
CHAPTER 12

Comparison of Two Factorization
Methods: Cross Section Versus
Proper Action

The factorization method of Andersson, Br0ns, and Jensen (1983)
was mentioned briefly in Chapter 1. For brevity we shall term this
the "ABJ" method, whereas the method that uses construction of a
cross section—as developed in this monograph—will be designated by
"W." It was mentioned in Chapter 1 that the main assumption made
in the ABJ method is that the I.e. group G acts properly on the I.e.
space X (Definition 2.3.6). In the W method, properness of the action
of Cr, although not explicitly assumed, is implied by Assumption 8.2.
For, X is homeomorphic to ^ x 7 by Proposition 8.4, and G acts
properly on ̂  x T since it acts trivially on 7 and properly on ̂  by
the compactness of GQ (Proposition 2.3.11). Thus, both the ABJ and
the W method rely on properness of the action of G. Below we shall
concentrate on differences between the two methods.

In the ABJ method it is further assumed that there is another I.e.
space y on which G acts transitively and properly, and that there is
a continuous and equivariant function u : X —* ^, where u represents
some statistic of interest. (Actually, this function is denoted t in ABJ.
We have changed the notation from t to u in order to avoid confusion
with the maximal invariant t of Chapter 8.) For instance, in the
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problem treated in Section 10.7 (Section 2 in ABJ) ^ is the space of all
PD(2p) matrices of complex structure, and the equivariant function
u : X —> ^ is defined by

11 22 12 21

21 °12 °11 °22

This is a constant times the maximum likelihood estimator of Σ if
the hypothesis is true. Let there be given on X a relatively invariant
measure λ with multiplier χ. (In ABJ λ is chosen invariant, but the
extension to the slightly more general case of a relatively invariant
measure is no harder and makes the comparison with the W method
easier.) Choose any y0 G ̂  and let Gλ be the isotropy subgroup of
G at y0. Then ^ and G/G1 are homeomorphic by Corollary 2.3.15
(change X and x there to ^ and y0 here). Thus, any measure on
G/Gλ may be transferred to ^. Let μλ be a fixed χ-relatively invariant
measure on G/Gx, therefore on ^, the existence of which is guaranteed
by Corollary 7.4.4. Then an arbitrary χ-relative invariant measure
on ^ is of the form cμ1? with c > 0, again by Corollary 7.4.4. Let
π : X —> X/G be the orbit projection. Note that X/G is I.e., by
Theorem 2.3.13(a). G acts on y x X/G by #(y, z) = (gy, z) for y G ̂ ,
z G X/G. The function (u,π) : X —-> ̂  x X/G is equivariant since
(u,π)(#z) = (u(gx),π(gx)) = (#u(z),π(z)) = flf(ti(a;),π(a:)), using the
equivariance of u and the definition of the action of G on ^ X X/G. It
is shown by Andersson, Br0ns, and Jensen (1983), in their Lemma 3,
that (u, π) is a proper mapping and it follows that the image of λ under
(ϊi,τr), say μ = (u,π)(λ), is a measure on ^ x X/G (see Section 6.3,
in particular (6.3.4)). The following computation shows that μ is χ-
relatively invariant: Let / G %($ x X/G) and put /* = /o(u, π), then
/* G %(X) and J fdμ = J f*d\ by definition of the induced measure
μ. A simple computation shows gf* = gf o (u,τr), for g G G. Then
J gfdμ = f gf*d\ = χ{g) J f*d\ (since λ is χ-relatively invariant)
= χ(g) J fdμ. By the χ-relative invariance of μ and Theorem 7.5.1
there is a measure μ2 on X/G such that μ — μλ ®μ2. This is essentially
the conclusion of Lemma 3 in ABJ (their uQ and K are μλ and μ2 here).
In their applications the random variable X has a distribution of the
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form fι(v>(x))f2(π(x))\(dx). Then the factorization of (u,π)(λ) shows

that u(X) and π(X) are independent, with distributions fι(y)μι(dy)

and f2(
z)lJ>2(dz), respectively,. However, an explicit expression for μ2

is not found by this method but has to be obtained by other means.

We shall now compare the ABJ and W methods. In the latter

the space ^ is always taken to be <?/G0, where the compact group Go

is the common value of all Gz when z traverses the cross section £,

and the function u of ABJ is the function y of (8.3). For notational

clarity we shall denote this function by a different symbol:

(12.2) η(x) = [g] if x = gz, z£ 2,

where [g] stands for gG0 G V If Z is taken as a representation of

X/G, then the orbit projection is

(12.3) π(x) = z if x = gz, z 6 Z.

If the space 7 of Chapter 8 is identified with Z then the diffeomorphism

φ of (8.7) may be considered a function ^ x Z —> X, and its inverse is

(12.4) φ-'={η^).

Thus, in the W method there is a space ^ (namely, G/GQ) on which

G acts transitively and properly (Proposition 2.3.11), and a contin-

uous and equivariant function η : X —> ^. Then the factorization

of (r/,π)(λ) by the W method, essentially given by (8.10), is a spe-

cial case of the factorization of (w,π)(λ) by the ABJ method. It will

be shown now that, conversely, the ABJ factorization can be derived

from the W factorization provided the following condition is satisfied:

u maps Z into a single point of ^ (i.e., u is constant on Z). In the

theorem below we shall not need all the regularity of Assumption 8.2,

but we shall return to that regularity when applying the theorem to

the comparison of the ABJ and W factorizations.

12.1. THEOREM. Let X be a I.e. space and G a I.e. group acting

continuously on X. Suppose there is a global cross section Z G X for
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which there exists a closed subgroup Go of G such that Gz = Go for
every z £ Z. Define η : X —* G/Go by (12.2), so that η is equivariant.
Suppose there is a function u that maps X into some other I.e. space ̂
on which G acts continuously and transitively, such that u is equivari-
ant and u{Z) = yQ for some y0 6 ^. Denote the isotropy subgroup Gyo

by G1 and assume that ^ and G/G1 are homeomorphic. Then there
exists a continuous, open, and equivariant function φ : G/Go —* V
such that

(12.5) u = φoη.

In fact, if ^ and G/Gx are identified, then φ is the function G/Go —»
G/Gλ defined by

(12.6) φ(gG0) = gG1, geG.

If the stronger assumption is made that G act properly on ^ (from
which the homeomorphism of^ and GjGλ is a consequence, by Corol-
lary 2.3.15) then φ is proper.

PROOF. First we verify that Go C Gx: take any z G £, then
g e Go implies y0 = u(z) = u(gz) = gu(z) = gy0 so that g G Gλ.
It follows that φ of (12.6) is well defined. Consider, for i = 0,1, the
coset projection πi : G —> G/G^ which is continuous, open, and onto.
Then we have π2 = φ o τr0. If A is an arbitrary subset of G/G-^
then φ~1(A) = ^ ( T Γ ^ A ) since π0 is onto (cf. (2.1.9)). If A is open,
then the continuity of TΓJ and openness of τr0 guarantee that φ~1{A)
is open. Hence, φ is continuous. If B is an arbitrary subset of G/Go,
then φ(B) = π^π^B), again because π0 is onto (cf. (2.1.10)). If B
is open, then the continuity of π0 and openness of πα guarantee that
φ(B) is open. Hence φ is an open map. The equivariance of φ is
immediate by its definition (12.6).

Next, we show the validity of (12.5). It is sufficient to check
this separately on each G-orbit in X. Take z £ Z arbitrarily and
consider the orbit Gz in X. Then G is transitive both over Gz and
over ^, so that an equivariant function Gz —> ̂  is determined by its
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value at one point. Now u is given to be equivariant and u(z) =
y0. Also, both φ and η are equivariant, so that φ o η is equivariant.
Furthermore, by taking g = e in (12.2) and (12.6), we see that (φ o
η)(z) = φ(G0) = Gx G G/Gλ, which corresponds to y0 G ̂ . Thus,
under the identification of ̂  and G/G1^ the equivariant functions u
and φ o η are equal at one point of Gz and are therefore equal along
the whole orbit.

Finally, if G acts properly on ̂  = GyQ, then Gλ is compact (Theo-
rem 2.3.13(c)) and ^ and GjGx are homeomorphic (Corollary 2.3.15).
Since Go C G1 ? Go is also compact. Furthermore, by the compact-
ness of G i ? 7Γ; is proper, i = 0,1 (Proposition 2.3.5). For any compact
A C G/Gλi π^1(A) is a compact subset of (?, by Theorem 2.2.3. Then
φ~1(A) = TΓ^TΓ^A) is a compact subset of G/GQ which shows that
φ is proper, again by Theorem 2.2.3. D

12.2. REMARK. Define £ to be the set of all pairs (w,^) satis-
fying the hypotheses of Theorem 12.1 (not including the assumption
of proper action of G on ̂ ). Then (77, G/GQ) 6 δ (with Gλ = GQ and
φ = identity map). For an arbitrary (u,y) G £ the conclusion (12.5)
can be phrased: u depends on x through η(x). Thus, we are justified
in describing (η,G/G0) as a maximal equivariant function in the
set £. D

12.3. REMARK. In Theorem 12.1 it is not assumed that η is
continuous. If η is continuous (e.g., if Assumption 8.2 is satisfied),
then every u with (w,^) G δ must be continuous, by (12.5). However,
if it is only given that for some (w, ̂ ) G £, u is continuous, then it does
not necessarily follow that η is continuous. (For instance, ^ could be
a single point.) D

12.4. REMARK. In Theorem 12.1 it is not assumed either that
G acts properly on X. But if (w,^) G £ with u continuous, and if G
acts properly on ^, then G must act properly on X. This follows from
{(A,B)) C ((u(A),u(B))) (for notation see (2.3.2)) if A and B are
arbitrary subsets of. X, using the equivariance of u. Then take A, B
compact, use the continuity of u, and the conclusion follows from
Proposition 2.3.8. D
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We return now to the comparison of the ABJ and W factoriza-

tions. Suppose Assumption 8.2 is satisfied so that there is a cross

section Z and compact Go C G with Gz = Go for every z £ Z.

Theorem 8.6 leads to a factorization (8.10), which is of the form

φ~1(X) = μQ <g) μ2, where μ0 is a measure on G/GQ. Suppose that

the continuous and equivariant function u of ABJ (actually, their t)

maps Z into a single point of u(X) = ^. Then Theorem 12.1 applies.

Since it is also assumed by ABJ that G acts properly on ^, the con-

clusion is (12.5) with φ proper. It follows that the ABJ factorization

is

(12.7) (u,π)(\) = ψ(μo)®μ2.

12.5. EXAMPLES. In the problem of Section 10.7 (the first prob-

lem in ABJ, Section 2) we had a cross section Z consisting of all ma-

trices diag(/J, + LJp- L), L = diagjft,... , lp\ with 1 > ^ > • • >

ip > 0. The function u is defined in (12.1) and it is seen that for

any z G £, u(z) = diag(/p, Jp). Thus, u is constant on Z so that

Theorem 12.1 applies.

In the second problem of Andersson, Br0ns, and Jensen (1983),

Section 3 (not treated in Chapter 10, but treated in Wijsman, 1986,

Section 7.7(b)) X consists of 2p x 2p positive definite matrices S =

i(Sij))i hJ = !> 2> w i t h ^11 = ^22^ ^21 = ^125 a n d a 1 1 Sij : P X P T h e

function u can be described by stating that u(S) equals S with S^

and 5 2 1 set equal to 0. A cross section Z may be taken as the range

of the function s that maps (u^,... ,u?r) (with 1 > ω1 > > ωr > 0

and r = [p/2]) into a matrix S with Su = 5 2 2 = /j, and 5 2 1 =

5 1 2 = Ω, where Ω depends on the ωi in a manner that is unimportant

for the present considerations. Thus, it is seen that if S G £, then

u(S) = diag(I , / ) = constant so that again Theorem 12.1 applies.

D

In summary, under an appropriate amount of regularity, the ABJ

and W factorization results are obtainable from each other. That is,

starting from a relatively invariant measure λ on X, the ABJ fac-

torization (tt,τr)(λ) = μλ ® μ2 on ^ x Z and the W factorization
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(τ7,π)(λ) = μ0 (g) μ2 on G/GQ x Z are equivalent. A major difference
between the two methods is that the AB J method requires fewer as-
sumptions, but the W method has a built-in capability of obtaining
an explicit expression for the measure μ2 on Z (or 7 of Chapter 8).




