 
n D=ifJ, then it is clear that Dm(y')=O for all m, and there exists a con­
stant Y/> Yo) such that Dm(y')=oo,m (Kronecker's 0) for all y'> YI. If 
Yo<y' < Y I, then Dm(y') does not decrease very rapidly as Iml--+oo, which 
may cause difficulties in evaluating Am in (16). But, this difficulty is 
removed by using a "smooth fundamental domain" instead of an ordinary 
one D. Namely, denote by D(z) the characteristic function of 15, and let 
,y be a non-negative valued COO-function with compact support on H. 
Both 15 and ,y can be viewed as functions on SL(2, R) through the identi­
fication H ~ SL(2, R)/ SO(2), and, if,y satisfies an additional condition 

f ,y(g)dg= 1, 
SL(2,R) 

dg being a Haar measure, then 

D,,(Z)=f D(g~-I)t(~)d~ 
SL(2,R) 

is a function on H, and has the property L.:. D,,(o-z) = 1, (0- E r), for all 
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Z E H. Therefore, 15..; can be considered to determine a "smooth" funda­
mental domain 15..;. Changing all formulas which we hitherto obtained 
suitably to fit 15..;, we have a new Dm(y') which is rapidly decreasing uni­
formly for ally'>O as Iml~oo. 

By the assumption on am, the evaluation of Am(Y) in (16) reduces to 
the evaluation of the integral of the individual summand, and for this 
purpose, it is enough to handle 

(17) Bm,m'(y)=yJ e(mx')am,(y')Dm_m,(h')d/'. 
C(O,y) 

The evaluation of this integral as y~O is not difficult unless ,very precise 
results are required. Suppose first m = m' = ° and y < Y 11. Then, (17) 
is equal to 

[ ao(y(x2+ y2)-1)Do(Y(X2+ y2)-1)dx, 

while Do(y(x2 +y2)-1) = 1 for X«YYl1_y)1/2, and DO(Y(X2+y)-1)=0 for 
x> (yYo-1_y2)1/2; between the two bounds, Do(y(r+y2)-1) is bounded. 
From this fact and from the assumption on ao(y), it follows that 

asy~O. The case ofm'::;t:O is similar but simpler, because D_m,(y(r+y2» 
*0 can hold only when (YY11_y2)1/2<X«yYo-1_y2)1/2, and we have 

(m'::;t:O), 

as y~O. Hence, 

for y< Yo-1. Similar investigations show 

(19) 

If y> Yo-I, then all Am(Y) are 0, and, for a fixed y, Am(Y) decreases rapidly 
as Iml~oo, due to the assumption on am' and due to the fact that Dm(y') 
is also rapidly decreasing as Iml~oo, which is the case as far as we take 
a smooth fundamental domain explained above. Therefore, in particular, 
we may say that the implied constant in (19) is rapidly decreasing as Iml 
~oo. 

Denote now by A(y) the right hand side of (12). Then, formulas 
(13), (14) and (15) show that 
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(ad- be = 1), and therefore that the Mellin transform of A(y) in the sense 
of (8) is given by 

M(A, s)=L; lel- 2 - 28 L; L; e(ma/e)M(Am, s) 
(20) c*D dmodc m 

= L; SO-m(s+ I)M(Am' s), (m E Z). 
m 

By virtue of (18) and (19), the above equality (20) has a meaning for 
Re s> -1/2, and consequently determines the behavior of A(y) as y-+O. 
Namely, M(A, s) is holomorphic in Re s> -1/2 except possible poles at 
10-1 and aI-I, a 2-I, ... , where al> a 2, ••• are finite number of poles 
of the Eisenstein series on the interval (1/2, 1]. If we specialize these 
results to the case of !(z)=r(zY, r(z) being as in (10), we will be able to 
obtain similar consequences to those derived from (11) at least in the 
region Re s> -1/2, since A(y)=ao(y) whenever y< Yo, (c.f. (12». 

This method, although it gives weaker results than Rankin's, seems 
to have some possibility to work in the case of n>3 in (9), too. In the 
case of n=2, corresponding to the two-fold convolution of a function of 
period 1, the square of a function was enough to investigate the value on 
the imaginary axis of the convolution, provided, for instance, that /C and 
-/C are simultaneously a cusp. But, if n>3, then we have really to deal 
with convolution assuming that - (/CI + /C2) is a cusp, whenever /CI and /C2 

are cusps. In addition, a new type of Dirichlet series will arise, which 
can be more difficult than SOm(s), especially when a character of the discon­
tinuous group is considered. If, nevertheless, one could obtain a result, 
such as An(s, so) is holomorphic in a region, say, Res>rn, except a finite 
number of poles, then a consequence would be that the non-real poles of 
L;m*o SOm(so)nlml-s-n+nso in the same region is a zero of M(k(*, so)n, 
s+n-nso)· 

Ifthis kind of fact, which is equivalent to the determination of the 
behavior of the function 

L; (y1-soSOm(so)k(my, so»n 
m*O 

as y-+O, were really attained, it would not be very absurd to imagine that 
a similar fact would be true for 

L; (yl-SoSOmCso)k(my, soWe(mxy), (x E R), 
m*O 

as y-+O. Then, taking a function 7J(x) such that 
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where h>O should be chosen so that 1)(x) decreases sufficiently rapidly as 
Ixl~oo, one would come to the conclusion that L:m*o SOm(so)nlml-s-n+nso• 

T«h+s)j2) has no non-real poles in Re s>rn, and therefore the Dirichlet 
series itself has no non-real poles in the same region. For n= 1 and 2, the 
function M(k(*, so)n, s) is a simple composition of gamma factors, but, 
for n>3, the function is a more complicated higher transcendental func­
tion related to generalized hypergeometric functions. 

§ 3. Metaplectic automorphic functions on the upper half space 

The contents of this section are practically explanatory remarks to 
indicate how metaplectic automorphic functions are combined with zeta 
functions of standard type. In this section, H stands for the three dimen­
sional upper half space, i.e., the space of all points u=(z, v)=(x+iy, v) 
with x, y E Rand V>O. If u is identified with the matrix (z, -v; v, z), 
and if w stands for (w, 0; 0, w) for WE C, then SL(2, C) operates on Hby 
au=(iiu+b)(cu+d)-I, (a=(a, b; c, d) E SL(2, C». In this way, the rela­
tionship between the upper half space and SL(2, C) becomes completely 
similar to the relationship between the upper half plane and SL(2, R). 

Patterson [1] proved that the Fourier coefficients of a special type of 
automorphic functions on H, which are in fact metaplectic automorphic 
functions related to the field F= Q« - 3)1/2), are explicitly expressed by 
Gauss sums. More precisely speaking, put e(z)=exp (7t'i(z+z» for z E C, 
let KI/3 be a modified Bessel function, and let 0 be the ring of integers of 
F, then 

O(u) = COV2/3+ V2/3 L: cm(vlm 1)I/3KI/3(47t' 1m I v)e(2mz), (m E (_3)-3/20), 
m 

with cO=35/ 2j2 and with the coefficients Cm related to Gauss sums gives 
rise to a metaplectic automorphic function in the sense that O(au) = x(a)tJ(u) 
for any a in the principal congruence subgroup T3 mod 3 of SL(2,0), 
where X(a) = 1 or =(Cjd)3' cubic residue symbol, according as c=o or not 
for a=(a, b; c, d) ETa. This function is obtained as the residual form at 
so=4j3 of an Eisenstein series which is roughly of the form 

(21) L: X(c, d)V80(lcz+dI2+lcI2V2)-So, (X(c, d) = (Cjd)3)' 
c,d 

where the sum ranges over all pairs (c, d) such that there exists an element 
a in Ta of the form (*, *; c, d). Due to the automorphic factor con­
taining the residue symbol, O(u) is metaplectic with the degree 3 of the 
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covering: Furthermore, (J(u) may be regarded as a cubic analogy of the 
theta function, because the residual form of the Eisenstein series like (21) 
with quadratic residue symbol essentially coincides with a classical theta 
function, Whereas [1] gives all coefficients Cm completely, we quote here 
only Cm for m=1 (mod 3) as follows: 

(22) 1
9(m)Jm J-"8, if m is a product of distinct primes, 

Cm" if m' (= 1 (mod 3» is a product of distinct primes, 
C -
m- and m=m'm~ with mo e 0, 

0, otherwise, 

where 

g(m)= L: (djm);le(2d/m), (d eo), 
dmodm 

is a cubic Gauss sum. 
Since ( - 3)8/20 is dual to 30 with respect to e(2z), the operation 

(J(u)--? L: e( -2j)(J«(1,j; 0, l)u), 
jmodS 

eliminates all terms of (J(u) but those with m= 1 (mod 3), (c.f. Section 1). 
On the other hand, if IJ is a sufficiently high power of 3, and if r. denotes 
the principal congruence subgroup mod IJ of SL(2, 0), then (l,j; 0,1)-10" 
(l,j; 0,1)=0" e rs, and X(O')=X(O") for any 0' e r. andj e (_3)8/20. This 
shows that every (J«(1,j; 0, l)u) is a metaplectic automorphic function for 
the group r. belonging to the common automorphic factor. Thus, 

(23) (JI(U)=V2/8 L: cmk(JmJv)e(2mz), (m eo), 
m.,l (modS) 

with k(v)=(41rv)1/8KI/8(4;'t'v) is a metaplectic automorphic function with 
respect to' r., 

We now put here 

(24) 
[ ma1t,;odS) (v/3cmk(JmJvWv2B-Idv 

- L: c":",Nm-·-n/sM(kn, 2s+ 2n/3) = An(s), 
71' .. 1 (modS) 

(m e 0, n= 1,2,3, ... ), and wish to write down more explicit formulas 
for An(s). If n= 1, then (22) implies 

(25) AI(s)=( L: g(m)/JmJ·Nm- B- 1/2)C;(3s+ I)M(k, 18+2/3), 
mal (modS) 

(m eo), with 
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I;:(s)= L: Nm-', 
m=l(modS) 

(m eo), 

i.e., the product of 1-3-' and the Dedekind zeta function CAs) of F, 
because g(m) =0, whenever m has a square factor. If n=2, then we have 
similarly 

(26) Ais)( L: g(m)2flm!2.Nm-·- l)I;:(3s+2)M(k2,2s+4/3), 
m=l (modS) 

(m eo). The case of n = 3 is somewhat different. First we have again a 
similar formula 

(27) AsCs)=( L: g(m)3/!mI3.Nm-·-3/2)I;:(3s+3)M(k3,2s+2), 
m=l (modS) 

(m EO), but, in this case, the congruence relation 

g(m)=- L: e(2d/m) = fJ.(m) (mod ( - 3)1/2), 
dmodm 

with the Mobius function fJ. of F implies g(m)"=fJ.(m) (mod 3) for m=-1 
(mod 3), and accordingly 

(28) 

where ..:t(m) is a Grossencharacter of F mod 3, which is determined by 
..:t(m)=m/lml for m~ 1 (mod 3), due to the Stickelberger's relation in the 
general theory of Gauss sums. Therefore, A3(s) gains the expression 

containing an L-function with a Grossencharakter. 
The series in (25) is absolutely convergent for Re s> 1/2, and since 

Al(s) is immediately connected with an automorphic function, it is easy to 
discuss the analytic continuation of Al(s) by means of routine methods as 
explained in Section 1. The series in (26) is absolutely convergent for 
Re s>O, and this case can be treated by Rankin's method, as was precisely 
done by Patterson [2]. In both cases, it is remarkable that the functions 
are holomorphic at least 1/6 beyond the bound of absolute convergency. 
If a similar fact would be proved for AaCs), for instance by means of an 
analogy to circle method as explained in Section 2, namely, if As(s) would 
be holomorphic for Re s> -2/3, while the series in (27) is absolutely 
convergent for Re s> ---' 1/2, then a consequence would be that the zeros 
of L(s, A) with Re s> 5/6 should be zeros of M(kS, 2s-1), because t;,*(3s-3/2) 
has no zeros in the same region. 

This kind of imagination can be driven further. Consider the series 
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(29) .L:: (V2/3Cmk(lmlvWme(2mz), (m EO), 
m=l (mod 3) 

which is obtained by applying the operator a/az to the n-fold convolution 
of fMu) in (23) as a doubly periodic function of z, while the convolution 
itself appeared in (24). Then, (29) is the convolution of one a/oz· 81 and 
(n-I)-times 81 up to a trivial constant. The function a/oz. 81 is not an 
automorphic function but is a kind of automorphic form, and therefore 
its behavior near a cusp, as well as that of (29), should not be very hard 
to determine. On the other hand, the Mellin transform of (29) with z=O: 
leads to 

(30) [ m=1~Od3) (v2/3cmk(lmlv))nmv2S-1dv 

.L:: mC':nNm-s-nI3M(kn,2s+2n/3)=it(S), 
m=1 (mod 3) 

(m EO). If in particular n = 3, the formula (30) compared with (27) shows, 
together with (28), that 

A3(S)=';(s+ 1)-IL(3s+3/2, 2)M(k3, 2s+2). 

If it were possible, also in this case, to prove that AaCs) is holomorphic 
for Re s> -1/6 for instance, then a consequence would be that the zeros 
of 'F(S) with Re s> 5/6, and accordingly the zeros of Riemann's zeta 
function '(s) in the same region, should be zeros of M(k3, 2s), because 
L(3s + 3/2, 2) has no zeros there. 

It must be a phantasy to expect such a partial coincidence between 
zeros of '(s) and M(k3, 2s) on the critical line, but whether it may be fact 
or not would be checked by a computation comparing the zeros of '(s) 
and the zeros of M(k3, 2s)=(4n-)-2'M(ki/3' 2s+ 1). 
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