
CHAPTER 8

Factorization of Measures on Locally

Compact Spaces Induced by the

Action of a Group, with Help

of a Global Cross Section: Theory

From this chapter on, the notation will revert to that of Chap-
ter 1. That is, unlike the notation in Chapters 2-7, spaces will be
denoted by script symbols such as X, ̂ , etc., and random variables by
capital symbols such as X, F, etc. Free use will be made of concepts
and definitions in Chapter 2-7 without always giving a reference. All
spaces will be locally compact (I.e.), and a measure on such a space
will always be understood to be in the Bourbaki sense (Chapter 6);
in particular, a measure is regular and finite on compacta.

Suppose that a statistical problem leads to a random variable X
with values in a I.e. space X and having a distribution P that is a mem-
ber of some family of distributions. We shall assume that this family
is absolutely continuous with respect to a measure λ on X, and write
P(dx) = p(x)\(dx). Suppose the statistical problem is invariant un-
der the left action of a I.e. group G (what that means exactly depends
on the type of problem and is irrelevant for the present discussion)
and suppose we would like to obtain a factorization of λ induced by
G as described in Chapter 1. The main result of such a factorization
is that it leads to the distribution of a maximal invariant.
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152 FACTORIZATION WITH GLOBAL CROSS SECTION 8

Recall that the orbits in X under G are the subsets of X of the

form Gx, a; 6 X, and that t : X —> 7 (conditions on 7 later) is a

maximal invariant if it is constant on orbits and distinguishes orbits.

The random variable T = t(X) is also called a maximal invariant.

The space 7 is usually chosen to be a subset of some Euclidean space,

if possible. Closely related to the choice of the function t is the choice

of a (global) cross section in X under the action of G. This is a

set Z C X which has exactly one point in common with each orbit.

Denote by z(x) the point of Z on the orbit of x:

(8.1) z(x) = ZΠGx.

The choice of Z often precedes the choice of t and proceeds by choosing

on each orbit a point in a more or less "canonical" way.

8.1. EXAMPLE. Let X be the space of all n x n positive def-

inite matrices S with distinct characteristic roots and G = 0(n)

as described in Example 7.7.8. Then the orbit of a given S con-

sists of all matrices with the same set of characteristic roots as 5,

say λx > > λn > 0, and an obvious choice of z(x) = z(S) is

Λ = diag(λ1,... , λn). We can write

(8.2) 5 - ΓΛΓ', Γ G O(n),

and letting Γ run through all of O(n) traces the entire orbit of Λ. An

obvious choice for 7 is {λ = (λ 2 , . . . , λn) : λ2 > > λn > 0} C Rn

and the function t is t(x) = t(S) = λ G 7. D

The function z : X —> Z given by (8.1) is also a maximal invariant

and there is of course for every x G X a 1-1 correspondence between

z(x) and t(x). In principle we could dispense with t and 7 and do

everything with z and Z. However, in practice the space 7 is usually

easier to work with.

The immediate aim is to bring X in 1-1 correspondence with a

product space ^ x Z, where ^ is to be a copy of each of the orbits

in X. From Section 2.1 we know that the points of an orbit Gx are

in 1-1 correspondence with the left cosets of G modulo the isotropy
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subgroup of G at some arbitrarily chosen point on the orbit. The

obvious choice of this point is z(x), but then in order that ^ be in 1-1

correspondence with each G/Gz<x\ we have to choose Z in such a way

that Gz(x\ for every x is the same subgroup of G, say GQ. In that

case, put ̂  = G/GQ. For later use we shall need GQ to be compact in

order that a measure (invariant or relatively invariant) on G induces

one on y, by Corollary 7.4.4. The points of ^ will be denoted y, or

gG0, or [g]. An arbitrary point a f X can be reached by starting at

z(x) and then moving along the orbit to x with help of some g £ G:

x = gz(x), where g is determined only up to the coset [g]. Thus,

the value of y in this transformation is unique. Therefore, define the

function y : X —• ^ by

(8.3) y(x) = [g] if x = gz, zβ Z.

Then an arbitrary x £ X has the unique representation

(8.4) x <-> (y, z), y = y(z), z = z{x),

so that (8.4) defines a 1-1 correspondence between X and ̂  x Z. The

group G acts on ^ because it acts on G/GQ according to (2.1.3) (H

there is GQ here). Furthermore, G acts trivially on Z. Therefore,

(8.5) gx <-> (#y, z) if x <-> (y, z).

Let the 1-1 correspondence between z(x) and t(x) be expressed as a

function s:

(8.6) s(t(x)) = z(x).

Then if 7 is the range of the function t, , s : C Γ — > X i s a l - l map

of 7 —» X and the 1-1 correspondence between a; and (y,^) can be

transferred to a 1-1 correspondence between x and (y,ί) = (y,^" 1 ^).

(Here we have used t to mean a point of 7. We shall continue doing

so if there can be no confusion with the function t.) For reasons

explained in Chapter 1, we impose differentiability conditions on the

various spaces and functions. Differentiability will be understood to

be in the C1 sense unless specified otherwise. However, in all examples

in this monograph the manifolds and functions will in fact be analytic.

We shall assume analyticity explicitly whenever there is special group

structure.
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8.2. ASSUMPTION. Let the spaces X, 7 and the group G be dif-

ferentiable manifolds with group action (#,#) —» gx of G on X dif-

ferentiable. Let Go be a compact subgroup of G, and put )) = G/Go.

Suppose s : T —> X is differentiate and maps 1-1 onto a cross section

Z such that Gz = GQ for all z G Z. Define ψ : ^ x 7 —> X by

(8.7) φ(y,t) = gs(t) if [g] = y,

so that ψ is differentiate and 1-1 onto. Assume that ψ has a positive

Jacobian at every point ([e],ί) ofty xj, where e is the identity element

ofG.

8.3. ASSUMPTION. In Assumption 8.2 replace "differentiate" by

"analytic."

8.4. PROPOSITION. If Assumption 8.2 is satisfied, thenφ of (8.7)

establishes a diffeomorphism between the three spaces X, ^ X 7, and

^ x Z, and Z is a submanifold ofX. If Assumption 8.3 is satisfied,

the diffeomorphism is analytic.

PROOF. Take t e 7 arbitrary. By (8.7), φ([e],t) = s(t) = z,

say, where z E Z. Consider z as a point in X, then by Theorem 3.1.1

and Assumption 8.2 there is a neighborhood of z in X on which φ"1 is

differentiate. The same is then true for a point of the form gz, g G G,

since x —> gx and (y,ί) —> (gy,t) are diffeomorphic transformations

of X with itself and of ^ x 7 with itself. Since every x 6 X is of

the form gz, g G (?, z G £, it follows that ψ"1 is differentiate on

all of X. Now let z — s(<), t G T, be an arbitrary point of Z. At

([e],ί) G y X 7 take a chart with local coordinates y , tj. Transfer this

chart to z G X, which is justified by the diffeomorphism between ^ X 7

and X. That is, the y and tj may be taken as local coordinates in a

neighborhood, say 17, of z. In J7, the points of Z are parametrized by

the t , since the yi are 0 on Z. This establishes Z as a submanifold of

X (Section 3.4). If Assumption 8.3 is satisfied, then in the preceding

argument "differentiable" may be replaced by "analytic." D

8.5. DEFINITION. A (global) cross section Z will be called dif-

ferentiable if Assumption 8.2 is satisfied, and analytic if Assump-

tion 8.3 is satisfied.
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After having established the aspects of the structure of X under
the action of G that are of an algebraic and analytic nature we turn our
attention to distributional aspects. Suppose on X is given a measure
λ that is relatively invariant (under G) with multiplier χ. This was
defined in Section 7.3, equation (7.3.1), for the right action of a group.
Here we have left action of G on X, and the definition is then

(8.8) X(gf) = χ(flf)λ(/), g G G, f € 0C(X),

or, equivalently,

(8.9) λ(flfβ) = χ(g)\(B), B compact C X.

Recall that χ is a continuous homomorphism G —* R+ and that χ = I
on GQ since Go is compact (Corollary 7.1.8). This implies, as in Sec-
tion 7.4, that x depends on G only through [g] = y, so that we shall
often write χ(y) (as in (7.4.5)). The diffeomorphism ψ of Proposi-
tion 8.4 is certainly a homeomorphism and therefore ψ~λ transforms
λ into a measure on ^ x T, say λ*, which is also relatively invariant
with multiplier χ under the action (y, t) —> (#y, t) of G on ^ x 7. If μ^
is a measure on ^, then χμ^ will stand for the measure χ(y)μ^(dy).

8.6. THEOREM. Let Assumption 8.2 be satisfied and let X be a
relatively invariant measure on X with multiplier χ. Let μG be a
version of left Haar measure on G and μ^ == τ:{μo) the corresponding
invariant measure on )), where π is the coset projection G —> G/Go.
Then there is a measure μ7 on 7 such that

(8.10) \*=φ-

If X is a random variable with values in X and distribution

(8.11) P(dx) = p(x)λ(dx),

then the distribution of the maximal invariant T = t(X) with values
in 7 is

(8.12) PT{dt) = μ7(dt) J p(gs(t))χ(g)μG(dg).
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PROOF. The equation (8.10) follows immediately from Theo-

rem 7.5.1 by taking in that theorem Xx = ^ (note that by Proposi-

tion 2.3.11 G acts transitively and properly on ^ since Go is compact),

X2 = CΓ, μ = λ*, μλ = χμy (as in (7.4.5)) and μ2 = μ<χ- Now let

(F,T) = p " 1 ^ ) a n d P*(ϊ/,*) = P(¥>(y>*))> then the distribution of

(F, T) is p*c?λ*. Using (8.10) this distribution can be written

(8.13) PY'T(dy,dt) = p*(y,t)χ(y)μy(dy)μ7(dt).

Integration over y provides the marginal distribution of Γ. The inte-

gration over y can be carried out, instead, over the group G (see (7.4.6)

and (7.4.7)). For this purpose write p* as a function of g and ί,
saY £>*(#?*) — P*(7Γ(flf)?ί) = P*([flf]?*) Th e l a t t e r expression equals
p(x) with x = ¥>([#],*) = gs(t) by (8.7). Therefore, the integration
over y of the right-hand side of (8.13) yields Jp*(y,ί)χ(y)/iy(c?y) =

* s o t h a t (8.12) follows. D

Equation (8.10) can be written more explicitly as

(8.14) \(dx) = X*(dy,dt) = χ(y)μ)f(dy)μ7(dt).

An explicit expression for μ<j is not given by the theorem, but follows

from computation of the Jacobian of ψ in the points ([e],<), t 6 T

(this will always be carried out by computing a wedge product of

differentials). This leads to an expression λ(dx) — μ^(dy)u(dt) at

these points, with some measure v on T. Comparison with (8.14) at

V — [e] (where χ(y) = 1), i.e, with

(8.15) X(dx) = μy(dy)μ7(dt) at y = [e],

shows then that μ7 = v.

8.7. EXAMPLE (continuation of Example 8.1). With the choice

of Z and 7 of Example 8.1 the isotropy subgroup Go consists of all

matrices diag(±l,.. . , ±1) (see Example 7.7.8). Take μG as in (7.7.7),

then μy at y = [e] is given by (7.7.16) so that

(8.16) (dΓ) = 2~nμy(dy) at Γ = e.
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Now differentiate (8.2) at g = e: dS = (dΓ)A + dλ + ΛdΓ = (dΓ)Λ -
AdΓ + dλ (using the skew symmetry of dΓ at e, see Section 7.7).
Then dsi{ = dλ , and for i < j , ds{j = (Xj - X^dη^ which we may
also write as (λ^ — λ^dj- by the irrelevance of the sign in a wedge
product when used to define a measure. Take the wedge product of
the above differentials, then (dS) = (dA)H(Xi - Xj)(dΓ), where the
product is over all i < j . With help of (8.16) this becomes

(8.17) (dS) = 2-nH(λi-Xj)μ^dyχdA) at S = Λ.

Let the relatively invariant measure λ of Theorem 8.6 be (dS) here
(this is even invariant since G is compact so that χ = 1). Then by
comparing the right-hand sides of (8.15) and (8.17) we see that

(8.18) μ7(dt)

and (8.12) becomes

(8.19) Pτ(dA) = 2-*

with μo{n) = (dΓ) at Γ = In. Ώ

Further applications of Theorem 8.6 and the use of (8.15) to ob-
tain μ<y will appear in Chapter 10. Those will be called Type II
problems. The remainder of this chapter will assume more structure
on the statistical model. This will be called special group struc-
ture and the problems it can handle will be called Type I. Several
examples of those are treated in Chapter 9.

The further structure alluded to above consists in the presence of
an additional group H that acts on X such that roughly speaking G
and H together are transitive over X. The aim is to obtain an orbit in
X under the action of H as a cross section Z. This will require several
conditions. First, let K be a Lie group that is transitive over X such
that Assumption 5.9.1 is satisfied. Let xQ be an arbitrary point of
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X and let Go, i ϊ 0 , Ko be the isotropy subgroups at x0 of G, if, UΓ,

respectively. Then X is in 1-1 correspondence with K/Ko, but we

need this to be at least a homeomorphism. We shall therefore make

the following assumption.

8.8. ASSUMPTION. X and K/Ko are homeomorphic. (This will

be true, in particular, if the action of K on X is proper (Corol-

lary 2.3.15) or if K is second countable (Lemma 2.3.17).)

In our applications K will always be put together of subgroups of

the general linear group and of groups of matrices under translation.

Then K is a submanifold of some Euclidean space and therefore sec-

ond countable. Assumption 8.8 together with the conclusion of The-

orem 5.9.9, if applicable, sets up a homeomorphism between X and

G/Go x H/Ho. Then one can take y = G/Go as before, 7 = H/Ho,

Z> = Hx0, and the function s of (8.6): s(hH0) — hx0. Before stating

this formally it is convenient to recast Assumption 5.9.3 in terms of

the actions of G and H on X.

8.9. ASSUMPTION. For arbitrary g G G, h G H, assume that

gx0 = hx0 implies gx0 = hx0 = x0.

The following lemma establishes the equivalence of Assumptions

5.9.3 and 8.9. Note that no topology is involved, only algebra.

8.10. LEMMA. Let K be a group with subgroups G and H such

that K = GH, and let K act transitively on X to the left. Choose any

xQ G X and let Go, Ho, KQ be the isotropy subgroups at xQ of G, H,

K, respectively. Then the statements A and B below are equivalent.

(A) (i)GKH = Gon Ho; (ii) Ko = G0H0.

(B) For every g G G, h G H, gx0 = hx0 implies gx0 = hx0 = x0.

PROOF. Suppose B holds. Let / G G Π H, then fx0 = fx0 is

of the form gx0 = hx0 (g G <?, h G H) so that / G Go Π HQ. Hence,

G Π H C Go ΓΊ Ho so that A(i) has been shown. Next, let k0 ξ KQ

so that kQ (as any member of K) can be written kQ = gh (g £ G,

h G H). Then ghx0 = x0 so that g~1x0 = hxQ which, by J3, implies

g £ GOi h £ HQ. It follows that Ko C G0H0, proving A(ii).
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Now suppose A holds and suppose gx0 = hx0 for some g G G,
h G H. It is to be shown that g G Go, h G HQ. Since g~1hxQ = x0

we have g"1/* G A"o so that g"1/* = #o^o f° r s o m e 9o £ GQ, hQ € HθJ

using A(ii). This can be written gg0 = hh^1. Let the common value

be /, then / G G Π H = Go ΓΊ i ί 0 by A(i), so that # = /g^ 1 G G o ,

h = fho(ΞHo. Ώ

The conditions needed for the next theorem are collected in the

following assumption.

8.11. ASSUMPTION. Let the Lie group K act continuously and

transitively on the I.e. space X and let G, H be two closed Lie sub-

groups of K such that K = GH. For arbitrary x0 G X let Go, Ho,

Ko be the isotropy subgroups at xQ of G, H, K, respectively. Let As-

sumptions 5.9.2 and 8.8 be satisfied (true, for instance, if K is second

countable). Furthermore assume

(i) for every g G G, h G H, gxQ = hx0 implies gx0 = hx0 = xo;

(ii) hGoh~λ = Go for every h G H.

8.12. THEOREM. Let Assumption 8.11 be satisfied and define ψ :

G/Go x H/Ho ->Xby

(8.20) φ(gG0,hH0)=ghx0.

Then ψ is a homeomorphism and is the function ψ of (8.7) if we put

y = G/Go, 7 = H/Ho, Z = Hx0, and s(t) = s(hH0) = hx0 G Z.

PROOF. Using Lemma 8.10, Assumption 8.11 is the union of As-

sumption 8.8 and Assumptions 5.9.1-5.9.4. Therefore, Theorem 5.9.9

applies. The function φ of (5.9.6) and ψ of (8.20) differ only in that

the range of the former is K/Ko, of the latter X. Let φ : K/KQ —* X

be the homeomorphism of Assumption 8.8. Then φ = φ o φ, which

is the composition of two homeomorphisms. Comparison of (8.20)

and (8.7) establishes the remaining claims. D

8.13. REMARK. In 8.8 it is not assumed that the homeomor-

phism is bi-analytic, nor even a diffeomorphism. However, in all appli-

cations in this monograph the space X is in fact an analytic manifold
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with the action of K on X analytic and the homeomorphism φ of 8.8

an analytic diffeomorphism. The same is true of y>, and Z is then an

analytic cross section by Definition 8.5. D

From now on we shall assume Go and HQ to be compact, which

implies Ko = G0H0 to be compact. This makes it possible to de-

rive invariant measures on the cosets from invariant measures on the

group. Given a relatively invariant measure λ on X we would like

to factor it in the manner of (8.14) by using the homeomorphism of

Theorem 8.12. Now T = H/Ho is also a homogeneous space, and μ7

can be derived from left Haar measure on H. The precise form of the

factorization follows from the formula (7.6.5) derived in Section 7.6.

8.14. THEOREM. Let Assumption 8.11 be satisfied and in addi-

tion suppose that Go and Ho (and therefore Ko) are compact Choose

versions μG and μH of left Haar measure on G, H, respectively,

and let μu, μ7 be the corresponding measures on ^ = G/Go and

7 = H/HQ, respectively. Let X be a relatively invariant measure on X

under the action of K with multiplier χ and define

(8.21) β(h) = χ(h)Aκ(h)AH(h-1), heH.

Then under the homeomorphism ψ of Theorem 8.12, λ factors into a

product measure on ^ x 7 as follows:

(8.22) \(dx) = cχ(y)μy(dy)β(t)μ7(dt),

where the positive constant c depends on the chosen versions of μG

and μH. Consequently, if X is a random variable with values in X

and distribution P(dx) — p(x)X(dx), and if X corresponds to (Y,T)

with values in ^ X 7, then the distribution of T is

(8.23) PT(dt) = cβ(t)μ7(dt) J p(ghxQ)χ(g)μG(dg), [h] = ί,

in which the integrand on the right-hand side depends on h only through

[h] = t. If H is normal in K, then β(t) = χ{t), and if G is normal in

K, then β(t) = χ(t)δ(t) with 6 defined in Corollary 7.6.3. In partic-

ular, if G and H commute, then (8.23) holds with β{t) = χ(t).
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PROOF. We shall identify X and K/Ko. The situation is the
same as in Section 7.4, with K and X here taking the place of G and
Y there, and λ here taking the place of v of Corollary 7.4.4. Equating
the right-hand sides of (7.4.6) and (7.4.7) while taking (7.4.5) into
account, yields, after appropriate change of notation,

(8.24) Jf(x)λ(dx) = c J f(kxo)χ(k)μκ(dk)

for some c > 0, where μκ(dk) is any choice of left Haar measure on
K and / is λ-integrable. Take 7.6.5 and replace f(k) by f(kxQ)χ(k).
Combine this with (8.24) to obtain

(8.25) Jf(x)λ(dx) = c JJ f(ghxo)χ(gh)Aκ(h)AH(h-1)

On the right-hand side of (8.25) the integrand depends on g and h
only through [g] = y and [h] = t so that the integration can be carried
out o n ^ x T with respect to μ^(dy)μ7(dt). Then observe that χ(gh) =
xίflOxCO = χ{y)x(f) and> after taking account of (8.21), (8.22) results.
To obtain (8.23) multiply (8.22) on both sides by p(x) = p(ghxQ) and
integrate over ^. Then replace the integral over ^ by one over G. The
statements about H or G normal in K follow from Corollary 7.6.2
and Corollary 7.6.3, respectively. D

The constant c in (8.22) and (8.23) may be evaluated in either
of two different ways. The first way consists of choosing a density p
sufficiently simple that the integral with respect to t of the right-hand
side of (8.23) can be carried out explicitly. Setting the result equal
to 1 determines c. The second way, which we shall always follow in
this monograph because it requires usually less computation, consists
of writing (8.22) at x = x0, so y = [e], t = [e], and consequently
χ(y) = β(t) = 1:

(8.26) \(dx) — cμy(dy)μ7(dt), at x = x0.

Then we shall express both sides in terms of differential forms, and
comparison of the forms yields c. It is assumed here, of course, that
X is a differentiate manifold.




