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Foreword. This paper was part of the Science Doctorate of the candidate
(Cheikh Anta Diop University, 1991) that was not yet published in a peer-
reviewed journal. A slightly different version was published in Rapports
Techniques, LSTA, Université Paris VI, 48, 1986, under the same title.

Full Abstract. All the available results on the approximation of the k-
spacings process to Gaussian processes have only used one approach, that
is the Shorack and Pyke’s one. Here, it is shown that this approach cannot
yield a rate better than (N/ log logN)−

1
4 (logN)

1
2 . Strong and weak bounds

for that rate are specified both where k is fixed and where k → +∞. A
Glivenko-Cantelli Theorem is given while Stute’s result for the increments
of the empirical process based on independent and identically distributed
random variables is extended to the spacings process. One of the Mason-
Wellner-Shorack cases is also obtained.

1. Introduction
The non-overlapping uniform k-spacings are defined by

Dk
i,n = Uik,n − U(i−1)k,n, 1 ≤ i ≤

[
n+ 1

k

]
= N,

where 0 ≡ U0,n ≤ U1,n ≤ ... ≤ Un,n ≤ Un+1,n ≡ 1 are the order statistics
of a sequence U1, ..., Un of independent random variables (r.v.’s) uniformly
distributed on (0, 1) and [x] denotes the integer part of x. The study of these
r.v.’s have received a great amount of attention in recent years (see Aly el
al. (1984), Deheuvels (1984), Pyke (1965) and Stute (1982)). Particularly
the related empirical process

βN (x) = N
1
2 {FN (x)−Hk (x)} , 0 ≤ x ≤ +∞,

where

FN (x) = #
{
i, 1 ≤ i ≤ N, NkDk

i,n ≤ x
}
/N

and

Hk (x) =

∫ x

0

tke−t

(k − 1)!
dt, x ≥ 0.
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plays a fundamental role in many areas instatistics (see Deheuvels (1984)).
All its aspects are have described by various authors.

(i) For the convergence of statistics based on spacings, it is helpful to have
a Glivenko-Cantelli Theorem for FN (.). Such results for the overlapping
case are available in Beirlant and Van Zuijlen (1985).

(ii) The limiting law of the spacings statistics may follow from suitable ap-
proximations of βN to Gaussian processes. It is clear that the better the
rates of those approximations are the less restrictive the conditions on
the underlying random variables (r.v.). Such approximations also yield
Kolmogorov-Smirov’s tests.

(iii) Finally, the oscillation modulus of βN has been studied in Lo (1987),
where is established the weak behaviour of the oscillation moduli of βN is
equivalent to that of the empirical process based on a sequence of inde-
pendent and identically distributed (i.i.d) random variables.

Our aim is to give strong versions of weak characterizations of the oscil-
lation moduli that we have already given in Lo (1987). As to the approx-
imation of βn to Gaussian processes, we will show that the rate given in
Lo (1987) is, in fact, a strong one. Our best achievement is that this rate
is the best attainable for the approach used until now and we provide the
corresponding bounds. With respect to Aly (1985) and Aly el al. (1984), we
do not let k fixed. We allow it to go to infinity. Finally we give the Glivenko-
Cantelli Theorem for FN with almost the same condition as in Beirlant and
Van Zuijlen (1985) for the overlapping case.

2. The Gaussian approximation.
Approximations of βN to Gaussian processes are available since Shorack
(1972). The best rates among those already given are due to Aly (1985)

and to Aly el al. (1984). Among other results, Aly el al. (1984) proved the
following theorem and corollary.

Theorem 59. . There exists a probability space carrying a sequence
U1, U2, ... of independent r.v.’s uniformly distributed on (0, 1) and a sequences
of Gaussian processes {WN (x) , 0 ≤ x ≤ +∞} , N = 1, 2, ... satisfying

∀N > 1, E (WN (x)WN (y))
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(2.1) = min (Hk (x) , Hk (y))−Hk (x)Hk (y)− k−1xyH ′k (x)H ′k (y)

such that

lim
N→+∞

sup (logN)−
3
4 N

1
4 sup

0≤x≤+∞
|βN (x)−WN (x)| < +∞, a.s.

whenever k is fixed. Here H ′k (x) = dHk (x) /dx.

Remark 24. From now on, we will say according to the wording of Theorem 59
at the place of There exist a probability space ... such that.

Definition 9. A Gaussian process whose covariance function is given by
(2.1) will be called a Shorack process of parameter k or a k-Shorack process.

Corollary 19. According to wording of Theorem 59, we have

N
1
4 (logN)−

1
2 (log logN)−

1
4 sup

0≤x<+∞
|βN (x)−WN (x)| = 0p (1) , as N → +∞.

This means that aoN = (logN)
3
4 N−

1
4 is a strong rate of convergence while

aN = (logN)
1
2 (2 log logN)

1
4 N−

1
4 is a weak one. In fact Aly (1985) has showed

Theorem 60. . There exist another sequence of processes β1
N , N = 1, 2, ...

and a sequence of k-Shorack processes W 1
N , N = 1, 2, ... such that, for k fixed,

the two following assertions hold :

(i) β1
N =d βN , ∀N ≥ 1

(ii) sup
0≤x<+∞

∣∣β1
N (x)−W 1

N (x)
∣∣ a.s. = 0 (aN)N → +∞, a.s. .

All these results are based on representations of spacings by exponential
r.v.’s. Namely, when n+ 1 = kN,
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{
Dk
i,n, 1 ≤ i ≤ N

}
=d


(∑j=ik

j=(i−1)k Ej

)
Sn+1

, 1 ≤ i ≤ N


(2.2) =: {Yi/Sn+1, 1 ≤ i ≤ N} ,

where E1, E2, ... is a sequence of independent exponential rv’s with mean
one and whose partial sums are Sn, n ≥ 1. If µN = δn = Sn+1/Nk, it follows
that

{βN (x) , 0 ≤ x < +∞} =d
{
N

1
2 (ξNµN (x)−Hk (x)) + 0

(
N

1
2

)}
(2.3) = {ΛN (x) +RN (x) , 0 ≤ x < +∞} =: {β∗N (x) , 0 ≤ x < +∞} ,

where ξN (.) (resp. ΛN (.)) is the empirical distribution function (resp. empir-
ical process) based on Y1, ..., YN . The cited results are derived from simulta-
neous approximations of ΛN and RN .

First, we establish that the best rate attainable through this approach is that
of Aly (1985) even when k → +∞.

Theorem 61. According to the wording of Theorem 60, for any k satisfying

(L) ∃δ0 < 0, ∀0 < δ < δ0, kN
−δ → 0 as N → +∞,

we have

lim
N→+∞

sup a−1
N sup

0≤x<+∞
|β∗N (x)−W ∗

N (x)| a.s. =


K (k) =

(
kk+ 1

2 e−k/k!
) 1

2
, (k fixed)

K0 = (2π)−
1
4 , (k → +∞) .

Our second result is an improvement of Theorem 1 of Aly el al. (1984).
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Theorem 62. . According to the wording of Theorem 59, we have for any
k such that for some δ0, 0 < δ0 <

1
4
, kN−

1
4

+δ0 → 0 as N → +∞,

lim
N→+∞

sup a−1
N sup

0≤x<+∞
|βN (x)−WN (x)| ≤


K (k) , (k fixed)

K0 (k→ +∞)
a.s.,

Proof of Theorem 62. From (2.3), we have βN =d β∗N for all N ≥ 1. Fur-
thermore,

β∗N (x) = ΛN (x) +N
1
2 (Hk (µNx)−Hk (x))− {ΛN (µNx)− ΛN (x)}+ 0

(
N−

1
2

)
= : ΛN (x) +RN1 (x) +RN2 (x) +RN3 (x) .

We shall proceed by steps, approximating each of the RNi’s.

Lemma 42. Let Np = [(1 + ρ)p] , p > 0, p = 1, 2, ..., ε > 0 and

CNp =

N=Np+1−1⋃
N=Np

{
sup

0≤x<+∞

∣∣∣RN1 (x)−N
1
2 xH ′n (x) (µN − 1)

∣∣∣ > εaNK (k) /4

}
.

Then if k/N → 0 as N → +∞,
∑

p P
(
CNp

)
< +∞.

Proof of Lemma 42 Apply the mean value theorem twice and get

(2.4) AN1 = RN1 (x)−N
1
2 (µN − 1)xH ′k (x) = N

1
2 (µN − 1)2 x2H ′′k (xN) ,

Where 0 < |xN/x| < max (1, µN). First, it may be easily seen that

(2.5) sup
0≤x<+∞

xH ′k (x)

k
1
2

=
k

1
2

+ke−k

k!
= K (k)2 ,

(2.6) lim
k→+∞

sup
0≤x<+∞

∣∣∣x H ′k (x) /k
1
2

∣∣∣ = K2
0 ,

and
SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid
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(2.7) 0 < M = sup
k≥1

sup
0≤x<+∞

∣∣x2H ′′k (x) /k
∣∣ < +∞.

Recall that for all ε > 0,

(2.8)
∑
p

P (max (1, µN) > 1 + ε) ≤
∑
N

P (|µN | > 1 + ε) < +∞,

by the strong law of large numbers (SLLN) and

(2.9)
∑
p

P

N=Np+1−1⋃
N=Np

(
Nk

2 log log nk

)
|µN − 1| > 1 + ε

 < +∞

by the law of the iterated logarithm (loglog-law). We show in the Appendix
how to adapt the classical SLLN and loglog-law to these cases.

Now by (2.4), (2.5) and (2.6)

P
(
CNp

)
≤

N=Np+1−1∑
N=Np

P
(
max (1, µN)2 > 1 + ε

)

(2.10) + P

N=Np+1−1⋃
N=Np

|µN − 1|2
(

Nk

2 log logNk

)
> ceN

 ,

with c = εK (k)2 /4M (1 + ε) , eN = (log logN)
1
4 N

1
4 (logN)

1
2 (2 log logNk)−

1
2 . But

log logNk = (logN) (1 + o (1)) , K (k) is bounded and thus ceN > (1 + ε)2 for
large N. Thus we can apply (2.8) and (2.9) to (2.10) and, by this, complete
the proof.

Lemma 43. Let ε > 0 and

DNp =


N=Np+1−1⋃
N=Np

(
sup

0≤x<+∞
|RN2 (x)| > (1 + ε/4) aN K (k)

) , p = 1, 2, ...

Then for any k = k (N) such that k/N → 0 as N → +∞,
∑

p p
(
DNp

)
< +∞.
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Proof of Lemma 43 The mean value theorem implies

(2.11) |Hk (µNx)−Hk (x)| ≤ |µN − 1| K (k)2 max (1, µN) k
1
2 .

By proceeding similarly to (2.10), we get

P
(
DNp

)
≤

N=Np+1−1∑
N=Np

P
(

max (1, µN) > (1 + ε/4)1/3
)

+P

N=Np+1−1⋃
N=Np

{
sup

|Hk(x)−Hk(y)|<cN
|ΛN (x)− ΛN (y)| > (1 + ε/4) aNK (k)

}
(2.12) = RN21 +RN22,

with cN = K (k)2 k
1
2 |µN − 1| (1 + ε/4)1/3. Now,

(2.13) RN22 ≤ P

N=Np+1−1⋃
N=Np

{
|µN − 1| > (1 + ε/4)1/3

(
2 log logN

Nk

) 1
2

}

+P

N=Np+1−1⋃
N=Np

{
sup

|Hk(x)−Hk(y)|≤bN
|ΛN (x)− ΛN (y)| > (1 + ε/4) aNK (k)

} ,

where bN =
(

2 log log N
N

) 1
2 K (k)2 (1 + ε/4)2/3. Let γN (.) be the empirical process

based on U1, ..., UN and PNp be the second term of the right member of the
inequality (2.13). Thus (2.2) implies

(2.14) PNp ≤ P

N=Np+1−1⋃
N=Np

 sup
0≤u≤1−bN

γN (u)− γN (u+ bN)(
2bN log b−1

N

) 1
2

> 1 + ε1


 ,

1 + ε1 < (1 + ε)2/3, where we have used the fact that
(
2bN log b−1

N

) 1
2 /aNk (k)→

(1 + ε)1/3 as k/N → 0, as N → +∞. Finally, from line 14, p.95 and line 23,
p.98 in Stute (1982), we get

∑
p PNp < +∞. This and (2.11), (2.12), (2.13)

and (2.14) together imply Lemma 43.
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Lemma 44. (Komlós, Májor,Tusnády, 1975). There exist a probability
space carrying a sequence Y1, Y2, ... as defined in (2.2) and a sequence of
Brownian bridges

B1
N (s) , 0 ≤ s ≤ 1, N = 1, 2, ...

such that

∀N ≥ N1,P
(

sup
0≤x<+∞

∣∣ΛN (x)−B1
N (Hk (x))

∣∣ > A log N + x

N
1
2

)
≤ Be−λx,

for all sequence (k = k (N))N≥1 and for all x, whereN1, A,B and λ are absolute
positive constants.

Proof of Lemma 44 This doesn’t need to be proved. It is directly derived
from Komlós et al. (1975) and Corollary 4.4.4 of Csőrgö and Révèsz (1981).

Proof of Theorem 61 continued. On the probability space of Lemma 44,
Lemmas 42 and 43 combined with the fact RN3 ≤ N−

1
2 imply that

(2.15)
∑
p

P

N=Np+1−1⋃
N=Np

sup
0≤x≤+∞

|β∗N (x)− β∗∗N (x)| > (1 + 3ε/4) aNK (k)

 < +∞,

where β∗∗N (x) = ΛN (x)−N 1
2 x H ′k (x) (µN − 1) , 0 ≤ x < +∞. Hence, the proof

will be complete if we approximate β∗∗N in the right way. But by Lemma 44,
for any ε > 0, for large N ,

(2.16) P
(

sup
0≤x<+∞

∣∣ΛN (x)−B1
N (Hk (x))

∣∣ > A1 (logN)2N−
1
2

)
≤ N−1−ε,

where A1 is some absolute constant. From Lemma 3.1 of Aly el al. (1984)

N
1
2 (µN − 1) = N

1
2k
Sn+1 −Nk

Nk
+ k−1

∫ +∞

0

{
ΛN (x)−B1

N (Hk (x))
}
dx

(2.17) + k−1

∫ +∞

0

B1
N (Hk (x)) dx.
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Let tN = N
1
4
−δ, 0 ≤ δ ≤ δ0. On the one hand, one has for large N.

P
(∣∣∣∣∫ tN

0

{
ΛN (x)−B1

N (x)
}
dx

∣∣∣∣ > εaN/12

)

≤ P

(
sup

0≤x<+∞

∣∣ΛN (x)−B1
N (Hk (x))

∣∣ > ε (2 log logN)
1
4 (logN)

1
2

12N
1
4
−δ

)

≤ P
(

sup
0≤x<+∞

∣∣ΛN (x)−B1
N (Hk (x))

∣∣ > A1 logN/N
1
2

)
.

This and (2.6) together imply

P
(

sup
0≤x<+∞

∣∣∣∣xH ′k (x) k−1

∫ tN

0

{
ΛN (t)−B1

N (Hk (t))
}
dt

∣∣∣∣ > εaNK (k) /12

)
(2.18)

≤ N−1−ε,

for N large enough. On the other hand, as N → +∞,

P
(

sup
0≤x<+∞

∣∣∣∣∫ +∞

tN

{
ΛN (t)−B1

N (Hk (t))
}
dt

∣∣∣∣ > N−
1
2

)
≤ N

1
2 exp

(
−N

1
4
−δ/4

)
.(2.19)

To see that, we apply Markov’s inequality with

E
∫ +∞

tN

∣∣ΛN (x)−B1
N (Hk (x))

∣∣ dx ≤ ∫ +∞

tN

4k−1e−x/2
x(k−1)/2

(k − 1)!
dx ≤ 4k−1tkN exp (−tN/2) .

Since k = o
(
N

1
4
−δo
)
, as N → +∞, (2.19) follows. Finally for large N ,

P

(
sup

0≤x<+∞

∣∣∣∣∣xH ′k (x) /k
1
2
SNk − Sn+1

(Nk)
1
2

∣∣∣∣∣ > εaNK (k) /16

)

≤ P
(
Sk > N

1
2k

1
2

)
= 1−Hk

(
N

1
2k

1
2

)
.

Integrating by parts we have : k/x ≤ 1
2
⇒ 1 − Hk (x) ≤ 2xk−1e−x/ (k − 1)!.

Then if k/N ≤ 1
2

for large N , we get by Sterling’s formula,
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(2.20) 1−Hk

(
k

1
2N

1
2

)
≤ Const. exp

(
−k

1
2N

1
2

(
1 + (k/N)

1
2 log (k/N)

))
.

Thus,

(2.21) P
(

sup
0≤x<+∞

xH ′k (x/k)
(

(SNk − Sn+1) /N
1
2

)
> εaNK (k) /12

)

(2.22) ≤ const. exp

(
−1

4
k

1
2N

1
2

)
,

ultimately as N → +∞ whenever k/N → 0 as N → +∞. Put together (2.16),
(2.17), (2.18), (2.19) and (2.22) to get

(2.23)
∑
N

P
(

sup
0≤x<+∞

|β∗∗N (x)−W ∗∗
N (x)| > εaNK (k) /4

)
< +∞,

where W ∗∗
N (x) = B1

N (Hk (x))− xk−1H ′k (x)
∫ +∞

0
t dB1

N (Hk (t)) , x ≥ 0. And com-
bine (2.15) with (2.23) to have

(2.24)
∑
p

P

N=Np+1−1⋃
N=Np

{
sup

0≤x<+∞
|β∗N (x)−W ∗∗N (x)| > (1 + ε) aNK (k)

}
< +∞

 .

This together with Lemma 4.4.4. of Csőrgö and Révèsz (1981) completes
the proof.

Proof of Theorem 61. As in the proof of Theorem 62, the spacings are
always defined on the probability space of Lemma 44. We shall study each
of the RNi’s once again. First we put together (2.4), (2.5), (2.6) and (2.7) to
get, as N → +∞

(2.25) sup
0≤x<+∞

∣∣∣RN1 (x)−N
1
2 (δn − 1)xH ′k (x)

∣∣∣ = 0
(
N−

1
2 log logN

)
, a.s..

Now Lemma 43 says nothing else but
(2.26) lim

N→+∞
sup sup

0≤x<+∞
|RN2 (x) /aN | ≤ K (k) or K0, a.s.,
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whenever k is fixed or k → +∞ while k/N → 0 as N → +∞. And the proof
will be completed through our fundamental Lemma which is the following.
�

Lemma 45. Under the assumptions of Theorem 61, we have
lim

N→+∞
sup sup

0≤x<+∞

∣∣a−1
N RN2 (x)

∣∣ ≥ K (k) or K0, a.s.,

according whether k is fixed or k → +∞ and satisfies (L).

Proof of Lemma 45. Let ψ (x) = ((k − 1)!)−1 xke−x, x ≥ 0. By the mean value
theorem,

|ψ (x)− ψ (k)| ≤ hehkk−1 (1− 1/k)k−1 ((k − 1)!)−1 , if |x− k| ≤ h ≤ 1.
By Sterling’s formula we can find a constant τ > 0 such that

(2.27) sup
|x−k|≤h≤1

k
1
2 |ψ (x)− ψ (k)| ≤ τhk−1, for all k ≥ 1.

Now, we have

AN (x) = Hk (δnx)−Hk (x) = (δn − 1)ψ (xn) (xn/x) ,

0 ≤ xn/x ≤ max (1, δn) .(2.28)

If |x− k| ≤ h ≤ 1, |xn − k| ≤ k + (k + h) |1− δn| , and thus by (2.27),

|x− k| ≤ h ≤ 1⇒ AN (x) = (1 + o (1)) k
1
2 (δn − 1)

×{K (k) + 0 ({h+ (h+ k) |1− δn|} /k)} , a.s.

Let h = h (N) → 0 as N → +∞. Then by the loglog-law, there exists Ω1 ⊂ Ω
and a sequence

(
Nj(ω)

)
extracted from (N) (let nj and kj be the correspond-

ing sub-sequences) satisfying

P
(
Ω1
)

= 1, ∀ω ∈ Ω1, ANj (x) = ((2 log log nj) /Nj)
1
2 K (kj)

1
2 (1 + o (1))

(2.29) =: (1 + o (1)) dNj ,
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uniformly in x, kj −hj ≤ x ≤ kj −hj, where hj = h (Nj) as N → +∞. Thus we
have uniformly in x ∈ [kj − hj, kj + hj] = Ik,∣∣∣RNj2

(x)
∣∣∣ d=

∣∣γNj (Hkj (x) + dNj (1 + o (1))− γNj
(
Hkj (x)

))∣∣
= :

∣∣∣R∗Nj2 (x)
∣∣∣ .(2.30)

Now, we have to prove that

(2.31) ∃Ω ⊂ Ω1, P (Ω0) = 1, ∀ω ∈ Ω0, lim
j→+∞

inf sup
x∈Ikj

{∣∣∣R∗Nj2 (x) /b
(
dNj
)∣∣∣} ≥ 1,

where b (s) = (2s log log s−1)
1
2 , 0 < s < 1.

Proof of (2.31). Let

CN1 (p) = sup
0≤v≤dN/p

sup
0≤s≤1−v

|γN (s)− γN (s+ v)| /b (dN) , p ≥ 1.

By Theorem 0.2 of Stute (1982),

(2.32) ∀p ≥ 1, ∃Ωp ⊂ Ω, P (Ωp) = 1, ∀ω ∈ Ωp, lim
N→+∞

supCN1 (p) (ω) < p−
1
2 .

Let

Ω = Ω1
⋂ p=+∞⋃

p=1

Ωp.

Obviously P (Ω2) = 1. And for any ω ∈ Ω2, CNj2 (ω) =

sup
0≤x<+∞

γNj
(
Hkj (x) + dNj (1 + o (1))− γNj

(
Hkj (x) + dNj

))
= o

(
b
(
dNj
))
,

This, together with the following, as j → +∞,

∀x ∈ Ikj , R∗Nj2 (x) = γNj
(
Hkj (x) + dNj

)
− γNj (Hk (x))

(2.33) + γNj
(
Hkj (x) + dNj (1 + o (1))

)
− γNj

(
Hkj (x) + dNj

)
,
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implies that

sup
x∈Ikj

R∗Nj2 (x) ≥ sup
x∈Ikj

γNj
(
Hkj (x) + dNj

)
− γHj

(
Hkj (x)

)
+ o

(
b
(
dNj
))

(2.34) ≥: CNj3 (h (Nj)) + o
(
b
(
dNj
))
.

Now put Jk = Hk (Ik) and remark that the length of Jk is ρ (Jk) = 2K (k)2 nk−
1
2 (1 + o (1)) .

For any p ≥ 1, choose h = h (N, p) = hp (with hj,p = h (Nj, p) such that
2K (k)2 hpk

− 1
2d
−1/4p
N = 1 + o (1), as N → +∞. Thus, h → 0 as N → +∞

when (L) holds. Also mN = max {i, i ≥ 0, Hk (k − hp) + idN ∈ Jk} → +∞ as
N → +∞. Therefore we may use the lines of the proof of Lemma 2.9 in
Stute (1982) to conclude that for any p ≥ 1,

P (DN) = P
(

max
1≤i≤mN

{
γN
(
CN
i+1

)
− γN

(
CN
i

)}
/b (dN) ≤ (1− 1/p)

1
2

)
= 0

(
N

1
2 exp

(
−mNd

1−1/2p
N

))
,

as N → +∞, where CN
i = Hk (k − hp) + idN , i = 1, ...,mN . But mNdN =(

2K (k)2 hpk
− 1

2xd
−1/4p
N

)
d

1/4p
N = d

1/4p
N (1 + o (1)). Hence P (DN) = 0

(
d
−1/8p
N

)
for

large N. Thus
∑

N P (DN) < +∞, that is
∀p ≥ 1, ∃Ω′p, P

(
Ω′p
)

= 1,

∀ω ∈ Ω′p, lim
N→+∞

inf CN3 (hp) /b (dN) ≥ (1− 1/p)
1
2 .

Letting

Ω′0 = Ω2
⋃ p=+∞⋃

p=1

,

we get P (Ω′0) = 1 and for all ω ∈ Ω′0,

(2.35) lim
j→+∞

inf sup
x∈Ijk

∣∣∣R∗Nj2 (x)
∣∣∣ /b (dN) ≥ 1.

We have used in (2.30) that representation for commodity reasons as it
has appeared in the proof. The same may be done, step by step, following
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Stute’s results (see Stute (1982)) to get the version of (2.35) for RNj2
itself.

This remark completes the proof of (2.31). �

Continuation of the proof of of Lemma 45. Remark that

lim sup
N→+∞

sup
0≤x<+∞

|RN2 (x)| /b (dN)

≥ lim sup
j→+∞

sup
0≤x<+∞

{∣∣∣RNj2
(x)
∣∣∣ /b (dNj)}

≥ lim inf
j→+∞

sup
0≤x<+∞

RNj2
(x) /b

(
dNj
)

≥ lim inf
j→+∞

sup
x∈Ik

RNj2
(x) /b

(
dNj
)
.

This combined with (2.31) and with the fact that b (dN) = K (k) aN (1 + o (1))
as N → +∞ proves the Lemma 45. The proof is complete. �

Conclusion. It is clear by Theorem 61 that the approach used until
now cannot yield a rate better than aN . The problem is now : what new
approach would be used to reach, if possible, the very best rate, that of
Komlós et al. (1975) which is N− 1

2 logN .

3. The Glivenko-Cantelli Theorem
For the overlapping case, Beirlant and Van Zuijlen (1985) obtained a Glivenko-
Cantelli theorem when the step satisfies kN−1+a → 0 as N → +∞ for some
0 < a < 1. As to the overlapping case only fixed steps have been handled
in Aly el al. (1984). We give the general result in

Theorem 63. . Let k ≥ 1 be fixed or k → +∞ while k/N → 0 as N → +∞.
Then

lim
N→+∞

sup
0≤x<+∞

|FN (x)−Hk (x)| = 0, a.s.

on the probability space where the spacings are defined.
SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid

(www.projecteuclid.org). Page - 427



A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
the late Galaye Dia. Lo G.S. (2018). Gaussian Approximations and Related
Questions for the Spacings process. Pages 413 — 435.

Proof of Theorem 63. We have

∀N ≥ 1, {FN (x)−Hk (x) , 0 ≤ x < +∞}

(3.1) =d
{
ξN (x)−Hk (x) +RN4 (x) +N−

1
2RN2 (x) + 0

(
N−

1
2

)
, 0 ≤ x < +∞

}
.

First, it follows from Lemma 43 that for all ε > 0,∑
p

P

N=Np+1−1⋃
N=Np

N−
1
2 sup

0≤x<+∞
|RN2 (x)| > ε/4

 < +∞.

Next,
P
(

sup
0≤x<+∞

|RN4 (x)| > ε/4

)
≤ P

(
|1− µN | k

1
2K (k)2 > ε/4

)
.

And direct calculations imply that for all λ > 1, we have

P
(
|1− µN | k

1
2K (k)2 > ε/4

)
≤ P

(
|1− µN |

(
Nk

2 log logNk

) 1
2

> λ

)

for large N . Thus by (2.9)∑
p

P

N=Np+1−1⋃
N=Np

sup
0≤x<+∞

|RN4 (x)| > ε/4

 < +∞

whenever k/N → 0 as N → +∞. Finally,

P
(

sup
0≤x<+∞

|ξN (x)−Hk (x)| > N−
1
4

)
= P

(
sup

0≤s<1
N−

1
2 |γN (s)| > N−

1
4

)
≤ 2N max

0≤i≤N
P
(
Ui,N −

i

N
> N−

1
4 −N−1

)
= JN ,

by the fact that γN (.) has stationary increments. Using now a representa-
tion of γN by a Poisson process and an approximation of a Poisson distri-
bution by a Gaussian one (see Lemmas 2.7 and 2.9 in Stute (1982)) to get
for large N that

JN ≤ const. N3/2P
(
N (0, 1) > N−

1
4 const.

)
≤ const. N5/4 exp

(
−N1/8

)
.
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Thus
∑

N JN < +∞. And the proof of Theorem 63 is now complete. �

4. The oscillation moduli
The oscillation modulus of a function R (s), 0 ≤ s < 1, is defined by

κ (d,R) = sup
0≤h≤d

sup
0≤s<1−h

|R (s+ h)−R (s)| , 0 < d < 1.

That of the empirical process pertaining to iid rv’s has been studied for sev-
eral choices of d in Mason et al. (1983) and Stute (1982). It is remarkable
that the weak versions of all those results are inherited by the reduced
spacings process αN (s) = βN

(
H−1
k (s)

)
, 0 ≤ s < 1, (see Lo (1987)). For the

strong case, we obtain these two results.

Theorem 64. I. The Stute’s case.

If (dN)N≥1 is a sequence of non-increasing positive reals such that
(S1) NdN → +∞,

(S2)
(
log d−1

N

)
/ (NdN)→ 0,

(S3)
(
log d−1

n

)
/ log logN → +∞,

(S4)
(
2dN log d−1

N

) 1
2 /aN =: qN/aN → +∞, as N → +∞,

then for k ≥ 1 fixed or k = k (N)→ +∞ as N → +∞ and satisfying

(4.1) ∃No, δ > 2, ∀N ≥ No, 0 < dN < kk(δ−2) exp

(
−1

2
kδ
)
.

We have limN→+∞ supκ (dN , αN) /qN = 1 a.s.

II. A Mason-Wellner-Shorack case.

Let aN = α (logN)−c , α > 0, c > 0. Then under the same assumptions on k
used in Part I, we have limN→+∞ supκ (dN , αN) /qN ≤ (1 + c)

1
2 , a.s.
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Proof of Part I of Theorem 64. We have by Lemmas 42 and 43,

∀N ≥ 1, {αN (s) , 0 ≤ s < 1} d=

{
ΛN

(
H−1
k (s)

)
+RN5 (s) +RN6 (s) , 0 ≤ s < 1

}
(4.2) =: {ᾱN (s) , 0 ≤ s < 1} ,

with

RN5 (s) = N
1
2 (µN − 1)H−1

k (s)H ′k
(
H−1
k (s)

)
=: N

1
2 (µN − 1)φ (s) , 0 ≤ s < 1,

and

(4.3)
∑
p

P

N=Np+1−1⋃
N=Np

sup
0≤s<1

|RN6 (s)| > (1 + ε) aNK (k)

 < +∞,

by (4.3) and (S4), we have

(4.4)
∑
p

P

N=Np+1−1⋃
N=Np

κ (dN , RN6) > εqN/3

 < +∞.

By Lemma A4 in Lo (1987), κ (dN , φ) = (1 + o (1)) q2
N as N → +∞ for all k

satisfying (S5). Thus, by the loglog-law,

∑
p

P

N=Np+1−1⋃
N=Np

κ (dN , RN5) > εqN/3

 < +∞,

whenever

(4.5) lim
N→+∞

k−1dN log log (1/dN) log log Nk = 0

is satisfied. This obviously follows from (S1), (S2), (S3), (S4) and (S5). By
the results of Stute (1982) as recalled in (2.14), for ε > 0,
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(4.6)
∑
p

P

N=Np+1−1⋃
N=Np

κ
(
dN ,ΛN

(
H−1
k

))
> (1 + ε/3) qN

 < +∞,

when (S1), (S2) and (S3) hold. Since ε is arbitrary and since (S1) and (S3)
imply (4.5), we get
(4.7) lim

N→+∞
sup q−1

N κ (dN , αN) ≤ 1, a.s.

To get the other inequality, define for 0 < c1 < c2 < +∞, 0 < d < 1, for any
function R (s) , 0 ≤ s < 1,

(4.8) κ′ (d, R) = sup
c1d<u−t<c2d

|R (u)−R (t)| /
√
u− t, 0 ≤ u, t ≤ 1.

Let RN (.) = RN5 (.) + RN6 (.) and rN (.) = ΛN

(
H−1
k (.)

)
. Now remark that for

all ε1 > 0, there exists ε2 > 0 such that for

a =
(
(1− ε1) log d−1

N

) 1
2

and

b =
(
ε2 log d−1

N

) 1
2 ,

a+ b =
((

1− ε1 + ε2 + 2 (ε2 (1− ε1))
1
2

)
log d−1

N

) 1
2

=
(
(1− ε3) log d−1

N

) 1
2

with ε3 > 0, ε3, ε2 → 0 as ε1 → 0. Thus,

P (κ′ (dN , αN) ≤ a) ≤ P
(
{κ′ (dN , ᾱN) ≤ a}

⋃
{κ′ (dN , RN) > b}

)
+P
(
{κ′ (dN , ᾱn) ≤ a}

∏
{κ′ (dN , RN) ≤ b}

)
(4.9) ≤ P (κ′ (dN , RN) > b) + P (κ′ (dN , rN) ≤ a+ b) ,

By (4.3) and (4.4)
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(4.10)
∑
p

P

N=Np+1−1⋃
N=Np

κ′ (dN , RN) > b

 < +∞,

for all ε2 > 0. Thus by (4.2), (4.8), (4.9) and (4.10) and Lemma 2.9 of Stute
(1982) and some straightforward considerations, we get limN→+∞ inf κ′ (dN , αN) ≥
1, a.s., under (S1), (S2), (S3) and (S4). Letting c1 = c2 = 1,

(4.11) lim inf
N→+∞

κ (dN , αN) ≥ lim
N→+∞

inf κ′ (dN , αN) ≥ 1, a.s.

(4.7) and (4.11) together complete the proof of Part I of Theorem 64.

Proof of Part II of Theorem 64.

Here (S3) and (S4) are satisfied. It suffices thus to write again the proof
of the part one where one should use the probability inequality (2.4) of
Mason et al. (1983). It must be noticed that Part III of Theorem 1 in Mason
et al. (1983) holds for the general case where aN = α (logN)−c , 0 < α, 0 < c.
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APPENDIX. PROOFS OF STATEMENTS (2.8) AND (2.9).

a) Proof of Statement (2.8).

Tchebychev’s inequality yields α > 1 and β > 1 such that P (Sn2/n2 > 1 + ε) ≤
A2n

−α and P
(∣∣Sn − Sm(n)

∣∣ > nε/2
)
≤ A3n

−β as n→ +∞, where

m (n) = max
{
j2, j2 ≤ n, j = 1, 2, ...

}
.

Thus

P (|µN − Sn+1/ (n+ 1)| > ε/2) + P (Sn+1 ≥ 1 + ε/2)

(4.12)
≤ P (|µN − Sn+1/ (n+ 1)| > ε/2) + (A2 + o (1)) k−αN−α + (A3 + o (1)) k−βN−β,

since (n+ 1) ∼ Nk as N → +∞. Furthermore, by Tchebychev’s inequality,

P
(
SNk/Nk − (Nk)2 > ε/8

)
≤ 64N−3k−3/ε2

P
(
Sk/ (Nk)2 − (Nk)2 > ε/8

)
≤ 64N−4k−3/ε2

and

P (|µN − Sn+1/ (n+ 1)| ≥ ε/2) ≤ P (SNk/Nk > ε/4) + P
(
Sk/ (Nk)2 > ε/4

)
.

Hence since Nk → +∞, N2k → +∞ as N → +∞,

(4.13)
∑
N

P (|µN − Sn+1/n+ 1| > ε/2) < +∞.

Thus (4.12) and (4.13) together imply (2.8).

Proof of (2.9). We have
Sn+1 −Nk

(2Nk log logNk)
1
2

=
Sn+1 − SNk

(2Nk log logNk)
1
2

+
Sn+1 −Nk

(2Nk log logNk)
1
2

=: S ′N + S ′′N .
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First, since 0 ≤ (n+ 1)−Nk ≤ k,

P (S ′N > ε/2) ≤ P
(
Sk > ε (2Nk log logNk)

1
2 /2

)
≤ 1−Hk

(
k

1
2N

1
2

)
≤ const. exp

(
−1

4
k

1
2N

1
2

)
as k/N → 0, N → +∞ (see Statement (2.20)). Thus

(4.14)
∑
N

P (S ′N > ε/2) < +∞.

Now, let
p = p (N) = inf {j,N > Nj}

and
q (N) = inf

{
j, k (N) > Nj =

[
(1 + ρ)j

]
, j = 1, 2, ...

}
ThenNp−1 ≤ N ≤ Np, Np−1Nq−1 ≤ NK ≤ NpNq, log logNpNq = (log logNp) (1 + o (1)) ,
as N/k → +∞, N → +∞, Np+1/Np → 1 + ρ, as N → +∞. Thus (see Loève
(1974), p.259-262).

P

N=Np+1−1⋃
N=Np

{S ′′N ≥ 1 + ε/2}

 ≤ A4P
(
SNpNq > 1 + δ (ε, ρ) (2NploglogNp)

1
2

)
≤ A5p

−(1+δ(ε,ρ))

as p→ +∞, for ρ small enough, δ (ε, ρ) > 0. The same holds for −S ′′N . Thus

(4.15)
∑
p

P

N=Np+1−1⋃
N=Np

(|S ′′N | > 1 + ε/2)

 < +∞.

Finally (4.14) and (4.15) together imply (2.9).
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