
CHAPTER 4

Differential Forms on Manifolds

4.1. Grassmann algebra. It may be helpful to precede the
formal definition by a short informal discussion. We shall keep a
given differentiate manifold M and an arbitrary point p G M fixed
throughout this section. Let / be a C1 function M —> R and df its
differential. It was seen in Chapter 3 that one of the two possible
interpretations of the value of df at p is a linear functional on the
tangent space Mp. That is, df at p is a member of the space M* dual
to M . In differential geometry there is a need for functions whose
arguments consist of more than one element of Mp. The case of two el-
ements is especially prevalent, for instance in the notions of curvature
and torsion transformations (see Bishop and Crittenden, 1964). In
this monograph the most important case will be d arguments, where
d = dimM, since that will be used to construct a measure on M (Sec-
tion 6.6). In general, then, we are going to define, for every 1 < k < d,
a differential form ω of degree fc, or, simply, a fc-form. Its value at p is
denoted ωp and will be defined as a real valued function of a certain
kind on the k-ΐold product Mp x x Mp. (The extension to ωp being
vector valued is important in differential geometry, but not for the
purpose of this monograph.)

In order to simplify the notation put Wk = M*k = fc-fold prod-
uct of M with itself (k > 1). A real valued function u on Wk is
said to be A>linear if u is linear in each of its k arguments separately.
The function u is called alternating if u changes sign whenever two
arguments are interchanged. Equivalently, this can be expressed in
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54 DIFFERENTIAL FORMS 4

terms of arbitrary permutations of the arguments, as follows. Let Gk

be the group of permutations π of the integers 1,... , k and let sgn(π)
be +1 or —1 according as π is even or odd. Then u is alternating if

(4.1.1) u ( W ϊ*πJb) = sgn( 7 rM<i» Λ )

for <!,... ,tk G Mp, π G Gk.
Consider all u on Wk that are fc-linear and alternating. This is

a finite dimensional vector space, say Vk. As an example take k = 2.
Relative to a chosen basis in M let ίι, i' = 1,... , o?, be the components
of ί G Mp. Then a 2-linear alternating function u on W2 must be of

the form tx(ί1?ί2)
 = Σΐ? αi?*i^2 ( s u m o v e r a ^ *?J = 1, ?^)5 with

αJZ = — a-. Thus, u can be written as

(4.1.2) tι(*1 1t2)

with arbitrary 6 (1 < i < j < d). Therefore, the 2-linear alternating
functions t\tJ

2 — tι

2t{, 1 < i < j < c/, span V2. Since they are linearly
independent, they form a basis of V2 and it follows that dimV^ =
d(d-l)/2. For arbitrary 1 < k < dit will be proved that dimV^ = (J).
For us of particular interest is the case k = cZ, when Vd is spanned by
the single function ]Γ)π sgn(π)tjrl . .. t^d. Note that for fc = 1, V± is the
space of linear functionals on Mp, i.e., Vx = M^. It is also convenient
to define Vk for k = 0 : Vo = R] then dim Vo = 1.

Next, define

(4.1.3) V = V0Φ θ ^ ι

(direct sum), then V is a vector space of dimension Σi=o (t) = 2d. A
multiplication in V will now be defined that makes V into an algebra,
called the Grassmann algebra over Vλ. If u,v G V we shall write
uΛu for their product, and call it the wedge product. The mul-
tiplication is required to be distributive so that it suffices to define
u Λ v if u G Vk, v G Vέ, for all 0 < fc, ί < d. If k or ^ equals 0, the
multiplication is ordinary multiplication by a real number. Suppose
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therefore that 1 < &, £ < d. Then u Λv is defined as the function on
Wk+£ such that for ίέ G Mp, i = 1,... , k + ί, we have

(4.1.4) u A r ; ^ , . . . , ^ )

Σ sgn(π)u(fπl,... ^ ^ M

When the sum on the right-hand side of (4.1.4) is written out it is seen
that several terms have the same value as a result of the alternating
character of u and v. For instance, if k = 1, £ = 2, then the right-
hand side of (4.1.4) has 3! = 6 terms. But, for instance, two of the
terms are uft^v^^t^) and —^(<1)v(<3,ί2)? a n ( ^ those are equal since
-I7(ί3,<2) = v(t2,t3). Thus, for k = 1, ί = 2, (4.1.4) simplifies to

(4.1.5) uAu(i 1,i 2,i 3) = ^(ίi)^(ί 2^3)-^( ί2) ϊ ;( ί1^3) + W( ί3) ϊ ;( ί1^2)'

in which the arguments {t^t ) of t> have been written so that i < j .
In general, for any fc, £, (4.1.4) can be written as

(4.1.6) uΛ «(*!,..., <fc+/)

summed over all π for which πl < < πk and π(k + 1) < <
π(k + ^). For instance, if k = i = 2, then

(4.1.7)

The function tί Λ i; defined by (4.1.4) is easily seen to be (k + ̂ )-linear
and can be verified to be alternating (see, e.g., the examples (4.1.5)
and (4.1.7)). Thus, u Λv e Vk+£ provided k + ί < d. If k + £ > d,
then one of the arguments t{ of u Λ v must be a linear combination of
the remaining arguments and then linearity and alternation of u Λ v
forces its value to be 0. It follows that u, v G V implies uAvGV. The
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multiplication is easily checked to be associative so that we can freely

write u Λ v Λ w, etc. In particular, if u 1 ? . . . , uk 6 Vl9 then repeated

application of (4.1.4) or (4.1.6) yields

(4.1.8)

For k = 2 this reads u2 Λ t ^ ί i , ^ ) == wi(*i)M2(^2)*~ui(*2)ί/2(*i)9 fr°m

which follows

(4.1.9) u Λ ϋ = -ϋΛw, w,vGVi.

Take u = v in (4.1.9), then one obtains

(4.1.10) uAu = 0, ueV1.

Formula (4.1.8) will be used in particular when the ui are ele-

ments of a basis eλ,... , ed of Vλ. Then for any 1 < iλ,... ik < d the

function eiχ Λ Λ eifc is an element of Vk. It follows from (4.1.8) that

this function changes sign if any two subscripts on the e's are inter-

changed (in particular, the function is 0 if two subscripts are equal)

so that we only have to consider i1 < < ik. It will be shown now

that

(4.1.11) {eii/\.. Λeik:l<i1<-- <ik<d}

is a basis of Vk. In order to shorten the notation define S = all

sequences s = (i1,... , ik) with 1 < i1 < —- < ik < d. Put

(4.1.12) ε 3 = e h Λ - Λ e fc, ( z \ , . . . , i k ) = s e S .

Let ( ί j , . . . , td) be the basis of Mp dual to (e 2 , . . . , ed) and define

(4.1.13) r ^ ^ , . . . , ^ ) , (i1,...,ik) = seS.
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If in (4.1.8) on the left-hand side uλ Λ Λ uk is replaced by ε3 and

( ί 1 ? . . . ,tk) by r s, defined by (4.1.12) and (4.1.13), then on the right-

hand side of (4.1.8) only the term with π the identity permutation

survives and yields 1:

(4.1.14) e.(r.) = l, s e S.

On the other hand, again by (4.1.8),

(4.1.15) εs(τs,) = 0 iΐs'^s,

in which sf is an arbitrary sequence ( i 1 ? . . . , ik). Now if u is an arbi-

trary element of V̂ , then the properties of linearity and alternation

imply that u is determined by its values on the τs of (4.1.13). I.e., if

two elements of Vk coincide on each τ s, then they must be the same

function. It follows then from (4.1.14) and (4.1.15) that

(4.1.16) u

since the right-hand side is also an element of Vk and both sides agree

on each τ s , s G 5. Moreover, again by (4.1.14) and (4.1.15), the ε3 are

linearly independent. Hence, (4.1.16) shows that (4.1.11) is a basis of

Vk. It also follows that dim Vk = number of elements of S = (£).

We have seen above that every element of Vk (1 < k < d) is a lin-

ear combination of wedge products of the from (4.1.12). The factors

in such a product are elements of Vλ and the coefficients are in J?, i.e.,

are elements of Vo. Therefore, V defined in (4.1.3) is generated by Vo

and VΎ (i.e., is a sum of products of elements of Vo and Vλ). One can

also define a Grassmann algebra V over Vλ abstractly, where now Vλ

is a given d-dimensional vector space over a field JP, by requiring the

following properties of V: (i) V is an associative algebra over F with

an identity element; (ii) V contains Vλ\ (iii) u/\u = 0 for every u G l ^ ;

(iv) V is generated by F and Vλ (v) dim V = 2d. It can be shown that

these conditions determine the algebra uniquely (Cohn, 1957, Theoτ

rem 4.1.1; Bishop and Crittenden, 1964, Section 4.3, Remark (2)).

Our Grassmann algebra, defined in terms of multilinear alternating

functions, is a special case with F = R. The identity element is the

number 1, and condition (iii) is satisfied in view of (4.1.10).
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4.2. Differential forms. In Section 4.1 a Grassmann algebra
V has been defined at an arbitrary p 6 M. In order to show its
dependence on p write V(p). It is a sum of elements of the spaces
Vk{p\ by (4.1.3), where V0(p) = R, and for 1 < k < d, Vk(p) is a (£)-
dimensional vector space of fc-linear alternating functions on M*k. A
member of Vk(p) is called homogeneous of degree k. If at p a chart is
chosen with local coordinates x1,... , xdJ then dx1,... , c/x̂  is a basis
of M* = Vλ{p). Therefore, after replacing in (4.1.11) the ei by the dx^
we have that elements dxiγ Λ Άdxik of Vfc(p), 1 < i1 < < ik < d,
form a basis of Vk(p) so that an arbitrary element ωp of Vk(p) can be
written as

(4.2.1) ωp = Σ ah fc (p)dxiχ Λ Λ

where the sum is over all 1 < i1 < < ik < d, and the θίiχ ik(p)
are any real numbers.

A differential form of degree k (1 < k < d) is a function ω that
assigns to each p G M an element ω of Vj.(p). Then if Xj,... , X^ are
any vector fields on M, ω(-X'1,... , Xfc) is a real valued function on M
whose value at p £ M equals ω (Xx(p),... , Xfc(p)). In order to make
the notion of differential form useful more smoothness is needed.

4.2.1. DEFINITION. Let Mo be an open subset of the C°° man-
ifold M and ω a differential form of degree k. Then ω is said to be
a C°° differential form of degree k, or simply a fc-form; on MQ if
every point of Mo has a neighborhood U such that for any C°° vector
fields X 1 ? . . . ,Xk onU the function ω(Xly... ,-X*) is C°° on U'. An
analytic k-form is similarly defined, with "C°°" replaced everywhere
by "analytic."

In applications Mo is usually all of M. A 1-form is also called a
Pfaffian form; a special case of this is the differential df of a C°° real
valued function /. It is also convenient to define a 0-form as any C°°
real valued function on M.

A definition equivalent to Definition 4.2.1 can be given in terms
of charts. Let Mo be covered by a family of charts and consider
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in (4.2.1) the α's as functions of the local coordinates. Then ω is C°°
(resp. analytic) if and only if the α's are C°° (resp. analytic). This
definition does not depend on the choice of admissible charts. It may
not always be necessary to require the α's to be C°°. For instance, in
some applications it may be sufficient for the α's to be continuous, in
which case ω is called a continuous differential form.

A fc-form is a special case of a covariant tensor of order k. The
latter entity is more general in that the alternating property is not
imposed; only the A -linearity is retained. In this monograph tensors
will not be used.

4.3. Change of variables. If at p £ M a second admissible
chart is chosen with local coordinates y 1 ?... ,j/^, then ωp can also
be written in terms of the dy . In order to derive this expression
from (4.2.1) first express the dxi in terms of the dy , using (3.3.8)
with the roles of the x's and y's interchanged:

d

(4.3.1) dxt = > j
i = 1,... ,d.

Then substitute the expressions (4.3.1) into the right-hand side of
(4.2.1). From (4.1.8) it is seen that a wedge product is linear in each
factor, hence the substitution of (4.3.1) into (4.2.1) produces a linear
combination of terms of the form dy χ Λ Λ dy , where we need
consider only 1 < j λ < < j k < d by virtue of (4.1.9) and (4.1.10).
For us the most important case is k = d and then Vd is spanned by
the single form dxΎ Λ Λ dxd. Substitution of (4.3.1) and linearity
produces

(4.3.2)
//T* //T*

^ dyjiΛ...Λdyjd

in which the summation is over all j i = 1,... , c/, i — 1,... , d. How-
ever, dyjχ Λ ••• Λ dy-d = 0 unless j ^ . . . Jd is a permutation, say
7Γ G Gd, of 1,... , d and then dy^ Λ Λ dy-d = sgn(π)dy1 Λ Λ dyd.
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Thus, the right-hand side of (4.3.2) reduces to dyλA Λdyd multiplied

by the coefficient

d(x)

in which

(4.3.)

(There is a slight conflict of notation with (3.1.1) in that in (4.3.4) we

do not take the absolute value of the right-hand side. It will usually

be clear from the context which of the two definitions of Jacobian is

intended.) From (4.3.2) and (4.3.3) we get

(4.3.5) dxλ Λ Λ dxd = ^ {dy1 Λ Λ dyd,

in which we now consider both sides as a d-form by letting p vary over

a neighborhood in which the local coordinates a j 1 ? . . . ,xd as well as

yλ,... , yd are defined. This shows that on such a neighborhood the

d-form dx1A-'-Λdxd can be used for integration as a volume element

since (4.3.5) is the usual formula for the transformation of a volume

element under a change of variables.

The result of the computation that led from (4.3.1) to (4.3.5)

is restated below as a lemma in a form useful for later applications.

Note that the roles of x and y are interchanged.

4.3.1 LEMMA. Let dx1,... ,dxd and dyλ,... ,dyd be 1-forms re-

lated by dy = Adx, in which dx and dy are dx 1 column vectors with

elements dxiy dyi, i = 1,... ,c?; respectively, and A is dx d. Then

(4.3.6) dyλ Λ Λ dyd = (det A)dxλ Λ Λ dxd.

This result is used to determine how the Lebesgue measure of a

subset of Rd transforms under a linear transformation of Rd. On Rd
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Lebesgue measure λ is X(dx) = dxλ Λ Λ ώ d , except that we discard

any negative sign (this will be made more precise in Section 6.6).

Define (dx) to be the absolute value of the wedge product dxλ Λ Λ

dxd = A{dx^ say. I.e., (dx) = | A{ dx{\, and similarly (dy) = | A{ dy{\.

Then (4.3.6) reads

(4.3.7) (dy) = \άetA\(dx).

4.4. Orientation. A C°° manifold M of dimension d is called

orientable if it admits a continuous d-form that does not vanish

anywhere on M. (See Chevalley, 1946, Chap. V, §VI. For a different

definition that is equivalent for paracompact spaces (defined in Sec-

tion 13.3) see Bishop and Crittenden, 1964, Section 4.5, Lemma 3.)

In terms of coordinates, if M is covered by a family of charts, then

on each chart with local coordinates rc 1 ?... ,# r f , the d-form ω is rep-

resented by an expression of the form

(4.4.1) ωp(χ) ~ Oί(x)dxλ Λ Λ dxd,

where p(x) 6 M i s the point corresponding to the coordinates x =

( # ! , . . . , xd). Then M is orientable if and only if on every chart a is

continuous and never 0. This clearly does not depend on the choice of

charts since under a change of variables from x to y the new function

a is the old one multiplied by (4.3.4) which is continuous and φ 0.

If M is orientable and ω is a continuous nonvanishing d-form on

M, then C°° vector fields Xλ,... , Xd on M exist such that ω(X1,... ,

Xd) > 0 everywhere on M. It amounts to the same by saying that for

every p 6 M there is an ordered basis of M such that ω evaluated

at this basis is positive. One says that M is positively oriented

by this choice of basis. In contrast, M is negatively oriented by

vector fields Yλ,... , Yd if ω(Yλ,... , Yd) < 0 everywhere on M (take,

e.g., the Y's an odd permutation of the X's).

The geometric meaning of orientability can best be understood by

some examples. In the Euclidean plane R2 with coordinates x, j/, the

2-form ω = dx Λ dy is continuous and defined on all of R2. For the vec-

tor fields d/dx, d/dy, we have ω(d/dx, d/dy) = dx(d/dx)dy(d/dy) -
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dx(d/dy)dy(d/dx) = 1 - 0 = 1. Thus, (d/dx,d/dy) orients R2

positively. On the other hand, (d/dy,d/dx) orients R2 negatively.
Similar considerations show that Rn is orientable for every n > 1.
For n = 3 and ω = dx A dy A dz, the three even permutations of
(d/dx,d/dy,d/dz) orient R3 positively, the odd permutations nega-
tively.

We shall show now that the unit circle C is also orientable. Let
C analytically be defined by the unit interval 0 < x < 1 with x = 0
and x = 1 identified as the same point, say p 0. We cover C by two
charts; one is (0,1) with x as its coordinate; the other is the union of
0 < x < \ and | < x < 1 with coordinate u = x if 0 < x < | and
tέ = a; — l i f j < £ < l , so that — | < u < | . Let ω be defined as
dx on the first chart and as du on the second. Wherever the charts
overlap it is seen that dx = du; thus, ω is well defined. Also, ω is
continuous and nowhere 0. The vector field X that equals d/dx on
the first, d/du on the second chart, orients C positively, whereas —X
orients it negatively. This corresponds to the two distinct ways of
going around the circle. Similarly, the 2-sphere x2 + y2 + x2 = 1 is
orientable.

The circle example can be extended by crossing C with the real
line i?, obtaining a cylinder C xR. Since both C and R are orientable,
so is C x R. Analytically a cylinder can be represented by {(#,y) :
0 < x < 1, —oo < y < oo, (0,y) = (l?y) f°r every y}. That is,
the cylinder is a vertical strip in the plane with the left and right
edges identified. Now change this example by identifying those edges
in opposite direction:

(4.4.2) M = {(>,y) : 0 < x < 1, -oo < y < oo,

(0, y) = (1, -y) for every y}.

Then M is a Moebius strip and is not orientable, as will be shown
now. Cover M by two charts. The first covers all points with 0 < x <
1, and we may take (x, y) as the coordinates in this chart. The second
covers the points with 0 < x < | , and | < x < 1. On this chart the
coordinates are chosen (u,^), with u = x, v = y when 0 < £ < |
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and u = x — 1, v = —y when | < x < 1. Suppose there were a

continuous and nowhere vanishing 2-form ω on M, represented on the

first chart by a(x,y)dx Λdy and on the second by β(u, v)du Λdv, with

a,β continuous in their arguments. These two expressions are to be

equated at all points where the charts overlap. For the points with

0 < x < | , therefore 0 < u < | , this gives β{u,v) = α(u,ϋ), and for

the points with — | < u < 0 we get β(u,v) = —a(u + 1,—υ) (using

du Λ dv = — dx Λ dy on this set). Since a is continuous on the strip

0 < x < 1 and nowhere 0, it must be of one sign. WLOG suppose

α > 0 o n 0 < a : < l . Then the equations β(u,v) = a{u,v) for u > 0

and β(u,v) = — a(u + 1,— v) for w < 0 show that β(u,v) > 0 for

u > 0 and < 0 for u < 0. If ^ is to be continuous at u = 0 we must

have β(0,v) = 0 for every ι>. But then ω — 0 in the points (0,y),

contradicting the assumption that ω does not vanish anywhere.

4.5. Adjoint of a differential. Let M and N be C°° man-

ifolds, with dimM = d, dim AT = e, and let / : M -> JV be a C°°

mapping. We have seen in Chapter 3 that df is a linear transforma-

tion M —> TV , for p £ M and 5 = /(ίO This linear transformation

also transforms differential forms, but in the opposite direction. Let θ

be a A:-form on iV, then it determines a fc-form ω on M by the formula

(4.5.1) ωiX^... ,Xk) = θ(dfX1,... ,dfXk),

for arbitrary C°° vector fields X 1 ? . . . , Xfc on M. We shall denote this

linear map θ -+ ω by δf and call 5/ the adjoint of df. (It is a special

case of the general notion of the adjoint of a linear transformation

on one linear space into another. See Dunford and Schwartz, 1958,

VI 2.1.) Thus, (4.5.1) can also be written ω = δf(θ). In terms of

charts, suppose p £ M has a neighborhood Up with local coordinates

x = ( z 1 ? . . . ,xd) and q = f(p) G JV has a neighborhood Vq D f(Up)

with local coordinates y = (y 1 ? . . . ,ye), then a fc-form on Vg has the

form

(4.5.2) θ
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where the sum is over all 1 < i1 < < ik < e. In order to write
ω = δf(θ) in terms of the #'s, express in (4.5.2) y as a function of
x with help of /; the dyi transform as in (3.3.8). With the notation
D- = dyjdxj and taking as an example k = 2, the 2-form θ = dyλ Λ
dy2 becomes */(*) = ( £ £>1>t ώ A ) Λ ( £ £>2j-2 d* Λ ) = £ ( 2 ^ h D2J2 -
D1j2D2jι)dxji Λ dxj2, where the last sum is over all 1 < j λ < j 2 < d.

Now suppose that dim M = dim N = d and suppose that / is a
diffeomorphism M —> N. At p £ M let there be a chart with local
coordinates x = (xx,... , xd), and similarly at the corresponding point
q = /(p) ς JV a chart with y = (y 1 ?... , j/d). Then locally y is a C°°
function of x. Consider on the y-chart the d-ΐovm θ = dy1 Λ Λ dyd.
Then its image δf(θ) on the x-chart is

(4.5.3) δf(dVl Λ Λ dyd) = | 4 ώ i A " ' A ώ i
d(x)

by the same computation that led to (4.3.5) (the Jacobian on the
right-hand side of (4.5.3) is defined in (4.3.4)). In particular, suppose
M = N and G is a group with C°° action on M. Then (4.5.3) can be
applied to each diffeomorphism of M with itself determined by g G G.
This will be used in Section 5.3 when M is G itself.

Consider again arbitrary C°° manifolds M and N and / : M —>
N a C°° mapping. Suppose θλ is a fc-form and θ2 an £-form on iV; let
θx Λ θ2 be their wedge product. Then by using (4.1.4) or (4.1.6) it is
easily verified that

(4.5.4) δf(θ1Λθ2) = δf(θ1)Λδ(θ2).

This can of course be extended to any number of factors, and is espe-
cially useful if each factor is a 1-form. We shall apply it in Section 5.3.

4.6. Exterior differentiation. (This concept will not be used
in the sequel but is described here briefly since it fits in naturally
with differential forms.) Let u b e a fc-form on an open subset of M,
1 < k < d. From ω we build a (k + l)-form, written dω and called
the exterior derivative of ω. At any p G M where ω is defined
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and for arbitrary < 1 ? . . . ,ί*+i £ Mp we have to define the value of
(<&*;)(<!,... , ΐ^. + 1 ). For this purpose let X 1 ? . . . ,Xk+1 be any (7°°
vector fields such that -X"t (p) = t{, i = 1,... , k + 1. Also, in order to
shorten the notation, if (a1,... , an) is a sequence of any n objects, let
a(n)\i stand for the sequence ( a l 9 . . . >αn) with α̂  deleted. Similarly,
a(n)\hj ι s ^ e s e ( l u e n c e with both ai and α̂  deleted. Then define

(dω)p(t1,...,tk+1)=

I Kf<Jb+l
(4.6.1) V " -

ί f i ) I (P)
J

(i.e., the function in curly brackets on the right-hand side of (4.6.1)
is to be evaluated at p). Note that the zth term of the first sum
on the right-hand side of (4.6.1) is the derivative with respect to the
tangent vector Xi(p) of the function ^(X(k-\-i)\i)' ^ c a n be shown
that the right-hand side of (4.6.1) is independent of the choice of
X l 5 . . . ,Xfc+1 provided X^p) = <t , and that (dω)p G Vfc+1(p) (see
Bishop and Crittenden, 1964, Section 4.6). As an example let k = 1,
so that dω is a 2-form. Then (4.6.1) reads

(4.6.2) (dω)0(^1^2) = {-^l^C-^) ~~ -^2ω{ ̂ i) ~ ^([-^ M-^DKίO'

with any X1,X2 such that Xi(p) = t^
With help of a chart it is easy to write down dω in terms of ω

in a neighborhood of a point. Suppose in terms of local coordinates
xλ,... , xd at p we have

(4.6.3) ω =

where the summation is over all 1 < iλ < < ik < d, and the
are C°° functions. Then

ik

(4.6.4)
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This follows from (4.6.1) by taking for (X 1 ? . . . , Xj.+1) the sequence
{d/dx λ,... , d/dxjk+i) for every choice of 1 < j λ < < jk^_1 < d,
and by observing that these vector fields have zero brackets. The
exterior derivative can also be defined with help of (4.6.4) (as is done
in Cohn, 1957, Section 4.3) but it has to be shown then that this
definition does not depend on the choice of charts.

If ω is a 0-form, then ω is a C°° function, say /. In that case we
define dω simply as df. For any A;, 0 < k < d, the exterior derivative
is linear as a function on the space of fc-forms into the space of (fc +1)-
forms. Additionally, the following properties can be shown: (i)ifωisa
fc-form and θ an Morm on M, then d(ωΛθ) = (dω)Λθ + (-l)kω/\(dθ)]
(ii) d2 = 0, i.e., d(dω) = 0 for any differential form ω.




