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What is known about the Hodge Conjecture? 

Tetsuji Shioda 

In this talk we review the present state of our knowledge about the 
Hodge Conjecture, one of the central problems in complex algebraic ge­
ometry. In his 1950 Congress address [12], Hodge reported on the topo­
logical and differential-geometric methods in studying algebraic varieties 
and complex manifolds which had been initiated by Lefschetz and develop­
ped by Hodge himself. He raised there many problems, and most of them 
were settled in 1950's by extensive works due to Kodaira and others. 
One notable exception to this is the so-called Hodge Conjecture which, if 
true, will give a characterization of cohomology classes of algebraic cycles 
on a nonsingular projective variety, generalizing the Lefschetz criterion 
for the case of divisors. This conjecture has an arithmetic flavour, as is 
common to most problems concerning algebraic cycles, which makes the 
problem interesting and difficult at the same time. 

In § 1, we recall the formulation of Hodge's general conjecture-the 
original one due to Hodge and modified version due to Grothendieck [8]. 
In § 2, we review the various cases where this conjecture has been verified. 
Although the examples are still not so many, the reader might notice sub­
stantial increase of the known cases as compared to those listed in [8] 
(1969). In § 3, we mention further examples some of which are new. A 
few remarks will be given in § 4. 

§ 1. The formulation of the problem 

Let V denote a nonsingular projective variety over C, and let d be an 
integer such that O<d<n=dim V. We use the same letter V to denote 
the compact complex manifold attached to V. As is well known (cf. [3]), 
an irreducible subvariety Wof V (of dimension r=n-d) defines a topo­
logical2r-cycle on V so that its homology class heW) e H2r(V, Z) and the 
dual cohomology class c(W) e H2d(V, Z) are well defined. The coho­
mology class of an algebraic cycle Z = L: ni Wi (ni e Z) is defined by 
linearity: c(Z) = L: nic(Wi). Let 

~d(V)zcH2d(V, Z) 
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denote the subgroup generated by c(Z)'s. The basic problem is this: how 
can one characterize ~c!(V)z in H2C!(V, Z)? 

For d= 1 (i.e. for divisors), the answer is given by the Lefschetz-Hodge 
theorem: an element ~ E H2(V, Z) belongs to ~l(V)Z if and only if the 
image of ~ in H2(V, C) is of Hodge type (1,1). If dim V=2, this is 
equivalent to the Lefschetz criterion: a topological 2-cycle r on V is alge­
braic (i.e. is homologous to a divisor on V) if and only if all the algebraic 

double integrals of the first kind on V have period zero on r, i.e. f r Ct) = 0 

for all holomorphic 2-forms Ct) on V(cf. [22]). The Lefschetz-Hodge theo­
rem can be easily proven by using the exponential sheaf sequence (cf. [17], 
118]). 

Now, saying that "it is clearly a matter of great importance to extend 
Lefschetz's condition for a 2-cycle to be algebraic," Hodge [12] proposed 
the following generalization. Given a topological p-cycle r on V, it is 
said to be of rank k if (i) there exists a r', homologous to r, such that the 
support of r' is contained in an algebraic subset of dimensionp-k of V; 
and (ii) k is the largest integer with the above property (i). By repeated 
use of Lefschetz theorem on hyperplane sections, we see that if p-::;'n then 
k>O. Then it is easy to see 

[~ ]>k>max (O,p-n). 

By definition, a topological p-cycle r is of rank k= p/2 if and only if r is 
homologous to an algebraic cycle. 

Proposition. If r is a topological p-cycle of rank > k, then the co­
homology class c(T)Q (with rational coefficients) dual to the homology class 
h(T) of r belongs to H 2n- p(v, Q) n p-p+k H 2n- p(v, C), where F"H*(V, C) 
denotes the "Hodge filtration" on H*(V, C): 

F'Hi(V, C)= EB HP',q, 
p'+q=i 
p'~r 

HP' ,q being the space of cohomology classes of type (p', q). 

Proof If Ct) is a closed Coo-differential form of degree p, we have 

where 7) is a closed form of degree 2n-p representing c(r)Q. The asser­
tion follows immediately from this formula. 
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Hodge's original problem: Is the converse of the above proposition 
true? 

In the special, but important, case where p is even and k=p/2, this 
problem reduces to the following question: write k=n-d, and assume 
that c(r)Q e H2d.(V, Q) n Hd.,d.. Is r homologous to an algebraic cycle of 
co dimension d? 

As we have seen above, this is true for d= 1 by the Lefschetz-Hodge 
theorem. For d> 1, however, there is an example, due to Atiyah­
Hirzebruch [1], with the property that H2d.(V, Z)tor is not contained in 
~d.(V)z' Thus it is necessary to slightly modify the question by taking 
Q-coefficients. Let ~d.(V)Q=~d.(V)Z®QCH2d.(V, Q). Then the (usual) 
Hodge Conjecture is stated as follows: 

"This conjecture is plausible enough, and (as long as it is not dis­
proved!) should certainly be regarded as the deepest conjecture in the 
"analytic" theory of algebraic varieties", as Grothendieck says in [8]. 

As for the general case of Hodge's original problem, let us introduce 
the following notation. Let F'T Hi( V, Q) be the space of cohomology 
classes ~ e Hi(V, Q) such that ~ vanishes on V - W for some algebraic 
subset W of codimension > r. In other words, it is the subspace of 
Hi( V, Q) spanned by {c(r)Q I r: topological p-cyde of rank > k} where p 
=2n-i and k=r-(n-p). By the previous propoSition, we have 

and the general problem of Hodge can be restated as follows: 

Hodge (V, F'Hi): F'THi(V, Q) = Hi(V, Q) n F'Hi(V, C)? 

Now Grothendieck [8] pointed out that, while F'T Hi(V, Q) is always 
a sub-Hodge structure of Hi(V, Q) (i.e. stable under the Hodge decomposi­
tion), Hi( V, Q) n F' Hi( V, C) is not necessarily one. After giving certain 
3-fold product of an elliptic curve with itself as a counterexample to 
Hodge (V, F' Hi) (r= 1, i= 3), Grothendieck proposed the following modi­
fied version: 

G-Hodge (V, F'Hi): Is F'THi(V, Q) the largest sub-Hodge structure 
contained in Hi(V, Q) n F' Hi(V, C)? 

In this form, no counterexample has been known so far. Note that 
no modification is necessary for Hodge (V, Fd. H 2d.), which is nothing but 
Hodge (V, d), because H2d.(V, Q) n Hd.,d. is itself a sub-Hodge structure of 
pure type (d, d). 
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§ 2. Review of known cases 

First we consider the usual Hodge Conjecture. To simplify the no­
tation, we write 

{
'tide V) = 'tid( V)d~C 

Bdd(V) = (H2d(V, Q) n Hd,d)®C. 

The elements of Bdd(V) will be called Hodge cycles (or Hodge classes) of 
co dimension d. The conjecture Hodge(V, d) is equivalent to asserting 
Bdd(V)='tid(V). 

( 1) Hodge (V, 1) is always true (Lefschetz-Hodge theorem). 
(2) Hodge (V, n-l) (n=dim V) is true. More generally, if 

Hodge (V, d) is true for d<n/2, then Hodge (V, n-d) is also true. Indeed, 
taking an ample class L E H2(V, Q), consider the map 

Ln-2d: H2d(V, Q)--+H2(n-d)(V, Q) 

defined by multiplication by P-2d. By the strong Lefschetz theorem, this 
map is an isomorphism. Further it sends Yfd(V)Q into Yfn-d(V)Q, and 
Bdd(V) onto Bdn-d(V) (note that L is of type (1, 1». This shows the as­
sertion (cf. [16]). 

It follows from (1), (2) that Hodge (V, d) is always true if n=dim V 
:::;:3. For n>4 and 1 <d<n-l, all the known results are restricted to 
some special type of varieties, for which the cohomological structure is 
well understood. 

( 3) If V is a flag variety G/P (e.g. projective space, Grassmannian, 
etc.), then it is known that H*(V, Z)='ti*(V)z. Hence Hodge (V, d) is 
trivially true for all d. 

(4) Let Vcpn+1 be a nonsingular hypersurface of degree m. From 
the structure of H*(V, Q), Hodge (V, d) is non-trivial only if n=dim V 
is even and d=n/2. When n=2d, the conjecture has been verified for the 
following cases: 

a) V = any 4-fold of degree m< 5. The verification of Hodge (V, 2) 
has been made by various people: the case m<2 is easy, the case m=3 
(cubic 4-folds) by Griffiths and Zucker [43] by the method of normal func­
tions, and by Murre [27] by geometric argument which also works for 
unirationaI4-folds; the case m=4 by Bloch and Murre, and the case m=5 
by Conte and Murre [4]. The method of Murre and others is to find a 
dominant rational map of a product TX pI (T: 3-fold) to the given V; 
then, if we let U~TX pI be a composite of blowing-ups (with nonsingular 
centers of dimension < 2) which gives a dominant morphism U ~ V, 
Hodge (V, 2) readily follows from Hodge (U, 2) which in turn is a con­
sequence of the easy fact Hodge (TX pI, 2). 
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b) V = X::" the Fermat variety of dimension n and degree m under 
certain arithmetic conditions on m and n (Ran [30], Shioda [34]). In 
particular, Hodge(X::"n/2) is known to be true if(i)m=prime, anyn(Ran), 
(ii) m<20, any n (Shioda) or (iii) m=2.(prime), any n (Shioda, Miya­
waki). For the Fermat 4-fold X!" we can verify Hodge (X!" 2) for all 
m<24, but the case m=25 cannot be settled by our inductive method (cf. 
[35], Appendix). More generally ifm=p2 (p: prime), then Hodge (X::" n/2) 
is true for n<p-l, but it is unknown for n=p-l (p~ 5). Further, if 
m is as in (i), (ii) or (iii), then Hodge (X, d) is true for arbitrary product 
X = n ~~l X:,,' and for any codimension d ([34, Th. IV]). 

( 5 ) Before discussing the case of abelian varieties, we insert a 
remark. We set 

these are graded subrings of H 2*(V, C), called respectively the Hodge ring 
of V and the algebraic cycle ring of V. Let 2)*(V) = 2: 2)d(V) denote the 
subring of ,qj*(V) generated by ,qjl(V). Since ,qjl(V)='i&'l(V) by (1), we 
have 

(any d). 

Thus, if ,qjd(V)=!?dd(V) holds, then (i) Hodge(V, d) is true and (ii) any 
algebraic cycle of codimension d is homologous over Q to a linear combi­
nation of intersections of d divisors, and conversely. In particular, if 
,qj*(V)=!?d*(V), the usual Hodge Conjecture is true for V in all codi­
mensions. 

Remark. According to Seshadri, an analogous condition over Z 
appears in some other context. Namely, if V = G/ P is a flag variety, then 
the subring !?d*(V)z of'i&'* (V)z generated by 'i&'l(V)Z is of finite index in 
'i&'*(V)z, and 2)*(V)z='i&'*(V)z holds if and only if G has the following 
property: any principal bundle over a nonsingular variety with structure 
group G which is locally isotrivial is locally trivial (see Grothendieck [9]). 

( 6 ) Let us review the case of abelian varieties. The preceding fact 
in (5) has been practically the only way for establishing the (usual) Hodge 
Conjecture for an abelian variety, except for the case f) below. 

a) "general" abelian varieties (Mattuck [23]). Let A=cn/([)Z2n) 
be a complex abelian variety with the normalized period matrix [): 

~11 •• ·'C1•n ) 
. . 

'Cn1···t'nn 

et> 1, et I et +1 

1m «'CtJ» >0 
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Set 1:'i.1=Xi .1+.f="T Yij' If A is "general" in the sense that Xij' Yt.1 (1 <i < 
i<n) form n(n+ 1) algebraically independent real numbers, then Mattuck 
proved that 8if*(A)=~*(A) holds and dim 8ifd(A) = 1 (O<d<n). More 
generally he verified the general Hodge Conjecture Hodge (A, pr Hi) for 
all r, i for such an A, by an inductive argument. 

b) powers of an elliptic curve (Tate [39], Murasaki [26]). If A = En 
(E: an elliptic curve), then we have again 8if*(A) = 2/}*(A) so that the usual 
Hodge Conjecture is true. Further 

dim8ifd(A)=(n)2_( n ).( n )o(E) 
d d-1 d+1 

(O<d<n), 

where o(E)=O or 1 according to whether or not E has complex multiplica­
tion. 

In each of the examples below, both cases 8if*(A)=2/}*(A) and 8if*(A) 
:;t:2/}*(A) occur, but the Hodge Conjecture has been verified only in the 
former case, except for the recent results stated inf). 

c) generic fibre of certain families of abelian varieties (Kuga[20]). 
d) characterization of the Hodge ring via the Hodge group (Mumford 

[24], [25]). In [24], Mumford introduced the important notion of the 
Hodge group, Hg (A), of an abelian variety A. It is an algebraic subgroup 
of GL (HI(A, Q)) defined over Q with the property that the Hodge ring of 
Ak=AX ... XA (k-times) is the ring of invariants of Hg(A) in H*(Ak, Q) 
under the natural action; 

(k=I,2, ... ). 

Thus if one knows enough about the group Hg (A) and its representation 
on HI(A, Q) for a given A, one can compute 8if*(A) and check whether 
8if*(A)=2/}*(A) holds. For instance, the cases a) and b) above can also 
be treated by this method (cf. Imai [14] for the case of a product of elliptic 
curves). On the other hand, it is easy to give examples of abelian varieties 
A such that 8if*(A):;t:2/}*(A). Further results based on this method will 
be mentioned below. 

e) abelian varieties of CM type (Pohlmann [29, § 2]). In this case, 
Pohlmann gave a combinatorial description of the Hodge ring 8if*(A) in 
terms of the action of the CMfield on the complex cohomology H*(A, C), 
and proved the equivalence of the Hodge Conjecture and the Tate Con­
jecture for this type of abelian varieties. There is given an explicit example 
(due to Mumford) of a 4-dimensional abelian variety of CM type such 
that 8if2(A):;t:~2(A), for which Hodge (A, 2) is still unknown. 

According to Mumford [25], an abelian variety A is of CM type in 
the extended sense (i.e. isogenous to a product of abelian varieties of eM 
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type in the usual sense) if and only if its Hodge group Hg(A) is an algebraic 
torus. We have dim Hg(A) < dim A, and A is called non-degenerate if 
equality holds (Kubota [19], Ribet [31]). For an abelian variety A of eM 
type, the two conditions (i) A is non-degenerate and (ii) tJ*(A)=E&*(A) 
seem closely related. A recent result of Ribet and Lenstra (private com­
munication in May 1981) shows that (i) and (ii) are indeed equivalent if A 
is an abelian variety with the eM field which is an abelian extension of Q. 
F. Hazama shows that if A is simple, then (i) implies (ii) in general. 

f) abelian varieties of Fermat type (Shioda [35]). An abelian variety 
is said to be of Fermat type (of degree m) if it is isogenous to a product of 
certain "admissible" factors of the Jacobian variety of the Fermat curve 
xm+ym+zm=o. The Hodge ring of such an abelian variety can be ex­
plicitly described as in the case e). On the other hand, by applying the 
results on Fermat varieties and their products in (4b), we can verify the 
Hodge Conjecture Hodge (A, d) in certain cases even if tJd(A) = E&d(A) 
does not hold. As an explicit example, we mention the special case where 
A=J(em ) is the Jacobian variety of the curve em: y2=xm_l (m: odd). In 
this case, Hodge (A, 2) is true for any odd m, while we have tJ2(A) = E&2(A) 
if and only if m$O (mod 3), and 

if m=O (mod 3); 

further, if m is prime, tJ*(A)( = E&*(A» is isomorphic to the exterior 
algebra /\ * (tJ1(A» and Hodge (A, d) is true for all d. 

g) abelian varieties satisfying certain conditions on the endomorphism 
algebra. Let g denote the Lie algebra of the complex Hodge group Hg (A) 
®Q C, and let p: g-+End (E) be the Lie algebra representation induced 
from the natural representation of Hg (A) on E=Hl(A, e). We have 

dim tJd(A) = dim [/\ 2d E]B. 

Now if the center of the Q-algebra End (A)®Q is a product of totally real 
fields, then the Hodge group Hg (A) is semisimple. Then dim [/\ 2d E]9 
can be computed by the general theory of representations of a semisimple 
Lie algebra. In a series of papers ([36], [37], [38]), Tankeev has made a 
systematic study from this viewpoint, and obtained several sufficient con­
ditions for tJ*(A)=E&*(A). In the recent article [38], he has proved that 
any 5-dimensional simple abelian variety satisfies tJ*(A) = E&*(A) and 
hence the (usual) Hodge Conjecture. (The corresponding fact for a 4-
dimensional simple abelian variety is false.) Further Hazama [11], and 
independently K. Murty, have proved by the similar method that the 
Jacobian varieties Jo(N) and J1(N) of modular curves Xo(N) or X1(N) (in 
the standard notation) satisfy the condition tJ*(A)=E&*(A). 



62 T. Shioda 

h) abelian varieties admitting complex multiplication by an imaginary 
quadratic field (Weil [41]). In searching for possible counterexamples to 
the Hodge Conjecture, Weil [41] (cf. [32], [33]) examined families of abelian 
varieties admitting such multiplication as stated above, and showed among 
others that the generic fibre has the property that t$*(A):;i:.@*(A). In 
concluding the case of abelian varieties, we quote the last paragraph from 
[41] where a weaker version of the Hodge Conjecture is suggested: "Thus 
it may happen that imposing a Hodge class upon an algebraic variety B is 
equivalent to imposing an algebraic class (even one of codimension 1) 
upon a product of two or more factors isomorphic to B. Even if this were 
not so in general, it might still be true for abelian varieties." 

(7) total spaces of certain families of abelian varieties (Hall-Kuga 
[10], Kuga [21]). Kuga and his school have extended the method of (6c) 
to the total space V of families, and verified the condition t$d(V}=.@d(V) 
in certain cases. 

As for the general Hodge Conjecture Hodge (V, F'Hi), the following 
cases have been checked. 

(8) Hodge (V, F'H3) is true if V is a 3-fold in a projective space 
such that the general hyperplane section is a surface of geometric genus 0 
(Hodge [l3]). In particular, Hodge (V, PH3) is true for a cubic 3-fold 
V in p4 (cf. the comments in [8]). 

(9) An inductive approach to Hodge (V, F'Hn) (n=dim V) gener­
alizing (8) is stated in Grothendieck [8], § 3, b). 

(10) The case of the "general" abelian varieties is due to Mattuck, 
as mentioned in (6b). 

§ 3. Further examples 

In this section, we discuss a few new examples. First we formulate 
a general fact: 

Lemma. Let HQ be a rational Hodge structure of weight i, and let He 
=H/i!:JG=ffip+q=i Hp,q (cf [5]). Assume that there is afinite Galois ex­
tension K of Q (KeG) such that HK=Hli9K has a decomposition into 
K-subspaces W(a) (a E I) with the following three properties: 

(i) dimK W(a) = I for all a E I; 
(ii) for any a E I and any (J E Gal (K/Q), there exists ~ E I such that 

W(a)" = W(~) (write ~=a"); 
(iii) for any a E I, W(a) e Hp,q for some (p, q). Let F' He = 

ffip~, Hp,q, and let Ip,q={a Ell W(a)eHp,q}. Then,for any r, HQ n F'He 
is a sub-Hodge structure of HQ, and we have 

(V(a) = W(a)®G) 
K 
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where r = {a e II aU e Up,q:<:T Ip,q for all !Y e Gal (K/Q)}. Furthermore 
EBaES yea) is a sub-Hodge structure of HQ for any subset S of r which is 
stable under Gal (K/Q). 

Proof With the notation above, we have He=ffiaer yea) and HM 
=ffiaerP,. Yea). Hence it is easy to see that HQnrHe is contained in 
EBaEJr yea). Conversely, let a e r and take w e W(a), w:;t:O. Then, for 
any!Y, we have w' e V(au)crHe. Thus, if a e K and 1)= L:. aUw", then 
1) e HQ n FT He. Let aI, .. " am be a basis of Kover Q and set 1)i = 

L:. a;wu (1 <i<m). Then each w' is a K-linear combination of 1)1' .. " 1)m' 
because det (ar):;t:O by Galois theory. In particular, we see that W(a)C 
[HQ n FT Hc1@C for any a e r. The second assertion is proved in the 
same way. q.e.d. 

This lemma applies, for example, to the case HQ=Hi(V, Q) if Vis a 
Fermat variety or an abelian variety of CM type (or any product of such), 
where the subspaces yea) appear as the eigenspaces of certain automor­
phism group or of complex multiplications (cf. [29], [34], and (4b), (6e), 
(6f) of § 2). In fact, the above lemma (with its proof) is extracted from 
these cases for the possible application to some other cases. At any rate, 
it follows that, if V is a product of Fermat varieties or of abelian varieties 
of CM type, the modified version of the general Hodge Conjecture G­
Hodge (V, r Hi) reduces to the original one Hodge (V, r Hi). 

We give a few more examples which we have verified by making use 
of the above lemma. 

(11) If E is an elliptic curve with complex multiplication, then, for 
any power A =En, Hodge (A, r Hi) is true for all r, i. (The proof is left 
to the reader as an exercise). Note that if E has no complex multipli­
cation, then Hodge (A, r Hi) is not necessarily true as Grothendieck [8] 
showed. 

(12) Let V = IT ~~1 X:;: be arbitrary product of Fermat varieties X:;: 
of degree m. Assume that m< 4. Then Hodge (V, r Hi) is true for all 
r, i. The proof is based on the "inductive structure" of Fermat varieties 
(cf. [34]), similar to the case (13) below. 

(l3) The case of the Fermat 3-fold X~ of degree m. In this case, 
we have (cf. [30], [34]) 

[H3(X~, Q)np1H3(X~, C)]@C=EBV(a) 
aEI 

where 1= {a=(ao, aI' "', a4)ll<ai<m-l, L:!~o (tai)/m=2 or 3 for all 
t e (Z/m)X}. (a) is the least positive residue of a mod m). Let us call 
a=(a;) e I decomposable if a;+aj=O (mod m) for some i:;t:j, and quasi­
decomposable if a3+a4$0 (mod m) and (ao, aj> a2, (a3+a4» e g);" (after a 
permutation of a/s), where 
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3 

m;'={(bo, bl> bz, bs)!1<b i :::;;:m-1,L.; <tb i )/m=2 for all t E (Z/mY}. 
i=O 

Now we claim that, if every element of I is either decomposable or quasi­
decomposable (call this condition (R;,» , then Hodge (X;', PH3) is true. 
For the proof, consider the natural isomorphism obtained from the in­
ductive structure of Fermat varieties (cf. [34]): 

Let a=(ao, ai' az, as, a4) E l. If a is decomposable (say as +a4=0 (mod m», 
then V(a) corresponds to V(j3)®V(r)cHI(X"m)®HO(X~) where j3=(ao, ai' 
az) and r=(as, a4). Hence, by the inductive structure, the support of ele­
ments of V(a) is contained in the pi-join Z=X;, V X~ of X;' and X~ 
which are embedded in X;' as 

This implies that V(a)cFIlHS(X;,) because the co dimension of Z in X;' is 
1. Next, if a is quasi-decomposable, we may assume that j3=(ao, al> a2, 

<as+a4» Em;.; put r=(as, a4, < -as-a4» E ~;,. Then V(a) corresponds 
to V(m®V(r)c [H~rim(X;')®HI(X;')]pm. Now V(j3) is in the space of 
Hodge cycles on X;' and hence the support is contained in a (reducible) 
curve C on X;' (Lefschetz criterion). The support of V(a) in X;' is then 
contained in the image of CXX"m under the rational map X;'XX;,--*X;, 
(of the inductive diagram), which shows V(a)CFflHS(X;'). This proves 
the claim. The reader will find a slightly different approach to this fact 
in Ran [30, § 3]. 

It is easy to check the condition (R;,) for m< 10. For m:::;;:7, all 
elements of I are decomposable; for m=8, 9 or 10, there are indecompos­
able elements in I but all of them are quasi-decomposable. However, the 
condition (R;,) is not always satisfied. For example, for m= 11, the ele­
ment a=(11 578) of I is neither decomposable nor quasi-decomposable. 
Thus the general Hodge Conjecture for the Fermat 3-fold X;' is true for 
m< 10, but we cannot verify it for m= 11 by the method described above. 
Incidentally, the above example shows that, when the intermediate Jaco­
bian variety of the 3-fold X;' is decomposed into "admissible" factors 
Aa(a E I) which are abelian varieties with complex multiplication by cyclo­
tomic fields, the "CM type" of some Aa does not necessarily occur among 
those obtained from admissible factors of the Jacobian variety of the 
Fermat curve X;' (cf. Weil [40]). 

(14) It seems worthwhile to extend the notion of the Hodge group 
for the investigation of the general Hodge Conjecture. Group-theoreti-
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cally this must be possible, at least in some cases of interest (e.g. abelian 
varieties, ... ). 

§4. Remarks 

In the previous sections, we have reviewed all the cases, known to the 
author, where the (usual or general) Hodge Conjecture has been verified 
or at least examined. 

There are a few subjects which we wanted to discuss here but were 
unable to do so, and we give references to these: 

( i ) The theory of normal functions associated with Lefschetz 
pencils (Griffiths [7], Zucker [42]). This is probably the most direct ap­
proach to the Hodge Conjecture, although it has led so far to the verifi­
cation of the conjecture only in a few cases where more "elementary" 
geometric method works also. 

(ii) Questions involving algebraic cycles with integral coefficients 
(rather than rational coefficients). As for some topological conditions 
imposed on the cohomology classes of algebraic cycles, see Atiyah­
Hirzebruch [1] and Kawai [15]. In Barton-Clemens [2], there is a discus­
sion in a special case about which integral multiples of a topological cycle 
defining an algebraic cycle with rational coefficients are integral algebraic 
cycles themselves. 

(iii) Among important problems on algebraic cycles, there is the 
Tate Conjecture [39] which is closely related to the Hodge Conjecture. 
In many of the works reviewed in § 2, both conjectures are studied at the 
same time. 

(iv) Deligne's theory of absolute Hodge cycles [6]. Deligne intro­
duced the notion of absolute Hodge cycles, which lies in between that of 
usual Hodge cycles and algebraic cycles. He proved that, on an abelian 
variety, every Hodge cycle is an absolute Hodge cycle, and deduced from 
this some important arithmetic consequences. Further Ogus [28] studies 
a variant of this notion in crystalline cohomology. 

Finally, after reviewing various examples, do you think that the 
Hodge Conjecture is true in general? Some people think that the answer 
is negative, and have made some efforts to find a counterexample. At 
present it may be just a wishful thinking to assume its truth in general. 
The essential difficulty for this (and other related) conjecture seems to lie 
in the fact that we know so little about how to produce algebraic co­
homology classes of higher codimension, other than starting from divisors 
and forming various "elementary" operations (e.g. taking intersections, or 
transplanting cycles from one variety to another in some nice situation). 
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Added in proof. 

The following results should be added to the list of § 2. 
(4b)-bis. (iv) For the Fermat variety X;:" Hodge (X;:', n12) is true 

for any pair (m, n) such that m is not divisible by any prime number less 
than n+2. Furthermore, in this case, <e'n/2(X;:')Q is spanned by the coho­
mology classes of (finitely many) linear subspaces of pn+l lying on X;:,. 
This result is due to N. Aoki (in preparation), and is based on the results 
of Ran [30] and Shioda [34]. 

(v) Hodge(X;",2) is true for the case m=25. This is the first case 
where the method of inductive structure [34] fails, but we can show that 
the Hodge classes in question are induced from Hodge classes on a certain 
quintic 4-fold for which the Hodge Conjecture is known to hold by Conte­
Murre [4]. 

(6g)-bis. Tankeev and, independently, Ribet have recently proven 
that the Hodge Conjecture is true for any simple abelian variety of prime 
dimension. 
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