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An approach to sequential design for estimating the
root of a nonlinear equation is described. It sets the
next design point at the current estimate of the
parameter via a parametric model and maximum likelihood
(or other efficient) estimation. For normal, binomial
and Poisson errors and their respective canonical link
functions, it is close to the Robbins-Monro stochastic
approximation and thus enjoys the latterfs robustness
against the misspecification of the link function. Some
new variations of the Robbins-Monro scheme are obtained
as a consequence.

1 Introduction.

We are interested in efficient sequential designs for estimating the

root of an unknown nonlinear equation, where the distribution of the responses

is quite general (continuous or discrete) . The proposed approach is based on

design updating with the maximum likelihood estimate via a parametric model. It

is dubbed the maximum likelihood (ML) recursion approach. In several important

situations it is shown to be closely related to the stochastic approximation

approach of Robbins and Monro (1951).

The problem can be described as follows The response y is related to

an underlying "design" variable x. Denote the mean of y at x by M(x), which is
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throughout the paper.

2 The Robbins-Monro procedure and its variations via least squares recursion.

In their pioneering paper Robbins and Monro (1951) proposed the

following recursive scheme

X
n

+
1

for estimating the solution x* of M(x) = p, where the observation y taken at x
n

satisfies y = M(x) + ε with E(ε) = O The scheme does not assume any knowledge

of M, which is typically unknown. Under weak conditions on M and ε, x
n
 is known

to converge to x* with probability one as n + °° (Robbins and Siegmund, 1971) and

to be asymptotically normal (Sacks, 1958). The optimal choice of c for

minimizing the asymptotic variance of x
R
 is (M'ίx*))"

1
, M

τ
(x*) * 0.

The Robbins-Monro (RM) scheme (1) can be interpreted as a recursive

scheme with least squares updating. Let us make a tentative assumption that

2
y = α + 3x + ε and the errors ε have mean zero, variance σ and are

uncorrelated. First we consider the simple case of known 3. For solving the

linear equation α + 3x = 0 (p is now zero), the parameter of interest is

Θ - -α/β. Based on the first n observations, the least squares estimate (or the

maximum likelihood estimate if the errors are normal) of Θ is

where x and y are respectively the means of x, and y., i=l,...,n. If the next
n n i -

1
-

observation y
 +
, is taken at the current estimate Θ of Θ, the recursive

relation

X
n

+
1 = K -

 X
n " ΊΓ

obtains. It is easy to see that (3) is equivalent to
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unknown to the experimenter. Of special interest is the solution x* to the

equation M(x) = p. In bioassay x* may be an effective dose level; in a control

system x* may be an optimal input level. Usually the distributional form of y

is roughly known, e.g., binomial in bioassay. Denote it by f(y|θ). The

parameter Θ is related to x via a link function unknown to the experimenter.

For univariate x, our approach starts with assuming a parametric link function

Θ = g(λx - α) with g known. An efficient estimate (λ ,α ) of (λ,α) is based on

the first n observations via the assumed model f and g. Under f and g, E(y|x)

is a function of α and λ, denoted by H(x|α,λ). It is typically monotone in x.

The ML recursion chooses the next design x
n + 1

 to satisfy H(x +il
α

n
>

λ

n
)
 s
 P

 τ h e

procedure can be repeated indefinitely. The idea was first studied in Wu (1985)

for binary y.

In Section 2 this approach for normal errors and a linear link

function is shown to yield a nonadaptive Robbins-Monro (RM) stochastic

approximation (1) if λ in the preceding description is fixed. For α and λ

unknown, it leads to a variation (11) of an adaptive RM scheme. The new scheme

(11) has the same first order asymptotic behavior as the adaptive RM. But the

second order behavior, yet to be investigated, will probably be different. The

RM scheme, without any knowledge of M, has desirable asymptotic properties under

weak conditions on M. This robustness is therefore shared by the ML recursion,

although the latter is based on the assumption of a possibly incorrect link

function g(λx - α) . Its robustness, in the case of binary data with logit link,

is shown to stem from the iteration step H(x .|α ,λ ) = p. See (16) and

(17). Section 3 contains other results that link the two approaches. A general

description of the ML recursion approach for generalized linear models is given

in Section 4. Canonical link functions are recommended. In the case of Poisson

variation, the ML recursion based on a canonical link is equivalent to a version

of the RM recursion (1). This connection enables us to study the asymptotic

behavior of the ML recursion. The paper concludes with the pros and cons of the

ML recursion approach relative to the RM recursion approach and points out

potential gains in relating the two approaches. No rigor is attempted
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-1

which is the RM recursion (1) with c = 3 This equivalence was pointed out by

Lai and Robbins (1979). It is a significant step since it connects two

seemingly distinct approaches to the design problem outlined in Section 1. The

approach that leads to (3) is parametric in that it is motivated by a linear

function that links E(y) and x and, to a lesser extent, by the normality of

errors (which makes the least squares estimator fully efficient). On the other

hand, the stochastic approximation approach (4) is nonparametric in that its

asymptotic performance is very much independent of the knowledge of M(x). The

assumption y = α + 3x + ε is useful for motivating and generating design

procedures. The validity and performance of the resulting design are

nonetheless independent of the assumption.

So far we have assumed that the slope parameter 3 is known. For

unknown 3, what recursive scheme will the least squares updating approach lead

to? Here

and

(6) "β
n
 = Σ

 y i
(x

±
 - x

n
) / Σ (x

±
 - x

n
)

2

is the regression slope estimate. From (5) and (7)

x
n "

 X
n-1

 + ( x
n "

 X
n

) / ( n
 "

 J )
 = V-l

 + ( x
n "

 X
n-l

) / n
'

we have the following recursive relation
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x
n+l "

 x
n " *n ~ V l

The last equality follows from (5) with n replaced by n - 1. By using (7) for

y, this equals

It remains to derive an explicit form for the first term of (9). From (7,2.7)

of Goodwin and Payne (1977),

n n-1
 f

 ..-n-1. — ,2 ,
 v
n-l.

(n - l )
Σ l
 (

X i
 - x ^ ) + Σ

χ
 (x. - x

n

(n - l)(x
n
 - x

n

The second equality follows from (5). Therefore

1 1
 λ
 n - 1 — n-1

n—l n

nβ β . nΣ
n
(x. - x )

2
 n3 nΣ

n
(x, - x )

2

n n—I l i n n l i n

The last equality follows from (5). From (8)-(10) follows a new recursive

scheme

β"
1
 (n - 1)

2
(7 /β )

2

n n-1 n-1 ,
x
 M
. = x [i + ly

n + 1 n n
 n E ^ (

X
 x )

2

If the second term inside the square bracket is ignored, (11) reduces

to the RM recursion (1) with c = 3 and p = 0. Such an adaptive procedure with

n *



ADAPTIVE STATISTICAL PROCEDURES 303

proper truncation on 3 was shown (Lai and Robbins, 1981; Anbar, 1978) to have

the same minimal asymptotic variance as the optimal choice c = (M'(x*)) .

We now study the order of magnitude of the "correction term"

( n
 "

 1 ) 2 (
yn-l

/ έ
n-l

) 2

(12)
)

which, being positive, makes the adjustment | x
+ 1
 - x | in (11) bigger than that

in the adaptive RM scheme mentioned above. One can argue heuristically from the

results of Lai and Robbins (1981) that (n - 1)(y" )
2
 = 0 (1), 3

R
 -> M'(x*),

and Σ.(x. - x ) = 0 (log n) . The correction term (12) is therefore of the
1 i n p

order 0 ((log n) ) We conjecture that the scheme (11) with proper truncation

of the coefficient of
 n
 y

n
 has the same limiting distribution as the optimal RM

scheme (1) with c = (M
f
(x*))

- 1
 and the adaptive RM scheme (1) with c = 3~~ . If

n

y. is related to x. by the simple linear regression model y. = α + 3x. + ε.,

this was established in Lai and Robbins (1982) with a different truncation

scheme. What the correction term (12) does to (11) is in the lower order

terms. Expand the mean square error of x
n
 as

2
 a

l
 a

2
(13) E(x - x*) = — + —r— + lower order terms,

n n nb
n

where b -> °° as n -> ». The ai term is the same for the three procedures, while
n
 L

the a2 term may differ. Since the scheme (11) is based on the least squares

estimator, it may be second-order optimal (in an appropriate sense) for nearly

linear M(x) and normal errors. Second order asymptotic results, currently

unavailable in the literature, may provide further insights into those small or

moderate sample phenomena not readily explainable by first-order theory. Such

results are found in section 6 of Wu (1985). Of course, small sample behavior

depends on the location of initial observations.

The correction term (12) is non-negligible only for small or moderate

n when log n is not large, |y | » 0, or x
1
,...,x

n
 are not wide-spread. To make

the scheme (11) more robust against poor choice of the starting value XQ and the
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motivating linearity and normality assumptions on M and ε, the correction term

(12) should be made less dependent on the remote past. Such can be achieved by

— — 2
replacing y , $ and Σ(x. - x ) in (12) by weighted versions with more

weights on recent observations.

3. Maximum likelihood recursion in binary experiments.

In a binary experiment the outcome y is denoted by 1 (response) or 0

(nonresponse) . The probability of response is related to a stress level x (at

which the experimentation is performed) by

M(x) = Prob {y - l|x} - E(y|x).

It is often of interest to estimate the lOOp-th percentile x* of M(x), i.e.

M(x*) = p, 0 < p < 1. Since the form of M is often unknown, for expensive runs,

sequential experimentation (if practically feasible) is called for so that the

data can be collected and used in a most economic way. For related comments,

see Wu (1985).

The maximum likelihood (ML) recursion approach starts with a

parametric model for the unknown M(x) First we consider a one-parameter model

H(x - α) with parameter α and H known. For estimating the lOOp-th percentile, H

is chosen to satisfy H(0) = p. That is, if H is the true model, α is the

lOOp-th percentile of M. The log likelihood for the first n observations is

n n
Σ y log H(x - α) + Σ (1 - y )log(l - H(x - α)),
1 1

The maximum likelihood estimate α of α satisfies the equation

n H
f
(x - α) n H

f
(x. - α)

I y __
.
 J
± H(x. - α)(l - H(x, - α)) . 1 - H(x^ - α)

1 i i 1 i

By writing
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w
x ) =

 H'(x)
M X ;

 H(x)(l - H(x))'

the above equation can be expressed as a weighted normal equation

Σ y.K(x. - α ) = Σ H(x - α )K(x. - α ).
i i n i n i n

According to the ML recursion approach, the next design x
n +
j is chosen

to be the current estimate α of α and the preceding equation becomes

(14) Σ
 y i

K (
X i
 - x

n + 1
) = Σ H (

X i
 - x

n + 1
) K (

X i
 - x

n + 1
) .

To obtain a recursive relation between x
n + 1

 and x
n
, (14) gives

n

j i n+1 i n+1 i n i n

Σ y
i [ K

(
X i
 - x

n + 1
) - K(

X i
 - χ

n
)]

 +
y

n
K ( 0 )

Unless K
1
 = 0, x^+i ~ *

n
 depends on all the past x^ and y^. Recall that the RM

recursion depends on the past {y.} through y Only when K* = 0, x
n +
i ~ x

n

behaves more like the RM scheme in this regard. Note that K
f
 « 0 iff H is of

1 —ex —1
the logistic form (1 + ( l)e ) . Another advantage of the logit-based ML

recursion design is that it is less susceptible to poor choice of initial

observations than the probit-based procedure (Sellke, 1986).

Without loss of generality, assume c = 1. For the logit assumption,

equation (14) takes the form

n n -(x -x )

Σ y
±
 = Σ (1 + (I- l)e

 l n + 1
 Γ

1
,
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which yields the recursive relation

de
 X n

 )(1 + de
 X n

or equivalently,

x -x. x ,. -x
n , n i

/ Έ
 n+1 n

N

f
.
 Q
 x „ de (1 - e )

(15) Σ = y - p.
. x -x. x -x. x .. -x n
1 /, . j n iw,

 L
 , n l n+1 n

N( 1 + d e )(l+de e )

The special case p = 1/2 was given in (13) of Wu (1985). The recursion (15)

defines x
n +
} - x

n
 implicitly as a nonlinear function of y

n
 - p and {x }.. It is

qualitatively similar to the RM scheme in two regards. It pushes x in the

"right" direction, i.e., x
n +
i ~ x has the same sign as p - y The step size

|x . - x I gets smaller as n increases (and eventually at the rate n~ ).

The ML recursion approach can also be applied to the two-parameter

logistic model. The x
n
+j and x

n
 obtained in this manner cannot be related in an

exact relation like (15). By using linear approximations, it was shown (Wu,

1985) that x
R + 1

 - x
n
 can be approximated by the adaptive RM scheme (1)

with c = &
n
 . On the other hand, a one-parameter model does not lead to a

recursive scheme asymptotically equivalent to the adaptive RM scheme. This

point should be clear from the discussion in Section 2, eqs. (3) and (4). For

binary data, the recursion (15) based on the one-parameter logistic model again

can not be approximated by the adaptive RM. This is because the slope parameter

in the two-parameter model plays the role of the regression slope parameter 3 in

the adaptive RM. Without a consistent estimate of the slope parameter, first-

order optimality of the ML recursion in terms of minimizing a^ in (13) cannot be

achieved.

The logistic model has a unique place for binomial data in that its

likelihood equation resembles the normal equation in linear models For

generalized linear models to be discussed in Section 4, this unique role is

played by the canonical link function.
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Since the RM recursion has desirable asymptotic properties under weak

conditions on M, and the ML recursion can be approximated by a version of the RM

scheme, this nonparametric property may be shared by the ML recursion. In the

following we will use the logistic model to explain why the ML recursion

approach, apparently model-based, is robust against model misspecification. The

following argument is taken from Wu (1985). The likelihood equation for α is

- i
n n

(16) n
 X
Σ y

±
 = n"

1
 Σ H(x. |«

n
,λ

n
) ,H(x|α,λ) - (1 + e~

λ
*
+Ct
)~

l
.

Make a rather strong assumption that α -• α , λ + λ uniformly so that x
 +
,,

which satisfies
 H
(

χ

n +
] J

α

n
>

λ

n
)
 =
 P> converges to a constant w. The ML recursion,

based on the H function, is robust if w satisfies M(w) = p. Recall that M is

the true response function which may be different from H. For continuous M, the

left side of (16) converges to M(w) a.s., since each y
i
 is binomial with

probability M(x
i
). This side does not depend on the H assumption. The right

side of (16) converges to H(w|α ,λ ) = lim H(x |α ,λ ) = p. Therefore

M(w) = p. The right side, though starting with the H assumption, turns out to

be equal to the constant p because of the recursion step

which is recognized as the source of robustness of the ML recursion approach.

In other words, a possible misspecificatin in H is "undone" by the recursion

step (17). This robustness claim may not hold for the estimation of other

parameters such as the slope of M at x*

Another interpretation is that the assumed model H is locally valid in

x, whatever the true "global" model is.

4 Extensions to generalized linear models.

The ML recursion approach to sequential design can be applied to very

general variations described by a generalized linear model. The response y has
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a density function

exp{[(yΘ - b(Θ)]/a(ψ) + c(y,ψ)}

for some functions a,b,c. If ψ is known, this is an exponential family with

canonical parameter Θ. The response y is related to the variable x through a

link function η : Θ •* η(Θ) such that the η scale is linear in x, i.e.,

η = λx - α. Typically the link function is unknown. The mean response

M(x) = E(y|x) is

M(x) = b'(θ) = b^ϊΓ^λx - α)).

Without knowing M, we assume a link function ζ:θ •* ζ(Θ) so that ζ = λx - α and

the mean response function is

H(x|α,λ) - b
f
(Θ) - b

l
(ζ"

1
(λx - α)),

where ζ is the inverse function of ζ. The likelihood equation obtained by

differentiating, with respect to α and λ,

Σ y
±
ζ
 1
(λx

i
 - o) - Σ b(ζ"

1
(λx

i
 - α)),

is, by writing ζ = p,

Σ y
4
P (λx - α) - Σ H(x.|α,λ)p (λx - α)

(18)
 i 1 i i

Σ » »
x

i
y

±
P (λx

±
 - α) » Σ x

i
H(x

i
|α,λ)p (λx

i
 - α)

If ζ(Θ) = Θ, Σ y and Σ y x are the sufficient statistics for α and λ and (18)

resembles the normal equation in linear models. Such a link function is called

a canonical link (McCullagh and Nelder, 1983). For N(μ,σ
2
), ζ(y) = μ is the
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canonical link; for binomial with probability p, the logit function

ζ(p) * log[p(l - p) ] is the canonical link and ζ(p) = λx - α gives the

logistic function p - (1 + e
 X O t

) . Without a priori reason for choosing

other H functions, the canonical link function is a convenient choice for the ML

recursion approach.

For estimating x* with M(x*) = p, where p is in the range of the mean

b
f
(Θ), the ML recursion works as follows. Let α and λ be a solution to (18)

n n

based on the first n observations Take the next observation y
n +
^ at

satisfying

In the next section, we shall study another special case, the Poisson variation.

5 Sequential Poisson experiments.

Examples of Poisson variation include radiation counts and number of

jobs arriving in a period. The associated x variable may be the distance to the

source of radiation or the parameter specification of a queuing system. Here y

is a Poisson variable with mean μ. To estimate x* with M(x*) = E(y|x*) = p, we

assume a canonical link with one parameter, i.e.,

(19) P(y|u)
 α
 exp(y In μ - μ), In μ * x - α.

The mean response function according to (19) is H(x|α) = e . The parameter of

interest is x satisfying H(x|α) = p, i.e., e = pe . By solving the equation

x -α

-
 α )

 -
 e ]

we obtain the maximum likelihood estimate α^ of α, through

-α n n x,

e
 n
 = Σ y / Σ e

 i
.

1
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If the next design x
n + 1

 is chosen to satisfy
 H
(

χ

n + 1
l

α

n
)
 =
 P>

x α n x n

(20) e
 Π
 = pe

 n
 = p Σ e /Σ y .

1 1

Equation (20) for n and n - 1 gives
X
n n-1 n-1

 X
i

X
π+1

 X
n

 β
 ^ Γ

 y
i ~

 y
n

Σ
l"

 e P
 "

 y
n

e - e = p —= - p —

or equivalently,

x , . x c . . n . -α
(21) e - e - - ( y

n
" P ) , c

n
 = ("ly.Xp e ).

Equation (21) is an RM recursion in the transformed scale e
x
.

By rewriting the ML recursion as an RM recursion, we can draw on the

rich literature on the asymptotics of the latter procedure. The remaining

section is devoted to a heuristic study of the limiting behavior of (21).

Assume that x converges to a constant ZQ. From the martingale strong law of

large numbers,

(22) I z
y i

* l £

Similarly, by letting n -»• °° on both sides of (20),

implying that M(z
Q
) = p and z

Q
 = x*, that is, x

n
 is asymptotically consistent.

The asymptotic variance of e
 n
 to e

x
 depends on the limiting value of c in

(21). From (20) and (22),

M
, .

 Z
0 -x*

M(z
Q
)e - pe

which is not equal to M
f
(x*) and therefore the scheme (21) does not have minimal
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asymptotic variance. A rigorous treatment of the consistency and asymptotic

x
normality of e n in (21) is desired. A general result of Sellke (1985) may be

applicable

6. Concluding remarks.

The ML recursion approach to sequential designs is intuitively

appealing and easy to understand, although the stochastic approximation is

slightly easier to implement. It is applicable to very general distributions

Special features such as discreteness or boundedness of the data are taken into

account through a proper choice of the likelihood In several important

situations, it is very close to the RM recursive scheme (with varying choice of

the constant c) and thus shares the latter's robustness against a misspecified

link function. If the assumed model is correct, it is asymptotically efficient

and may also perform well in small samples as the maximum likelihood estimator

often does. Wufs (1985) simulation results for binary data suggest that it may

be superior to the RM recursion in small samples

Its major problem thus far is the lack of rigorous theory on its

asymptotic behavior. An attempt has been made by Sellke (1985). Here its

linkage to the RM scheme can be exploited. By rewriting it as an RM-like scheme

and suitably bounding the constant c in (1), simple proofs of its asymptotic

properties may be obtained by drawing on the vast literature on the RM scheme.

Another gain due to this linkage is in the choice of stabilizing constant.

Adaptive versions of the ML or RM recursion, though asymptotically optimal, may

not perform well in small samples because of the instability caused by

adaptation. Stability can be achieved by putting a bound on the constant c in

(1). The simulation results of Wu (1985) demonstrate the effectiveness of this

device in reducing the small-sample mean square errors of both procedures

Cross-fertilization of the two approaches may lead to further understanding and

results.
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